Commit 6bf05ad5 authored by Gaurav Kumar's avatar Gaurav Kumar
Browse files

Update README.md

parent 4a4ccefe
......@@ -10,23 +10,23 @@ This project answers the research question - To what extent can API categories a
## Input data:
Data obtained by characterizing the abstractions of the repository based on characterization type and dependence relationship.
Here is the input [file](https://github.com/gorjatschev/applying-apis/blob/main/output/characterization/characterization_Novetta_CLAVIN_method_api.csv).
Here is the input file [characterization_Novetta_CLAVIN_method_api.csv](https://github.com/gorjatschev/applying-apis/blob/main/output/characterization/characterization_Novetta_CLAVIN_method_api.csv).
### Modified Input csv:
We have used modified input csv file in order to get different probability values other than 1 with the dataset provided by master thesis.
https://gitlab.uni-koblenz.de/ggaurav/applying-apis/-/blob/main/Data/Input/modified_characterization_Novetta_CLAVIN_method_api.csv
[modified_characterization_Novetta_CLAVIN_method_api.csv](https://gitlab.uni-koblenz.de/ggaurav/applying-apis/-/blob/main/Data/Input/modified_characterization_Novetta_CLAVIN_method_api.csv)
## Output data:
From Thesis:
https://github.com/gorjatschev/applying-apis/blob/main/output/visualization/visualization_Novetta_CLAVIN_method_mcrCategories.pdf
[visualization_Novetta_CLAVIN_method_mcrCategories.pdf](https://github.com/gorjatschev/applying-apis/blob/main/output/visualization/visualization_Novetta_CLAVIN_method_mcrCategories.pdf)
### After measuring the effect through count and percentage:
With Original Input csv:
https://gitlab.uni-koblenz.de/ggaurav/applying-apis/-/blob/main/Data/Output/result.csv
https://gitlab.uni-koblenz.de/ggaurav/applying-apis/-/blob/main/Data/Output/output_logger
[result.csv](https://gitlab.uni-koblenz.de/ggaurav/applying-apis/-/blob/main/Data/Output/result.csv)
[output_logger](https://gitlab.uni-koblenz.de/ggaurav/applying-apis/-/blob/main/Data/Output/output_logger)
### After Modified Input csv:
https://gitlab.uni-koblenz.de/ggaurav/applying-apis/-/blob/main/Data/output_images/modified_input_csv.jpg
[modified_input_csv.jpg](https://gitlab.uni-koblenz.de/ggaurav/applying-apis/-/blob/main/Data/output_images/modified_input_csv.jpg)
# Findings of Research Question:
## Process Delta:
......@@ -53,15 +53,15 @@ Jupyter Notebook
* Or it can be run using python command inside Process folder: python3 repositories_visualizer.py
# Validation:
Validation can be done based on original input and output file from the thesis by comparing the results of mcr categories. We can feed the dataset for which we want to find the dominant mcr categories by placing your dataset in this [file](https://gitlab.uni-koblenz.de/ggaurav/applying-apis/-/blob/main/Data/Input/characterization_Novetta_CLAVIN_method_api.csv).
Validation can be done based on original input and output file from the thesis by comparing the results of mcr categories. We can feed the dataset for which we want to find the dominant mcr categories by placing your dataset in this file [characterization_Novetta_CLAVIN_method_api.csv](https://gitlab.uni-koblenz.de/ggaurav/applying-apis/-/blob/main/Data/Input/characterization_Novetta_CLAVIN_method_api.csv).
For example, we have used modified input [file](https://gitlab.uni-koblenz.de/ggaurav/applying-apis/-/blob/main/Data/Input/modified_characterization_Novetta_CLAVIN_method_api.csv), in order to get different probability other than 1.
For example, we have used modified input file [modified_characterization_Novetta_CLAVIN_method_api.csv](https://gitlab.uni-koblenz.de/ggaurav/applying-apis/-/blob/main/Data/Input/modified_characterization_Novetta_CLAVIN_method_api.csv), in order to get different probability other than 1.
# Data:
We have used output data visualized in the form of graph from thesis and produced count of mcr categories and percentages of dominance over each other which used as the input data of our process. Then we have produced results that the most dominant category is ‘Testing Frameworks’ with percentage of 59.63% which is calculated by excluding null values. Then further data has been used to compare the probabilities of usage of API with respect to mcr category.
# Process:
In the Process folder, inside repositories_visualizer.py, we have two methods calculate_dominant_mcrcategories () and api_probability_in_mcrcategories () - https://gitlab.uni-koblenz.de/ggaurav/applying-apis/-/blob/main/Process/repositories_visualizer.py
In the Process folder, inside repositories_visualizer.py, we have two methods calculate_dominant_mcrcategories () and api_probability_in_mcrcategories () - [repositories_visualizer.py](https://gitlab.uni-koblenz.de/ggaurav/applying-apis/-/blob/main/Process/repositories_visualizer.py)
* calculate_dominant_mcrcategories (): This method calculates the dominant mcr category percentage.
* api_probability_in_mcrcategories (): This method calculates the probability of an api having a particular mcr category.
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment