diff --git a/p_1/code/Bayesian_Government_Covid_Application_1__5__6_.ipynb b/p_1/code/Bayesian_Government_Covid_Application_1__5__6_.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..ab50a83e0012655e8c43953fe70a268cc2410f58
--- /dev/null
+++ b/p_1/code/Bayesian_Government_Covid_Application_1__5__6_.ipynb
@@ -0,0 +1,2535 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 21,
+   "id": "319b97f8-bbd3-4e02-8d88-304e6d87df2b",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "France data collection span:\n",
+      "2020-02-29 00:00:00 2022-07-31 00:00:00\n",
+      "Germany data collection span:\n",
+      "2020-02-14 00:00:00 2022-06-10 00:00:00\n",
+      "Italy data collection span:\n",
+      "2020-03-04 00:00:00 2022-06-14 00:00:00\n",
+      "Spain data collection span:\n",
+      "2020-03-09 00:00:00 2022-04-19 00:00:00\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Auto-assigning NUTS sampler...\n",
+      "Initializing NUTS using jitter+adapt_diag...\n",
+      "Multiprocess sampling (4 chains in 4 jobs)\n",
+      "NUTS: [incidence_predSpain-, sd_Spain-, mu_Spain-, incidence_predItaly-, sd_Italy-, mu_Italy-, incidence_predGermany-, sd_Germany-, mu_Germany-, incidence_predFrance-, sd_France-, mu_France-, incidence_predSpain+, sd_Spain+, mu_Spain+, incidence_predItaly+, sd_Italy+, mu_Italy+, incidence_predGermany+, sd_Germany+, mu_Germany+, incidence_predFrance+, sd_France+, mu_France+, hyper_nu_parameter_minus, hyper_nu_parameter_plus, hyper_sd_parameter_negative, hyper_mu_parameter_negative, hyper_sd_parameter_positive, hyper_mu_parameter_positive]\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "\n",
+       "    <div>\n",
+       "        <style>\n",
+       "            /* Turns off some styling */\n",
+       "            progress {\n",
+       "                /* gets rid of default border in Firefox and Opera. */\n",
+       "                border: none;\n",
+       "                /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
+       "                background-size: auto;\n",
+       "            }\n",
+       "            .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
+       "                background: #F44336;\n",
+       "            }\n",
+       "        </style>\n",
+       "      <progress value='8000' class='' max='8000' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
+       "      100.00% [8000/8000 01:16<00:00 Sampling 4 chains, 0 divergences]\n",
+       "    </div>\n",
+       "    "
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 104 seconds.\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>country</th>\n",
+       "      <th>mean</th>\n",
+       "      <th>std</th>\n",
+       "      <th>count+</th>\n",
+       "      <th>count-</th>\n",
+       "      <th>mean+</th>\n",
+       "      <th>mean-</th>\n",
+       "      <th>std+</th>\n",
+       "      <th>std-</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>Finland</td>\n",
+       "      <td>0.051612</td>\n",
+       "      <td>0.423277</td>\n",
+       "      <td>0</td>\n",
+       "      <td>841.0</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.051612</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.423277</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>France</td>\n",
+       "      <td>0.098557</td>\n",
+       "      <td>0.993711</td>\n",
+       "      <td>360</td>\n",
+       "      <td>522.0</td>\n",
+       "      <td>0.064499</td>\n",
+       "      <td>0.122046</td>\n",
+       "      <td>1.264366</td>\n",
+       "      <td>0.752913</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>Czechia</td>\n",
+       "      <td>0.057301</td>\n",
+       "      <td>0.542209</td>\n",
+       "      <td>159</td>\n",
+       "      <td>628.0</td>\n",
+       "      <td>0.128942</td>\n",
+       "      <td>0.039162</td>\n",
+       "      <td>0.573639</td>\n",
+       "      <td>0.532908</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>Lithuania</td>\n",
+       "      <td>0.110032</td>\n",
+       "      <td>0.762625</td>\n",
+       "      <td>410</td>\n",
+       "      <td>380.0</td>\n",
+       "      <td>0.044571</td>\n",
+       "      <td>0.180660</td>\n",
+       "      <td>0.428817</td>\n",
+       "      <td>1.001344</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>Germany</td>\n",
+       "      <td>0.078078</td>\n",
+       "      <td>0.531998</td>\n",
+       "      <td>324</td>\n",
+       "      <td>507.0</td>\n",
+       "      <td>0.114812</td>\n",
+       "      <td>0.054603</td>\n",
+       "      <td>0.461683</td>\n",
+       "      <td>0.571636</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>Sweden</td>\n",
+       "      <td>0.049521</td>\n",
+       "      <td>0.570887</td>\n",
+       "      <td>0</td>\n",
+       "      <td>750.0</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.049521</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.570887</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>Norway</td>\n",
+       "      <td>0.076707</td>\n",
+       "      <td>0.485767</td>\n",
+       "      <td>0</td>\n",
+       "      <td>705.0</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.076707</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.485767</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>Italy</td>\n",
+       "      <td>0.060640</td>\n",
+       "      <td>0.422212</td>\n",
+       "      <td>605</td>\n",
+       "      <td>228.0</td>\n",
+       "      <td>0.050652</td>\n",
+       "      <td>0.087143</td>\n",
+       "      <td>0.414868</td>\n",
+       "      <td>0.440945</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8</th>\n",
+       "      <td>Estonia</td>\n",
+       "      <td>0.066687</td>\n",
+       "      <td>0.596176</td>\n",
+       "      <td>191</td>\n",
+       "      <td>660.0</td>\n",
+       "      <td>-0.059367</td>\n",
+       "      <td>0.103166</td>\n",
+       "      <td>0.337950</td>\n",
+       "      <td>0.647744</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>Luxembourg</td>\n",
+       "      <td>0.076983</td>\n",
+       "      <td>0.735859</td>\n",
+       "      <td>0</td>\n",
+       "      <td>843.0</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.076983</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.735859</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>10</th>\n",
+       "      <td>Croatia</td>\n",
+       "      <td>0.128375</td>\n",
+       "      <td>0.926404</td>\n",
+       "      <td>436</td>\n",
+       "      <td>353.0</td>\n",
+       "      <td>0.135859</td>\n",
+       "      <td>0.119132</td>\n",
+       "      <td>0.911694</td>\n",
+       "      <td>0.945474</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>11</th>\n",
+       "      <td>Austria</td>\n",
+       "      <td>0.072951</td>\n",
+       "      <td>0.491107</td>\n",
+       "      <td>485</td>\n",
+       "      <td>312.0</td>\n",
+       "      <td>0.097519</td>\n",
+       "      <td>0.034761</td>\n",
+       "      <td>0.417576</td>\n",
+       "      <td>0.586123</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>12</th>\n",
+       "      <td>Greece</td>\n",
+       "      <td>0.097528</td>\n",
+       "      <td>0.802418</td>\n",
+       "      <td>490</td>\n",
+       "      <td>300.0</td>\n",
+       "      <td>0.117300</td>\n",
+       "      <td>0.065234</td>\n",
+       "      <td>0.907590</td>\n",
+       "      <td>0.591788</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>13</th>\n",
+       "      <td>Latvia</td>\n",
+       "      <td>0.070004</td>\n",
+       "      <td>0.674552</td>\n",
+       "      <td>0</td>\n",
+       "      <td>794.0</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.070004</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.674552</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>14</th>\n",
+       "      <td>Hungary</td>\n",
+       "      <td>0.129169</td>\n",
+       "      <td>1.156029</td>\n",
+       "      <td>356</td>\n",
+       "      <td>371.0</td>\n",
+       "      <td>-0.051831</td>\n",
+       "      <td>0.302852</td>\n",
+       "      <td>1.286120</td>\n",
+       "      <td>0.986622</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>15</th>\n",
+       "      <td>Belgium</td>\n",
+       "      <td>0.047511</td>\n",
+       "      <td>0.543945</td>\n",
+       "      <td>0</td>\n",
+       "      <td>804.0</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.047511</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.543945</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>16</th>\n",
+       "      <td>Netherlands</td>\n",
+       "      <td>0.062633</td>\n",
+       "      <td>0.496447</td>\n",
+       "      <td>290</td>\n",
+       "      <td>521.0</td>\n",
+       "      <td>0.076334</td>\n",
+       "      <td>0.055006</td>\n",
+       "      <td>0.601733</td>\n",
+       "      <td>0.427213</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>17</th>\n",
+       "      <td>Poland</td>\n",
+       "      <td>0.080531</td>\n",
+       "      <td>0.463481</td>\n",
+       "      <td>579</td>\n",
+       "      <td>171.0</td>\n",
+       "      <td>0.020731</td>\n",
+       "      <td>0.283012</td>\n",
+       "      <td>0.440180</td>\n",
+       "      <td>0.483996</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>18</th>\n",
+       "      <td>Slovenia</td>\n",
+       "      <td>0.072294</td>\n",
+       "      <td>0.604354</td>\n",
+       "      <td>75</td>\n",
+       "      <td>743.0</td>\n",
+       "      <td>-0.016447</td>\n",
+       "      <td>0.081252</td>\n",
+       "      <td>0.887337</td>\n",
+       "      <td>0.568120</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>19</th>\n",
+       "      <td>Malta</td>\n",
+       "      <td>0.131707</td>\n",
+       "      <td>1.197091</td>\n",
+       "      <td>556</td>\n",
+       "      <td>308.0</td>\n",
+       "      <td>0.164147</td>\n",
+       "      <td>0.073145</td>\n",
+       "      <td>1.391444</td>\n",
+       "      <td>0.723088</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>20</th>\n",
+       "      <td>Bulgaria</td>\n",
+       "      <td>0.083295</td>\n",
+       "      <td>0.584783</td>\n",
+       "      <td>20</td>\n",
+       "      <td>843.0</td>\n",
+       "      <td>-0.087712</td>\n",
+       "      <td>0.087352</td>\n",
+       "      <td>0.289538</td>\n",
+       "      <td>0.589484</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>21</th>\n",
+       "      <td>Ireland</td>\n",
+       "      <td>0.121539</td>\n",
+       "      <td>0.623222</td>\n",
+       "      <td>0</td>\n",
+       "      <td>744.0</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.121539</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.623222</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>22</th>\n",
+       "      <td>Slovakia</td>\n",
+       "      <td>0.094351</td>\n",
+       "      <td>0.666658</td>\n",
+       "      <td>191</td>\n",
+       "      <td>581.0</td>\n",
+       "      <td>0.234676</td>\n",
+       "      <td>0.048220</td>\n",
+       "      <td>0.971214</td>\n",
+       "      <td>0.522662</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>23</th>\n",
+       "      <td>Liechtenstein</td>\n",
+       "      <td>0.111920</td>\n",
+       "      <td>0.872550</td>\n",
+       "      <td>326</td>\n",
+       "      <td>414.0</td>\n",
+       "      <td>0.024672</td>\n",
+       "      <td>0.180622</td>\n",
+       "      <td>0.888268</td>\n",
+       "      <td>0.854790</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>24</th>\n",
+       "      <td>Portugal</td>\n",
+       "      <td>0.086956</td>\n",
+       "      <td>0.530820</td>\n",
+       "      <td>658</td>\n",
+       "      <td>193.0</td>\n",
+       "      <td>0.052754</td>\n",
+       "      <td>0.203563</td>\n",
+       "      <td>0.436438</td>\n",
+       "      <td>0.760230</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25</th>\n",
+       "      <td>Denmark</td>\n",
+       "      <td>0.189740</td>\n",
+       "      <td>3.049373</td>\n",
+       "      <td>226</td>\n",
+       "      <td>552.0</td>\n",
+       "      <td>-0.025845</td>\n",
+       "      <td>0.278004</td>\n",
+       "      <td>0.361333</td>\n",
+       "      <td>3.610051</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>26</th>\n",
+       "      <td>Spain</td>\n",
+       "      <td>0.062291</td>\n",
+       "      <td>0.453832</td>\n",
+       "      <td>155</td>\n",
+       "      <td>617.0</td>\n",
+       "      <td>-0.015452</td>\n",
+       "      <td>0.081822</td>\n",
+       "      <td>0.399189</td>\n",
+       "      <td>0.464809</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>27</th>\n",
+       "      <td>Romania</td>\n",
+       "      <td>0.078562</td>\n",
+       "      <td>0.475095</td>\n",
+       "      <td>501</td>\n",
+       "      <td>222.0</td>\n",
+       "      <td>0.038506</td>\n",
+       "      <td>0.168959</td>\n",
+       "      <td>0.467009</td>\n",
+       "      <td>0.481793</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>28</th>\n",
+       "      <td>Iceland</td>\n",
+       "      <td>0.266095</td>\n",
+       "      <td>1.833373</td>\n",
+       "      <td>0</td>\n",
+       "      <td>568.0</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.266095</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>1.833373</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>29</th>\n",
+       "      <td>Cyprus</td>\n",
+       "      <td>0.128644</td>\n",
+       "      <td>0.726643</td>\n",
+       "      <td>532</td>\n",
+       "      <td>246.0</td>\n",
+       "      <td>0.104710</td>\n",
+       "      <td>0.180403</td>\n",
+       "      <td>0.606325</td>\n",
+       "      <td>0.934789</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "          country      mean       std  count+  count-     mean+     mean-  \\\n",
+       "0         Finland  0.051612  0.423277       0   841.0  0.000000  0.051612   \n",
+       "1          France  0.098557  0.993711     360   522.0  0.064499  0.122046   \n",
+       "2         Czechia  0.057301  0.542209     159   628.0  0.128942  0.039162   \n",
+       "3       Lithuania  0.110032  0.762625     410   380.0  0.044571  0.180660   \n",
+       "4         Germany  0.078078  0.531998     324   507.0  0.114812  0.054603   \n",
+       "5          Sweden  0.049521  0.570887       0   750.0  0.000000  0.049521   \n",
+       "6          Norway  0.076707  0.485767       0   705.0  0.000000  0.076707   \n",
+       "7           Italy  0.060640  0.422212     605   228.0  0.050652  0.087143   \n",
+       "8         Estonia  0.066687  0.596176     191   660.0 -0.059367  0.103166   \n",
+       "9      Luxembourg  0.076983  0.735859       0   843.0  0.000000  0.076983   \n",
+       "10        Croatia  0.128375  0.926404     436   353.0  0.135859  0.119132   \n",
+       "11        Austria  0.072951  0.491107     485   312.0  0.097519  0.034761   \n",
+       "12         Greece  0.097528  0.802418     490   300.0  0.117300  0.065234   \n",
+       "13         Latvia  0.070004  0.674552       0   794.0  0.000000  0.070004   \n",
+       "14        Hungary  0.129169  1.156029     356   371.0 -0.051831  0.302852   \n",
+       "15        Belgium  0.047511  0.543945       0   804.0  0.000000  0.047511   \n",
+       "16    Netherlands  0.062633  0.496447     290   521.0  0.076334  0.055006   \n",
+       "17         Poland  0.080531  0.463481     579   171.0  0.020731  0.283012   \n",
+       "18       Slovenia  0.072294  0.604354      75   743.0 -0.016447  0.081252   \n",
+       "19          Malta  0.131707  1.197091     556   308.0  0.164147  0.073145   \n",
+       "20       Bulgaria  0.083295  0.584783      20   843.0 -0.087712  0.087352   \n",
+       "21        Ireland  0.121539  0.623222       0   744.0  0.000000  0.121539   \n",
+       "22       Slovakia  0.094351  0.666658     191   581.0  0.234676  0.048220   \n",
+       "23  Liechtenstein  0.111920  0.872550     326   414.0  0.024672  0.180622   \n",
+       "24       Portugal  0.086956  0.530820     658   193.0  0.052754  0.203563   \n",
+       "25        Denmark  0.189740  3.049373     226   552.0 -0.025845  0.278004   \n",
+       "26          Spain  0.062291  0.453832     155   617.0 -0.015452  0.081822   \n",
+       "27        Romania  0.078562  0.475095     501   222.0  0.038506  0.168959   \n",
+       "28        Iceland  0.266095  1.833373       0   568.0  0.000000  0.266095   \n",
+       "29         Cyprus  0.128644  0.726643     532   246.0  0.104710  0.180403   \n",
+       "\n",
+       "        std+      std-  \n",
+       "0   0.000000  0.423277  \n",
+       "1   1.264366  0.752913  \n",
+       "2   0.573639  0.532908  \n",
+       "3   0.428817  1.001344  \n",
+       "4   0.461683  0.571636  \n",
+       "5   0.000000  0.570887  \n",
+       "6   0.000000  0.485767  \n",
+       "7   0.414868  0.440945  \n",
+       "8   0.337950  0.647744  \n",
+       "9   0.000000  0.735859  \n",
+       "10  0.911694  0.945474  \n",
+       "11  0.417576  0.586123  \n",
+       "12  0.907590  0.591788  \n",
+       "13  0.000000  0.674552  \n",
+       "14  1.286120  0.986622  \n",
+       "15  0.000000  0.543945  \n",
+       "16  0.601733  0.427213  \n",
+       "17  0.440180  0.483996  \n",
+       "18  0.887337  0.568120  \n",
+       "19  1.391444  0.723088  \n",
+       "20  0.289538  0.589484  \n",
+       "21  0.000000  0.623222  \n",
+       "22  0.971214  0.522662  \n",
+       "23  0.888268  0.854790  \n",
+       "24  0.436438  0.760230  \n",
+       "25  0.361333  3.610051  \n",
+       "26  0.399189  0.464809  \n",
+       "27  0.467009  0.481793  \n",
+       "28  0.000000  1.833373  \n",
+       "29  0.606325  0.934789  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>mean</th>\n",
+       "      <th>sd</th>\n",
+       "      <th>hdi_3%</th>\n",
+       "      <th>hdi_97%</th>\n",
+       "      <th>mcse_mean</th>\n",
+       "      <th>mcse_sd</th>\n",
+       "      <th>ess_mean</th>\n",
+       "      <th>ess_sd</th>\n",
+       "      <th>ess_bulk</th>\n",
+       "      <th>ess_tail</th>\n",
+       "      <th>r_hat</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>hyper_mu_parameter_positive</th>\n",
+       "      <td>0.062</td>\n",
+       "      <td>0.059</td>\n",
+       "      <td>-0.053</td>\n",
+       "      <td>0.172</td>\n",
+       "      <td>0.001</td>\n",
+       "      <td>0.001</td>\n",
+       "      <td>9777.0</td>\n",
+       "      <td>3740.0</td>\n",
+       "      <td>9768.0</td>\n",
+       "      <td>2794.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>hyper_mu_parameter_negative</th>\n",
+       "      <td>0.102</td>\n",
+       "      <td>0.071</td>\n",
+       "      <td>-0.035</td>\n",
+       "      <td>0.230</td>\n",
+       "      <td>0.001</td>\n",
+       "      <td>0.001</td>\n",
+       "      <td>9136.0</td>\n",
+       "      <td>4533.0</td>\n",
+       "      <td>9141.0</td>\n",
+       "      <td>2984.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mu_France+</th>\n",
+       "      <td>0.007</td>\n",
+       "      <td>0.026</td>\n",
+       "      <td>-0.042</td>\n",
+       "      <td>0.056</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>7595.0</td>\n",
+       "      <td>1752.0</td>\n",
+       "      <td>7580.0</td>\n",
+       "      <td>2966.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>incidence_predFrance+</th>\n",
+       "      <td>-0.000</td>\n",
+       "      <td>0.570</td>\n",
+       "      <td>-1.151</td>\n",
+       "      <td>0.942</td>\n",
+       "      <td>0.008</td>\n",
+       "      <td>0.011</td>\n",
+       "      <td>5243.0</td>\n",
+       "      <td>1310.0</td>\n",
+       "      <td>6500.0</td>\n",
+       "      <td>2313.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mu_Germany+</th>\n",
+       "      <td>0.100</td>\n",
+       "      <td>0.025</td>\n",
+       "      <td>0.054</td>\n",
+       "      <td>0.149</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>8991.0</td>\n",
+       "      <td>6969.0</td>\n",
+       "      <td>9037.0</td>\n",
+       "      <td>2474.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>incidence_predGermany+</th>\n",
+       "      <td>0.092</td>\n",
+       "      <td>0.504</td>\n",
+       "      <td>-0.821</td>\n",
+       "      <td>1.110</td>\n",
+       "      <td>0.006</td>\n",
+       "      <td>0.011</td>\n",
+       "      <td>6715.0</td>\n",
+       "      <td>1127.0</td>\n",
+       "      <td>7019.0</td>\n",
+       "      <td>2103.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mu_Italy+</th>\n",
+       "      <td>-0.001</td>\n",
+       "      <td>0.015</td>\n",
+       "      <td>-0.030</td>\n",
+       "      <td>0.028</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>7951.0</td>\n",
+       "      <td>1546.0</td>\n",
+       "      <td>7971.0</td>\n",
+       "      <td>2959.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>incidence_predItaly+</th>\n",
+       "      <td>-0.005</td>\n",
+       "      <td>0.402</td>\n",
+       "      <td>-0.820</td>\n",
+       "      <td>0.739</td>\n",
+       "      <td>0.005</td>\n",
+       "      <td>0.008</td>\n",
+       "      <td>5426.0</td>\n",
+       "      <td>1386.0</td>\n",
+       "      <td>6198.0</td>\n",
+       "      <td>2204.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mu_Spain+</th>\n",
+       "      <td>-0.084</td>\n",
+       "      <td>0.024</td>\n",
+       "      <td>-0.130</td>\n",
+       "      <td>-0.042</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>8700.0</td>\n",
+       "      <td>7926.0</td>\n",
+       "      <td>8761.0</td>\n",
+       "      <td>3044.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>incidence_predSpain+</th>\n",
+       "      <td>-0.087</td>\n",
+       "      <td>0.334</td>\n",
+       "      <td>-0.674</td>\n",
+       "      <td>0.559</td>\n",
+       "      <td>0.004</td>\n",
+       "      <td>0.008</td>\n",
+       "      <td>6299.0</td>\n",
+       "      <td>993.0</td>\n",
+       "      <td>7092.0</td>\n",
+       "      <td>1892.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mu_France-</th>\n",
+       "      <td>0.043</td>\n",
+       "      <td>0.028</td>\n",
+       "      <td>-0.009</td>\n",
+       "      <td>0.095</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>9161.0</td>\n",
+       "      <td>5638.0</td>\n",
+       "      <td>9179.0</td>\n",
+       "      <td>3252.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>incidence_predFrance-</th>\n",
+       "      <td>0.052</td>\n",
+       "      <td>0.635</td>\n",
+       "      <td>-1.061</td>\n",
+       "      <td>1.363</td>\n",
+       "      <td>0.007</td>\n",
+       "      <td>0.014</td>\n",
+       "      <td>7844.0</td>\n",
+       "      <td>1042.0</td>\n",
+       "      <td>7805.0</td>\n",
+       "      <td>2310.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mu_Germany-</th>\n",
+       "      <td>0.010</td>\n",
+       "      <td>0.023</td>\n",
+       "      <td>-0.035</td>\n",
+       "      <td>0.052</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>8160.0</td>\n",
+       "      <td>1890.0</td>\n",
+       "      <td>8195.0</td>\n",
+       "      <td>2657.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>incidence_predGermany-</th>\n",
+       "      <td>0.015</td>\n",
+       "      <td>0.552</td>\n",
+       "      <td>-1.064</td>\n",
+       "      <td>1.021</td>\n",
+       "      <td>0.006</td>\n",
+       "      <td>0.010</td>\n",
+       "      <td>7665.0</td>\n",
+       "      <td>1483.0</td>\n",
+       "      <td>7863.0</td>\n",
+       "      <td>2362.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mu_Italy-</th>\n",
+       "      <td>0.044</td>\n",
+       "      <td>0.028</td>\n",
+       "      <td>-0.009</td>\n",
+       "      <td>0.097</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>9055.0</td>\n",
+       "      <td>4485.0</td>\n",
+       "      <td>9144.0</td>\n",
+       "      <td>2907.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>incidence_predItaly-</th>\n",
+       "      <td>0.046</td>\n",
+       "      <td>0.437</td>\n",
+       "      <td>-0.837</td>\n",
+       "      <td>0.877</td>\n",
+       "      <td>0.005</td>\n",
+       "      <td>0.008</td>\n",
+       "      <td>7354.0</td>\n",
+       "      <td>1476.0</td>\n",
+       "      <td>7543.0</td>\n",
+       "      <td>2670.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mu_Spain-</th>\n",
+       "      <td>0.034</td>\n",
+       "      <td>0.016</td>\n",
+       "      <td>0.003</td>\n",
+       "      <td>0.064</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>9548.0</td>\n",
+       "      <td>7461.0</td>\n",
+       "      <td>9541.0</td>\n",
+       "      <td>3110.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>incidence_predSpain-</th>\n",
+       "      <td>0.045</td>\n",
+       "      <td>0.427</td>\n",
+       "      <td>-0.783</td>\n",
+       "      <td>0.873</td>\n",
+       "      <td>0.005</td>\n",
+       "      <td>0.009</td>\n",
+       "      <td>7543.0</td>\n",
+       "      <td>1242.0</td>\n",
+       "      <td>7434.0</td>\n",
+       "      <td>2375.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>hyper_sd_parameter_positive</th>\n",
+       "      <td>0.430</td>\n",
+       "      <td>0.169</td>\n",
+       "      <td>0.290</td>\n",
+       "      <td>0.747</td>\n",
+       "      <td>0.003</td>\n",
+       "      <td>0.002</td>\n",
+       "      <td>3704.0</td>\n",
+       "      <td>2860.0</td>\n",
+       "      <td>7074.0</td>\n",
+       "      <td>2278.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>hyper_sd_parameter_negative</th>\n",
+       "      <td>0.626</td>\n",
+       "      <td>0.269</td>\n",
+       "      <td>0.423</td>\n",
+       "      <td>1.052</td>\n",
+       "      <td>0.004</td>\n",
+       "      <td>0.003</td>\n",
+       "      <td>3905.0</td>\n",
+       "      <td>3110.0</td>\n",
+       "      <td>6529.0</td>\n",
+       "      <td>1986.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>hyper_nu_parameter_plus</th>\n",
+       "      <td>5.054</td>\n",
+       "      <td>0.618</td>\n",
+       "      <td>3.914</td>\n",
+       "      <td>6.165</td>\n",
+       "      <td>0.009</td>\n",
+       "      <td>0.006</td>\n",
+       "      <td>4807.0</td>\n",
+       "      <td>4602.0</td>\n",
+       "      <td>4938.0</td>\n",
+       "      <td>3222.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>hyper_nu_parameter_minus</th>\n",
+       "      <td>5.944</td>\n",
+       "      <td>0.693</td>\n",
+       "      <td>4.662</td>\n",
+       "      <td>7.200</td>\n",
+       "      <td>0.009</td>\n",
+       "      <td>0.007</td>\n",
+       "      <td>5326.0</td>\n",
+       "      <td>5236.0</td>\n",
+       "      <td>5353.0</td>\n",
+       "      <td>3247.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>sd_France+</th>\n",
+       "      <td>0.433</td>\n",
+       "      <td>0.021</td>\n",
+       "      <td>0.395</td>\n",
+       "      <td>0.473</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>7235.0</td>\n",
+       "      <td>7132.0</td>\n",
+       "      <td>7294.0</td>\n",
+       "      <td>2790.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>sd_Germany+</th>\n",
+       "      <td>0.400</td>\n",
+       "      <td>0.020</td>\n",
+       "      <td>0.361</td>\n",
+       "      <td>0.438</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>8194.0</td>\n",
+       "      <td>7934.0</td>\n",
+       "      <td>8419.0</td>\n",
+       "      <td>2941.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>sd_Italy+</th>\n",
+       "      <td>0.321</td>\n",
+       "      <td>0.013</td>\n",
+       "      <td>0.296</td>\n",
+       "      <td>0.346</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>6196.0</td>\n",
+       "      <td>6196.0</td>\n",
+       "      <td>6159.0</td>\n",
+       "      <td>3655.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>sd_Spain+</th>\n",
+       "      <td>0.260</td>\n",
+       "      <td>0.021</td>\n",
+       "      <td>0.221</td>\n",
+       "      <td>0.300</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>7724.0</td>\n",
+       "      <td>7676.0</td>\n",
+       "      <td>7645.0</td>\n",
+       "      <td>2928.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>sd_France-</th>\n",
+       "      <td>0.552</td>\n",
+       "      <td>0.023</td>\n",
+       "      <td>0.512</td>\n",
+       "      <td>0.598</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>7119.0</td>\n",
+       "      <td>6998.0</td>\n",
+       "      <td>7208.0</td>\n",
+       "      <td>3016.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>sd_Germany-</th>\n",
+       "      <td>0.463</td>\n",
+       "      <td>0.019</td>\n",
+       "      <td>0.428</td>\n",
+       "      <td>0.498</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>7527.0</td>\n",
+       "      <td>7445.0</td>\n",
+       "      <td>7579.0</td>\n",
+       "      <td>3435.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>sd_Italy-</th>\n",
+       "      <td>0.372</td>\n",
+       "      <td>0.023</td>\n",
+       "      <td>0.329</td>\n",
+       "      <td>0.414</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>7900.0</td>\n",
+       "      <td>7728.0</td>\n",
+       "      <td>7948.0</td>\n",
+       "      <td>2817.0</td>\n",
+       "      <td>1.00</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>sd_Spain-</th>\n",
+       "      <td>0.358</td>\n",
+       "      <td>0.014</td>\n",
+       "      <td>0.332</td>\n",
+       "      <td>0.384</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>0.000</td>\n",
+       "      <td>7436.0</td>\n",
+       "      <td>7414.0</td>\n",
+       "      <td>7466.0</td>\n",
+       "      <td>2896.0</td>\n",
+       "      <td>1.01</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "                              mean     sd  hdi_3%  hdi_97%  mcse_mean  \\\n",
+       "hyper_mu_parameter_positive  0.062  0.059  -0.053    0.172      0.001   \n",
+       "hyper_mu_parameter_negative  0.102  0.071  -0.035    0.230      0.001   \n",
+       "mu_France+                   0.007  0.026  -0.042    0.056      0.000   \n",
+       "incidence_predFrance+       -0.000  0.570  -1.151    0.942      0.008   \n",
+       "mu_Germany+                  0.100  0.025   0.054    0.149      0.000   \n",
+       "incidence_predGermany+       0.092  0.504  -0.821    1.110      0.006   \n",
+       "mu_Italy+                   -0.001  0.015  -0.030    0.028      0.000   \n",
+       "incidence_predItaly+        -0.005  0.402  -0.820    0.739      0.005   \n",
+       "mu_Spain+                   -0.084  0.024  -0.130   -0.042      0.000   \n",
+       "incidence_predSpain+        -0.087  0.334  -0.674    0.559      0.004   \n",
+       "mu_France-                   0.043  0.028  -0.009    0.095      0.000   \n",
+       "incidence_predFrance-        0.052  0.635  -1.061    1.363      0.007   \n",
+       "mu_Germany-                  0.010  0.023  -0.035    0.052      0.000   \n",
+       "incidence_predGermany-       0.015  0.552  -1.064    1.021      0.006   \n",
+       "mu_Italy-                    0.044  0.028  -0.009    0.097      0.000   \n",
+       "incidence_predItaly-         0.046  0.437  -0.837    0.877      0.005   \n",
+       "mu_Spain-                    0.034  0.016   0.003    0.064      0.000   \n",
+       "incidence_predSpain-         0.045  0.427  -0.783    0.873      0.005   \n",
+       "hyper_sd_parameter_positive  0.430  0.169   0.290    0.747      0.003   \n",
+       "hyper_sd_parameter_negative  0.626  0.269   0.423    1.052      0.004   \n",
+       "hyper_nu_parameter_plus      5.054  0.618   3.914    6.165      0.009   \n",
+       "hyper_nu_parameter_minus     5.944  0.693   4.662    7.200      0.009   \n",
+       "sd_France+                   0.433  0.021   0.395    0.473      0.000   \n",
+       "sd_Germany+                  0.400  0.020   0.361    0.438      0.000   \n",
+       "sd_Italy+                    0.321  0.013   0.296    0.346      0.000   \n",
+       "sd_Spain+                    0.260  0.021   0.221    0.300      0.000   \n",
+       "sd_France-                   0.552  0.023   0.512    0.598      0.000   \n",
+       "sd_Germany-                  0.463  0.019   0.428    0.498      0.000   \n",
+       "sd_Italy-                    0.372  0.023   0.329    0.414      0.000   \n",
+       "sd_Spain-                    0.358  0.014   0.332    0.384      0.000   \n",
+       "\n",
+       "                             mcse_sd  ess_mean  ess_sd  ess_bulk  ess_tail  \\\n",
+       "hyper_mu_parameter_positive    0.001    9777.0  3740.0    9768.0    2794.0   \n",
+       "hyper_mu_parameter_negative    0.001    9136.0  4533.0    9141.0    2984.0   \n",
+       "mu_France+                     0.000    7595.0  1752.0    7580.0    2966.0   \n",
+       "incidence_predFrance+          0.011    5243.0  1310.0    6500.0    2313.0   \n",
+       "mu_Germany+                    0.000    8991.0  6969.0    9037.0    2474.0   \n",
+       "incidence_predGermany+         0.011    6715.0  1127.0    7019.0    2103.0   \n",
+       "mu_Italy+                      0.000    7951.0  1546.0    7971.0    2959.0   \n",
+       "incidence_predItaly+           0.008    5426.0  1386.0    6198.0    2204.0   \n",
+       "mu_Spain+                      0.000    8700.0  7926.0    8761.0    3044.0   \n",
+       "incidence_predSpain+           0.008    6299.0   993.0    7092.0    1892.0   \n",
+       "mu_France-                     0.000    9161.0  5638.0    9179.0    3252.0   \n",
+       "incidence_predFrance-          0.014    7844.0  1042.0    7805.0    2310.0   \n",
+       "mu_Germany-                    0.000    8160.0  1890.0    8195.0    2657.0   \n",
+       "incidence_predGermany-         0.010    7665.0  1483.0    7863.0    2362.0   \n",
+       "mu_Italy-                      0.000    9055.0  4485.0    9144.0    2907.0   \n",
+       "incidence_predItaly-           0.008    7354.0  1476.0    7543.0    2670.0   \n",
+       "mu_Spain-                      0.000    9548.0  7461.0    9541.0    3110.0   \n",
+       "incidence_predSpain-           0.009    7543.0  1242.0    7434.0    2375.0   \n",
+       "hyper_sd_parameter_positive    0.002    3704.0  2860.0    7074.0    2278.0   \n",
+       "hyper_sd_parameter_negative    0.003    3905.0  3110.0    6529.0    1986.0   \n",
+       "hyper_nu_parameter_plus        0.006    4807.0  4602.0    4938.0    3222.0   \n",
+       "hyper_nu_parameter_minus       0.007    5326.0  5236.0    5353.0    3247.0   \n",
+       "sd_France+                     0.000    7235.0  7132.0    7294.0    2790.0   \n",
+       "sd_Germany+                    0.000    8194.0  7934.0    8419.0    2941.0   \n",
+       "sd_Italy+                      0.000    6196.0  6196.0    6159.0    3655.0   \n",
+       "sd_Spain+                      0.000    7724.0  7676.0    7645.0    2928.0   \n",
+       "sd_France-                     0.000    7119.0  6998.0    7208.0    3016.0   \n",
+       "sd_Germany-                    0.000    7527.0  7445.0    7579.0    3435.0   \n",
+       "sd_Italy-                      0.000    7900.0  7728.0    7948.0    2817.0   \n",
+       "sd_Spain-                      0.000    7436.0  7414.0    7466.0    2896.0   \n",
+       "\n",
+       "                             r_hat  \n",
+       "hyper_mu_parameter_positive   1.00  \n",
+       "hyper_mu_parameter_negative   1.00  \n",
+       "mu_France+                    1.00  \n",
+       "incidence_predFrance+         1.00  \n",
+       "mu_Germany+                   1.00  \n",
+       "incidence_predGermany+        1.00  \n",
+       "mu_Italy+                     1.00  \n",
+       "incidence_predItaly+          1.00  \n",
+       "mu_Spain+                     1.00  \n",
+       "incidence_predSpain+          1.00  \n",
+       "mu_France-                    1.00  \n",
+       "incidence_predFrance-         1.00  \n",
+       "mu_Germany-                   1.00  \n",
+       "incidence_predGermany-        1.00  \n",
+       "mu_Italy-                     1.00  \n",
+       "incidence_predItaly-          1.00  \n",
+       "mu_Spain-                     1.00  \n",
+       "incidence_predSpain-          1.00  \n",
+       "hyper_sd_parameter_positive   1.00  \n",
+       "hyper_sd_parameter_negative   1.00  \n",
+       "hyper_nu_parameter_plus       1.00  \n",
+       "hyper_nu_parameter_minus      1.00  \n",
+       "sd_France+                    1.00  \n",
+       "sd_Germany+                   1.00  \n",
+       "sd_Italy+                     1.00  \n",
+       "sd_Spain+                     1.00  \n",
+       "sd_France-                    1.00  \n",
+       "sd_Germany-                   1.00  \n",
+       "sd_Italy-                     1.00  \n",
+       "sd_Spain-                     1.01  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "C:\\Users\\Hamed\\AppData\\Local\\Temp\\ipykernel_13028\\1893697036.py:648: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+      "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+      "  l.append(np.float(sum(a < b))/len(a))\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "France= [0.51225, 0.525975, 0.541]\n",
+      "Germany= [0.44, 0.45378325, 0.46825]\n",
+      "Italy= [0.52025, 0.53543675, 0.552]\n",
+      "Spain= [0.59075, 0.603929, 0.61925]\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "C:\\Users\\Hamed\\AppData\\Local\\Temp\\ipykernel_13028\\1893697036.py:782: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+      "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+      "  dataframe = pd.DataFrame(index=l, columns=l, dtype=np.float)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Germany\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>ClosDaycare</th>\n",
+       "      <th>ClosDaycarePartial</th>\n",
+       "      <th>ClosPrimPartial</th>\n",
+       "      <th>ClosSecPartial</th>\n",
+       "      <th>GymsSportsCentres</th>\n",
+       "      <th>GymsSportsCentresPartial</th>\n",
+       "      <th>MasksMandatoryAllSpacesPartial</th>\n",
+       "      <th>MasksMandatoryClosedSpaces</th>\n",
+       "      <th>MasksMandatoryClosedSpacesPartial</th>\n",
+       "      <th>RestaurantsCafes</th>\n",
+       "      <th>RestaurantsCafesPartial</th>\n",
+       "      <th>Teleworking</th>\n",
+       "      <th>TeleworkingPartial</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>MasksMandatoryClosedSpaces</th>\n",
+       "      <td>0.055556</td>\n",
+       "      <td>0.151235</td>\n",
+       "      <td>0.197531</td>\n",
+       "      <td>0.154321</td>\n",
+       "      <td>0.003086</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.003086</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>0.003086</td>\n",
+       "      <td>0.024691</td>\n",
+       "      <td>0.555556</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.37963</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "                            ClosDaycare  ClosDaycarePartial  ClosPrimPartial  \\\n",
+       "MasksMandatoryClosedSpaces     0.055556            0.151235         0.197531   \n",
+       "\n",
+       "                            ClosSecPartial  GymsSportsCentres  \\\n",
+       "MasksMandatoryClosedSpaces        0.154321           0.003086   \n",
+       "\n",
+       "                            GymsSportsCentresPartial  \\\n",
+       "MasksMandatoryClosedSpaces                       0.0   \n",
+       "\n",
+       "                            MasksMandatoryAllSpacesPartial  \\\n",
+       "MasksMandatoryClosedSpaces                        0.003086   \n",
+       "\n",
+       "                            MasksMandatoryClosedSpaces  \\\n",
+       "MasksMandatoryClosedSpaces                         1.0   \n",
+       "\n",
+       "                            MasksMandatoryClosedSpacesPartial  \\\n",
+       "MasksMandatoryClosedSpaces                           0.003086   \n",
+       "\n",
+       "                            RestaurantsCafes  RestaurantsCafesPartial  \\\n",
+       "MasksMandatoryClosedSpaces          0.024691                 0.555556   \n",
+       "\n",
+       "                            Teleworking  TeleworkingPartial  \n",
+       "MasksMandatoryClosedSpaces          0.0             0.37963  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "C:\\Users\\Hamed\\AppData\\Local\\Temp\\ipykernel_13028\\1893697036.py:782: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+      "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+      "  dataframe = pd.DataFrame(index=l, columns=l, dtype=np.float)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "France\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>ClosDaycare</th>\n",
+       "      <th>ClosDaycarePartial</th>\n",
+       "      <th>ClosHigh</th>\n",
+       "      <th>ClosHighPartial</th>\n",
+       "      <th>ClosPrim</th>\n",
+       "      <th>ClosSec</th>\n",
+       "      <th>ClosSecPartial</th>\n",
+       "      <th>GymsSportsCentres</th>\n",
+       "      <th>GymsSportsCentresPartial</th>\n",
+       "      <th>MasksMandatoryAllSpaces</th>\n",
+       "      <th>MasksMandatoryAllSpacesPartial</th>\n",
+       "      <th>MasksMandatoryClosedSpaces</th>\n",
+       "      <th>MasksMandatoryClosedSpacesPartial</th>\n",
+       "      <th>RestaurantsCafes</th>\n",
+       "      <th>RestaurantsCafesPartial</th>\n",
+       "      <th>Teleworking</th>\n",
+       "      <th>TeleworkingPartial</th>\n",
+       "      <th>WorkplaceClosures</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>MasksMandatoryAllSpaces</th>\n",
+       "      <td>0.094828</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.383621</td>\n",
+       "      <td>0.62069</td>\n",
+       "      <td>0.094828</td>\n",
+       "      <td>0.12069</td>\n",
+       "      <td>0.198276</td>\n",
+       "      <td>0.875000</td>\n",
+       "      <td>0.129310</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>0.004310</td>\n",
+       "      <td>0.00431</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.875000</td>\n",
+       "      <td>0.129310</td>\n",
+       "      <td>0.965517</td>\n",
+       "      <td>0.043103</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>MasksMandatoryClosedSpaces</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.023256</td>\n",
+       "      <td>0.00000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.00000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.015504</td>\n",
+       "      <td>0.209302</td>\n",
+       "      <td>0.007752</td>\n",
+       "      <td>0.007752</td>\n",
+       "      <td>1.00000</td>\n",
+       "      <td>0.015504</td>\n",
+       "      <td>0.015504</td>\n",
+       "      <td>0.209302</td>\n",
+       "      <td>0.007752</td>\n",
+       "      <td>0.294574</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "                            ClosDaycare  ClosDaycarePartial  ClosHigh  \\\n",
+       "MasksMandatoryAllSpaces        0.094828                 0.0  0.383621   \n",
+       "MasksMandatoryClosedSpaces     0.000000                 0.0  0.023256   \n",
+       "\n",
+       "                            ClosHighPartial  ClosPrim  ClosSec  \\\n",
+       "MasksMandatoryAllSpaces             0.62069  0.094828  0.12069   \n",
+       "MasksMandatoryClosedSpaces          0.00000  0.000000  0.00000   \n",
+       "\n",
+       "                            ClosSecPartial  GymsSportsCentres  \\\n",
+       "MasksMandatoryAllSpaces           0.198276           0.875000   \n",
+       "MasksMandatoryClosedSpaces        0.000000           0.015504   \n",
+       "\n",
+       "                            GymsSportsCentresPartial  MasksMandatoryAllSpaces  \\\n",
+       "MasksMandatoryAllSpaces                     0.129310                 1.000000   \n",
+       "MasksMandatoryClosedSpaces                  0.209302                 0.007752   \n",
+       "\n",
+       "                            MasksMandatoryAllSpacesPartial  \\\n",
+       "MasksMandatoryAllSpaces                           0.004310   \n",
+       "MasksMandatoryClosedSpaces                        0.007752   \n",
+       "\n",
+       "                            MasksMandatoryClosedSpaces  \\\n",
+       "MasksMandatoryAllSpaces                        0.00431   \n",
+       "MasksMandatoryClosedSpaces                     1.00000   \n",
+       "\n",
+       "                            MasksMandatoryClosedSpacesPartial  \\\n",
+       "MasksMandatoryAllSpaces                              0.000000   \n",
+       "MasksMandatoryClosedSpaces                           0.015504   \n",
+       "\n",
+       "                            RestaurantsCafes  RestaurantsCafesPartial  \\\n",
+       "MasksMandatoryAllSpaces             0.875000                 0.129310   \n",
+       "MasksMandatoryClosedSpaces          0.015504                 0.209302   \n",
+       "\n",
+       "                            Teleworking  TeleworkingPartial  WorkplaceClosures  \n",
+       "MasksMandatoryAllSpaces        0.965517            0.043103                0.0  \n",
+       "MasksMandatoryClosedSpaces     0.007752            0.294574                0.0  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "C:\\Users\\Hamed\\AppData\\Local\\Temp\\ipykernel_13028\\1893697036.py:782: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+      "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+      "  dataframe = pd.DataFrame(index=l, columns=l, dtype=np.float)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Italy\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>AdaptationOfWorkplace</th>\n",
+       "      <th>AdaptationOfWorkplacePartial</th>\n",
+       "      <th>ClosDaycare</th>\n",
+       "      <th>ClosDaycarePartial</th>\n",
+       "      <th>ClosHigh</th>\n",
+       "      <th>ClosHighPartial</th>\n",
+       "      <th>ClosPrim</th>\n",
+       "      <th>ClosPrimPartial</th>\n",
+       "      <th>ClosSec</th>\n",
+       "      <th>ClosSecPartial</th>\n",
+       "      <th>GymsSportsCentres</th>\n",
+       "      <th>GymsSportsCentresPartial</th>\n",
+       "      <th>MasksMandatoryAllSpaces</th>\n",
+       "      <th>MasksMandatoryAllSpacesPartial</th>\n",
+       "      <th>MasksMandatoryClosedSpaces</th>\n",
+       "      <th>RestaurantsCafes</th>\n",
+       "      <th>RestaurantsCafesPartial</th>\n",
+       "      <th>Teleworking</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>MasksMandatoryAllSpaces</th>\n",
+       "      <td>0.119289</td>\n",
+       "      <td>0.111675</td>\n",
+       "      <td>0.119289</td>\n",
+       "      <td>0.088832</td>\n",
+       "      <td>0.230964</td>\n",
+       "      <td>0.164975</td>\n",
+       "      <td>0.205584</td>\n",
+       "      <td>0.497462</td>\n",
+       "      <td>0.322335</td>\n",
+       "      <td>0.28934</td>\n",
+       "      <td>0.588832</td>\n",
+       "      <td>0.345178</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>0.005076</td>\n",
+       "      <td>0.007614</td>\n",
+       "      <td>0.038071</td>\n",
+       "      <td>0.779188</td>\n",
+       "      <td>0.119289</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>MasksMandatoryClosedSpaces</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.154206</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.154206</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.154206</td>\n",
+       "      <td>0.154206</td>\n",
+       "      <td>0.084112</td>\n",
+       "      <td>0.154206</td>\n",
+       "      <td>0.00000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.817757</td>\n",
+       "      <td>0.014019</td>\n",
+       "      <td>0.004673</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.663551</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "                            AdaptationOfWorkplace  \\\n",
+       "MasksMandatoryAllSpaces                  0.119289   \n",
+       "MasksMandatoryClosedSpaces               0.000000   \n",
+       "\n",
+       "                            AdaptationOfWorkplacePartial  ClosDaycare  \\\n",
+       "MasksMandatoryAllSpaces                         0.111675     0.119289   \n",
+       "MasksMandatoryClosedSpaces                      0.154206     0.000000   \n",
+       "\n",
+       "                            ClosDaycarePartial  ClosHigh  ClosHighPartial  \\\n",
+       "MasksMandatoryAllSpaces               0.088832  0.230964         0.164975   \n",
+       "MasksMandatoryClosedSpaces            0.154206  0.000000         0.154206   \n",
+       "\n",
+       "                            ClosPrim  ClosPrimPartial   ClosSec  \\\n",
+       "MasksMandatoryAllSpaces     0.205584         0.497462  0.322335   \n",
+       "MasksMandatoryClosedSpaces  0.154206         0.084112  0.154206   \n",
+       "\n",
+       "                            ClosSecPartial  GymsSportsCentres  \\\n",
+       "MasksMandatoryAllSpaces            0.28934           0.588832   \n",
+       "MasksMandatoryClosedSpaces         0.00000           0.000000   \n",
+       "\n",
+       "                            GymsSportsCentresPartial  MasksMandatoryAllSpaces  \\\n",
+       "MasksMandatoryAllSpaces                     0.345178                 1.000000   \n",
+       "MasksMandatoryClosedSpaces                  0.817757                 0.014019   \n",
+       "\n",
+       "                            MasksMandatoryAllSpacesPartial  \\\n",
+       "MasksMandatoryAllSpaces                           0.005076   \n",
+       "MasksMandatoryClosedSpaces                        0.004673   \n",
+       "\n",
+       "                            MasksMandatoryClosedSpaces  RestaurantsCafes  \\\n",
+       "MasksMandatoryAllSpaces                       0.007614          0.038071   \n",
+       "MasksMandatoryClosedSpaces                    1.000000          0.000000   \n",
+       "\n",
+       "                            RestaurantsCafesPartial  Teleworking  \n",
+       "MasksMandatoryAllSpaces                    0.779188     0.119289  \n",
+       "MasksMandatoryClosedSpaces                 0.663551     0.000000  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "C:\\Users\\Hamed\\AppData\\Local\\Temp\\ipykernel_13028\\1893697036.py:782: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+      "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+      "  dataframe = pd.DataFrame(index=l, columns=l, dtype=np.float)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Spain\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>AdaptationOfWorkplacePartial</th>\n",
+       "      <th>ClosDaycare</th>\n",
+       "      <th>ClosHigh</th>\n",
+       "      <th>ClosPrim</th>\n",
+       "      <th>ClosSec</th>\n",
+       "      <th>GymsSportsCentres</th>\n",
+       "      <th>GymsSportsCentresPartial</th>\n",
+       "      <th>MasksMandatoryAllSpaces</th>\n",
+       "      <th>MasksMandatoryAllSpacesPartial</th>\n",
+       "      <th>MasksMandatoryClosedSpaces</th>\n",
+       "      <th>RestaurantsCafes</th>\n",
+       "      <th>RestaurantsCafesPartial</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>MasksMandatoryAllSpaces</th>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.649635</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>0.029197</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.29927</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>MasksMandatoryClosedSpaces</th>\n",
+       "      <td>0.944444</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>0.0</td>\n",
+       "      <td>0.055556</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>0.00000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "                            AdaptationOfWorkplacePartial  ClosDaycare  \\\n",
+       "MasksMandatoryAllSpaces                         0.000000          0.0   \n",
+       "MasksMandatoryClosedSpaces                      0.944444          1.0   \n",
+       "\n",
+       "                            ClosHigh  ClosPrim  ClosSec  GymsSportsCentres  \\\n",
+       "MasksMandatoryAllSpaces          0.0       0.0      0.0                0.0   \n",
+       "MasksMandatoryClosedSpaces       1.0       1.0      1.0                0.0   \n",
+       "\n",
+       "                            GymsSportsCentresPartial  MasksMandatoryAllSpaces  \\\n",
+       "MasksMandatoryAllSpaces                     0.649635                      1.0   \n",
+       "MasksMandatoryClosedSpaces                  1.000000                      0.0   \n",
+       "\n",
+       "                            MasksMandatoryAllSpacesPartial  \\\n",
+       "MasksMandatoryAllSpaces                           0.029197   \n",
+       "MasksMandatoryClosedSpaces                        0.055556   \n",
+       "\n",
+       "                            MasksMandatoryClosedSpaces  RestaurantsCafes  \\\n",
+       "MasksMandatoryAllSpaces                            0.0               0.0   \n",
+       "MasksMandatoryClosedSpaces                         1.0               1.0   \n",
+       "\n",
+       "                            RestaurantsCafesPartial  \n",
+       "MasksMandatoryAllSpaces                     0.29927  \n",
+       "MasksMandatoryClosedSpaces                  0.00000  "
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABNgAAAPcCAYAAACTgAbkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xN9xvA8c/N3lsWERFixVYqau+i9lZ7FVVFtSiiVYpSRY3+jNi0SquliL2V2NQeQRIxEwnZ5/fHbW5dSci4yc143q/XeeXec77nnOfm5p4n53u/Q6UoioIQQgghhBBCCCGEECJTDPQdgBBCCCGEEEIIIYQQeZlUsAkhhBBCCCGEEEIIkQVSwSaEEEIIIYQQQgghRBZIBZsQQgghhBBCCCGEEFkgFWxCCCGEEEIIIYQQQmSBVLAJIYQQQgghhBBCCJEFUsEmhBBCCCGEEEIIIUQWSAWbEEIIIYQQQgghhBBZIBVsQgghhBBCCCGEEEJkgVSwiXwjICAAlUrFyZMn9R1KjqtXrx716tXL9P4qlQp/f/8M7xcSEoK/vz9nzpzJ9LmFEAXP1KlT+e2337Ll2Ldv30alUhEQEJAtx8+NihUrRu/evTXP9+3bh0qlYt++fRk6zpEjR/D39+fZs2cptmU1z2RWvXr18PX1fWu5zL7va9euZc6cOZkLTgiRK0hO0a38nFPS8no8OZlTUjuXv78/KpWKR48eZehYb3Lp0iX8/f25fft2im29e/emWLFiOjtXQSYVbEKITAsJCWHy5MlSwSaEyJDsvBlyc3Pj6NGjtGjRIluOnxdUqVKFo0ePUqVKlQztd+TIESZPnpzqzdCCBQtYsGCBjiLUvcy+71LBJkTeJzkle0lOSb/M5JSc+hu7dOkSkydPTrWCbcKECWzevDlbz19QGOk7ACHyoxcvXmBhYaHvMIQQosBITEwkISEBU1NT3n33XZ0d9+XLl5iZmaFSqXR2zGTZlStsbGx0+jsAKFu2rE6Pp2u6ft9zivy/IETuJDnlP5JTskd2/Y1lhre3t17Pn59ICzaRJxw6dIiGDRtibW2NhYUFfn5+bN26NdWyT58+pU+fPjg4OGBpaUmrVq24efOmVpnTp0/TsmVLnJ2dMTU1xd3dnRYtWnDv3j1NGUVRWLBgAZUqVcLc3Bx7e3s6dOiQ4ljJ3VcOHDiAn58fFhYW9O3blzZt2uDp6UlSUlKKGGvUqKH1LVB6z6UoCjNmzMDT0xMzMzOqVKnCX3/9le7fY2RkJAMGDMDR0RErKyuaNWvG1atXU5S7fv06ffr0oWTJklhYWFC4cGFatWrF+fPnNWX27dvHO++8A0CfPn1QqVRaXU1PnjxJly5dKFasGObm5hQrVoyuXbty586ddMcrhMheyV0QTp8+Tbt27bCxscHW1pYePXrw8OFDrbJJSUnMmDGD0qVLY2pqirOzMz179tS6bsLbr68qlYro6GhWrFihuW682i0jLCyMQYMGUaRIEUxMTPDy8mLy5MkkJCRoyiR3p5gxYwZTpkzBy8sLU1NT9u7dm2a3jvTkkeShBnbu3Enfvn0pVKgQFhYWxMbGpvr7S+42s3r1akaOHImrqyvm5ubUrVuX06dPa5Xt3bs3VlZWnD9/niZNmmBtbU3Dhg0BiIuLY8qUKZrfbaFChejTp0+K9yA+Pp4xY8bg6uqKhYUF7733Hn///Xeacb3enef48eO0atUKR0dHzMzM8Pb2ZsSIEYD6b+Gzzz4DwMvLS/PeJB/j1e4z8fHxODs78+GHH6Y497NnzzA3N2fkyJGadZGRkYwePRovLy9MTEwoXLgwI0aMIDo6OtXfa2pOnDhB7dq1sbCwoHjx4nz77bda+TW19/3hw4cMHDgQDw8Pze+1Vq1a7Nq1S/Oatm7dyp07dzSv99Wb3idPnjBkyBAKFy6MiYkJxYsXZ/z48Sn+Hp49e0a/fv1wcHDAysqKFi1acPPmzRTDLyR/3k6dOkWHDh2wt7fX3NSkN2cm/43u2bNHk89tbGzo2bMn0dHRhIWF0alTJ+zs7HBzc2P06NHEx8en+/csRFZITpGckttzSnrvpXSdUzLzNwZw9+7dt36W0hrq59WuvgEBAXTs2BGA+vXra2JLPmdqXURjYmIYO3as1u956NChKVokFitWjJYtW7J9+3aqVKmCubk5pUuXZtmyZWm8C/mbtGATud7+/ftp3LgxFSpUYOnSpZiamrJgwQJatWrFunXr6Ny5s1b5fv360bhxY9auXcvdu3f58ssvqVevHufOncPOzo7o6GgaN26Ml5cXP/74Iy4uLoSFhbF3716eP3+uOc6gQYMICAhg+PDhTJ8+nSdPnvDVV1/h5+fH2bNncXFx0ZQNDQ2lR48ejBkzhqlTp2JgYMCzZ89o3bo1e/bsoVGjRpqyly9f5u+//2bu3LkZPtfkyZOZPHky/fr1o0OHDty9e5cBAwaQmJhIqVKl3vh7VBSFNm3acOTIESZOnMg777zD4cOHad68eYqyISEhODo68u2331KoUCGePHnCihUrqFGjBqdPn6ZUqVJUqVKF5cuX06dPH7788ktNs+YiRYoA6kRSqlQpunTpgoODA6GhoSxcuJB33nmHS5cu4eTklN4/ASFENmvbti2dOnVi8ODBXLx4kQkTJnDp0iWOHz+OsbExAB999BE//fQTw4YNo2XLlty+fZsJEyawb98+Tp06hZOTU7qur0ePHqVBgwbUr1+fCRMmAOpvx0F9I1S9enUMDAyYOHEi3t7eHD16lClTpnD79m2WL1+uFffcuXPx8fHhu+++w8bGhpIlS6b6+jKaR/r27UuLFi1YtWoV0dHRmt9BWsaNG0eVKlVYsmQJERER+Pv7U69ePU6fPk3x4sU15eLi4vjggw8YNGgQX3zxBQkJCSQlJdG6dWsOHjzImDFj8PPz486dO0yaNIl69epx8uRJzM3NARgwYAArV65k9OjRNG7cmAsXLtCuXTut3JWWHTt20KpVK8qUKcPs2bMpWrQot2/fZufOnQD079+fJ0+eMG/ePDZt2oSbmxuQeisDY2NjevTowaJFi/jxxx817x/AunXriImJoU+fPoC6RUXdunW5d+8e48aNo0KFCly8eJGJEydy/vx5du3a9daWHGFhYXTv3p1Ro0YxadIkNm/ezNixY3F3d6dnz55p7vfhhx9y6tQpvvnmG3x8fHj27BmnTp3i8ePHgLqL0sCBA7lx40aKrjExMTHUr1+fGzduMHnyZCpUqMDBgweZNm0aZ86c0dxIJyUl0apVK06ePIm/v7+mK1WzZs3SjKtdu3Z06dKFwYMHa24IM5oz+/fvT7t27Vi/fj2nT59m3LhxJCQkcOXKFdq1a8fAgQPZtWsX06dPx93dXevmVIjsJjlFckpuzSlZuZfKSk5Jlt6/sWTp+SylR4sWLZg6dSrjxo3jxx9/1DT0SKvlWvJ94+7duxk7diy1a9fm3LlzTJo0iaNHj3L06FFMTU015c+ePcuoUaP44osvcHFxYcmSJfTr148SJUpQp06ddMeZLyhC5HLvvvuu4uzsrDx//lyzLiEhQfH19VWKFCmiJCUlKYqiKMuXL1cApW3btlr7Hz58WAGUKVOmKIqiKCdPnlQA5bfffkvznEePHlUAZdasWVrr7969q5ibmytjxozRrKtbt64CKLt379YqGx8fr7i4uCjdunXTWj9mzBjFxMREefToUYbO9fTpU8XMzCzN11e3bt00X4+iKMpff/2lAMoPP/ygtf6bb75RAGXSpElp7puQkKDExcUpJUuWVD799FPN+hMnTiiAsnz58jeeO/kYUVFRiqWlZYoYhBD6MWnSJAXQ+lwriqKsWbNGAZTVq1criqIo//zzjwIoQ4YM0Sp3/PhxBVDGjRunKEr6rq+KoiiWlpZKr169UqwfNGiQYmVlpdy5c0dr/XfffacAysWLFxVFUZRbt24pgOLt7a3ExcVplU3e9up1KaN5pGfPnm+MP9nevXsVQKlSpYrmGIqiKLdv31aMjY2V/v37a9b16tVLAZRly5ZpHWPdunUKoPz6669a65OvrwsWLFAU5b/3IK336tXfZ3Jce/fu1azz9vZWvL29lZcvX6b5embOnKkAyq1bt1Jsq1u3rlaeOXfunAIoP/30k1a56tWrK1WrVtU8nzZtmmJgYKCcOHFCq9zGjRsVQNm2bVua8SSfF1COHz+utb5s2bJK06ZNNc9Te9+trKyUESNGvPH4LVq0UDw9PVOsX7RokQIoP//8s9b66dOnK4Cyc+dORVEUZevWrQqgLFy4UKvctGnTUuTW5M/bxIkT3xiToqSdM5P/Rj/++GOt8m3atFEAZfbs2VrrK1WqpFSpUuWt5xNCFySnSE55VW7LKRm5l9J1Tsno31h6P0uKoqR5H+fp6an1Pv7yyy8p3sdkvXr10op7+/btCqDMmDFDq9yGDRtSvE+enp6KmZmZ1ufs5cuXioODgzJo0KAU58rvpIuoyNWio6M5fvw4HTp0wMrKSrPe0NCQDz/8kHv37nHlyhWtfbp376713M/PD09PT/bu3QtAiRIlsLe35/PPP2fRokVcunQpxXn//PNPVCoVPXr0ICEhQbO4urpSsWLFFE2k7e3tadCggdY6IyMjevTowaZNm4iIiADUfe1XrVpF69atcXR0zNC5jh49SkxMTJqv722SX//r+3fr1i1F2YSEBKZOnUrZsmUxMTHByMgIExMTrl27xj///PPWcwFERUXx+eefU6JECYyMjDAyMsLKyoro6Oh0H0MIkTNevy506tQJIyMjzXUj+eers4oBVK9enTJlyrB7924gfdfXN/nzzz+pX78+7u7uWtfD5Ja2+/fv1yr/wQcfvPUb3Mzkkfbt22co7m7duml9Y+7p6Ymfn5/m9/amY//555/Y2dnRqlUrrddcqVIlXF1dNTkgrWt48nv1JlevXuXGjRv069cPMzOzDL22tJQvX56qVatqtQD5559/+Pvvv+nbt6/W6/P19aVSpUpar69p06bpnpXO1dWV6tWra62rUKHCW4ccqF69OgEBAUyZMoVjx45lqKvknj17sLS0pEOHDlrrkz8DyX/zyX+TnTp10irXtWvXNI+d2t9XRnNmy5YttZ6XKVMGIMUg2WXKlJGhGUSOk5wiOSWjciKnZPVeKis5JVl6/sZe9bbPUnbZs2cPkPIz2rFjRywtLTWf0WSVKlWiaNGimudmZmb4+PgUyPwjFWwiV3v69CmKomiaFb/K3d0dQNMsN5mrq2uKsq6urppytra27N+/n0qVKjFu3DjKlSuHu7s7kyZN0lwoHzx4gKIouLi4YGxsrLUcO3YsxZTJqcUH6ibhMTExrF+/HlA3pw4NDdU0c87IuZLjT+v1vc3jx48xMjLSVOy9ad+RI0cyYcIE2rRpwx9//MHx48c5ceIEFStW5OXLl289F6j/OZg/fz79+/dnx44d/P3335w4cYJChQql+xhCiJzx+nUg+VqRfN1J/pnWtTgj19c3efDgAX/88UeKa2G5cuUA0n3tfVVm8kh6jvuqt+WdZBYWFlpdX0D9mp89e4aJiUmK1x0WFvbWHJDadf11yeO1JHfh15W+ffty9OhRLl++DMDy5csxNTXVqlx68OAB586dS/HarK2tURQlxXuamtRen6mp6VtzyYYNG+jVqxdLliyhZs2aODg40LNnT8LCwt56zsePH+Pq6pqiq5GzszNGRkZanw0jIyMcHBy0yr06jMTrUvv7ymjOfP18JiYmaa6PiYl5wysVQvckp0hOyYzszilZvZfKSk5JltW/hdc/S9klObcVKlRIa71KpUr1bzGzeTo/kjHYRK5mb2+PgYEBoaGhKbaFhIQApBiXJLWLXFhYGCVKlNA8L1++POvXr0dRFM6dO0dAQABfffUV5ubmfPHFFzg5OaFSqTh48KBW//Jkr69Lq69/2bJlqV69OsuXL2fQoEEsX74cd3d3mjRpoimT3nMlX7jSen2vD0z5OkdHRxISEnj8+LHWRTC1461evZqePXsydepUrfWPHj3Czs7ujecBiIiI4M8//2TSpEl88cUXmvWxsbE8efLkrfsLIXJWWFgYhQsX1jx//VqR/DM0NDTFP9QhISFa1+G3XV/fxMnJiQoVKvDNN9+kuj355iVZemZhy0weyejsbmldl1//hzO14zo5OeHo6Mj27dtTPba1tTWgnQNSe6/eJPkf5NcHD8+qrl27MnLkSAICAvjmm29YtWoVbdq0wd7eXlPGyckJc3PzNAc7zs7xOJ2cnJgzZw5z5swhODiYLVu28MUXXxAeHp7m7zuZo6Mjx48fR1EUrfctPDychIQETdzJufXJkydalVtvuuF6/e9AcqbIbySnSE7JjOzOKVm9l8pKTkmWmb+FN32WQH2vmNrEGVmphEvObQ8fPtSqZFMUhbCwMM1EdyIlacEmcjVLS0tq1KjBpk2btGrAk5KSWL16NUWKFMHHx0drnzVr1mg9P3LkCHfu3NGaUSiZSqWiYsWKfP/999jZ2XHq1ClA3fVCURTu379PtWrVUizly5dP92vo06cPx48f59ChQ/zxxx/06tULQ0NDzfb0nuvdd9/FzMwszdf3NvXr10/197N27dpUfy+vV/Zt3bqV+/fva61LLvP6txMqlQpFUVIcY8mSJSQmJr41ViFEznr9uvDzzz+TkJCguW4md4FfvXq1VrkTJ07wzz//aGYue1Va11dI+1vNli1bcuHCBby9vVO9Hr5+M5QemckjGbVu3ToURdE8v3PnDkeOHEk177yuZcuWPH78mMTExFRfc/Kgy8nHSuu9ehMfHx+8vb1ZtmxZmrPXQdrX9LTY29vTpk0bVq5cyZ9//klYWJhWV57k13fjxg0cHR1TfX1vu6HRlaJFizJs2DAaN26crr/Fhg0bEhUVxW+//aa1fuXKlZrtAHXr1gXULRteldxyPT0kZ4r8RnKK5BTIfTklq/dSr8poTsmst32WQD2L57lz57TK7dmzh6ioKK11GXk/kj+Dr39Gf/31V6Kjo1P9jAo1acEmcr1p06bRuHFj6tevz+jRozExMWHBggVcuHCBdevWpfgm4OTJk/Tv35+OHTty9+5dxo8fT+HChRkyZAig7ru/YMEC2rRpQ/HixVEUhU2bNvHs2TMaN24MQK1atRg4cCB9+vTh5MmT1KlTB0tLS0JDQzl06BDly5fno48+Slf8yd/GdO3aldjY2BR92dN7Lnt7e0aPHs2UKVO0Xp+/v3+6mjU3adKEOnXqMGbMGKKjo6lWrRqHDx9m1apVKcq2bNmSgIAASpcuTYUKFQgKCmLmzJkpvmX09vbG3NycNWvWUKZMGaysrHB3d8fd3Z06deowc+ZMnJycKFasGPv372fp0qXpagEnhMhZmzZtwsjIiMaNG2tmqapYsaJmXKlSpUoxcOBA5s2bh4GBAc2bN9fM+Obh4cGnn34KpO/6CuoWCfv27eOPP/7Azc0Na2trSpUqxVdffUVgYCB+fn4MHz6cUqVKERMTw+3bt9m2bRuLFi3KVJeUjOaRjAoPD6dt27YMGDCAiIgIJk2ahJmZGWPHjn3rvl26dGHNmjW8//77fPLJJ1SvXh1jY2Pu3bvH3r17ad26NW3btqVMmTL06NGDOXPmYGxsTKNGjbhw4YJmJrK3+fHHH2nVqhXvvvsun376KUWLFiU4OJgdO3Zo/oFP/kLnhx9+oFevXhgbG1OqVClNi4fU9O3blw0bNjBs2DCKFCmiNWs2wIgRI/j111+pU6cOn376KRUqVCApKYng4GB27tzJqFGjqFGjxlvjz6iIiAjq169Pt27dKF26NNbW1pw4cYLt27fTrl07Tbny5cuzadMmFi5cSNWqVTEwMKBatWr07NmTH3/8kV69enH79m3Kly/PoUOHmDp1Ku+//77mdTZr1oxatWoxatQoIiMjqVq1KkePHtVUxBkYvP27bBsbG8mZIl+RnCI5BXJfTsnKvVRWc0pmve2zBOrZTSdMmMDEiROpW7culy5dYv78+dja2mody9fXF4CffvoJa2trzMzM8PLySrV7Z+PGjWnatCmff/45kZGR1KpVSzOLaOXKlfnwww8z/ZryvRydUkGITDp48KDSoEEDxdLSUjE3N1feffdd5Y8//tAqkzxTz86dO5UPP/xQsbOzU8zNzZX3339fuXbtmqbc5cuXla5duyre3t6Kubm5Ymtrq1SvXl0JCAhIcd5ly5YpNWrU0JzX29tb6dmzp3Ly5ElNmbp16yrlypV7Y/zdunVTAKVWrVpplknPuZKSkpRp06YpHh4eiomJiVKhQgXljz/+SDETT1qePXum9O3bV7Gzs1MsLCyUxo0bK5cvX04x+8zTp0+Vfv36Kc7OzoqFhYXy3nvvKQcPHkz1POvWrVNKly6tGBsbax3n3r17Svv27RV7e3vF2tpaadasmXLhwoUUM9oIIfQneZaqoKAgpVWrVoqVlZVibW2tdO3aVXnw4IFW2cTERGX69OmKj4+PYmxsrDg5OSk9evRQ7t69qymT3uvrmTNnlFq1aikWFhYpZu56+PChMnz4cMXLy0sxNjZWHBwclKpVqyrjx49XoqKiFEX5b8atmTNnpnhNqc3GpSgZyyOvz06WluSZ1VatWqUMHz5cKVSokGJqaqrUrl1b69qtKOoZuiwtLVM9Tnx8vPLdd98pFStWVMzMzBQrKyuldOnSyqBBg7TyV2xsrDJq1CjF2dlZMTMzU959913l6NGjKa6rqc34pijqWaubN2+u2NraKqampoq3t3eKGcrGjh2ruLu7KwYGBlrHSCvPJCYmKh4eHgqgjB8/PtXXFxUVpXz55ZdKqVKlFBMTE8XW1lYpX7688umnnyphYWFp/HYVzXlTy7Gvz3j2+vseExOjDB48WKlQoYJiY2OjmJubK6VKlVImTZqkREdHa/Z78uSJ0qFDB8XOzk5RqVTKq/8aP378WBk8eLDi5uamGBkZKZ6ensrYsWOVmJgYrViePHmi9OnTRyu3Hjt2LMXM3cmft4cPH6Z4PenNmWn9jaZ17Df93Qmha5JTJKfk9pyS3nspXeeUjP6NZeSzFBsbq4wZM0bx8PBQzM3Nlbp16ypnzpxJ9Z5rzpw5ipeXl2JoaKh1ztdzqqKoZwL9/PPPFU9PT8XY2Fhxc3NTPvroI+Xp06da5Tw9PZUWLVqkeF3pvT/Nb1SK8kr7UyGEEEIUGP7+/kyePJmHDx9m61hY+dW+ffuoX78+v/zyS4rZJkXBtnbtWrp3787hw4fx8/PTdzhC5AjJKVkjOUWIvE+6iAohhBBCCJFJ69at4/79+5QvXx4DAwOOHTvGzJkzqVOnjlSuCSGEEAWIVLAJIYQQQgiRSdbW1qxfv54pU6YQHR2Nm5sbvXv3ZsqUKfoOTQghhBA5SLqICiGEEEIIIYQQQgiRBW+f2kgIIYQQQgghhBBCCJEmqWATQgghhBBCCCGEECILpIJNCCGEEEIIIYQQQogsyPeTHCQlJRESEoK1tTUqlUrf4QghRJ6nKArPnz/H3d0dAwP5nkbyjBBC6JbkmZQk1wghhG5lR67J9xVsISEheHh46DsMIYTId+7evUuRIkX0HYbeSZ4RQojsIXnmP5JrhBAie+gy1+T7CjZra2tA/UuzsbHRczRCCJH3RUZG4uHhobm+FnSSZ4QQQrckz6QkuUYIIXQrO3JNvq9gS25CbWNjI8lICCF0SLqoqEmeEUKI7CF55j+Sa4QQInvoMtfIoAZCCCGEEEIIIYQQQmSBVLAJIYQQQgghhBBCCJEFUsEmhBBCCCGEEEIIIUQW5Psx2IQQuU9iYiLx8fH6DkOkwdjYGENDQ32HIYQQmSZ5JvczMTHBwEC+6xdC5E1JSUnExcXpOwzxBvq4p5EKNiFEjlEUhbCwMJ49e6bvUMRb2NnZ4erqKgNMCyHyFMkzeYeBgQFeXl6YmJjoOxQhhMiQuLg4bt26RVJSkr5DEW+R0/c0UsEmhMgxyTc9zs7OWFhYSOVNLqQoCi9evCA8PBwANzc3PUckhBDpJ3kmb0hKSiIkJITQ0FCKFi0q75PI9+4/e4mJoQGFrE31HYrIIkVRCA0NxdDQEA8PD2mJm0vp655GKtiEEDkiMTFRc9Pj6Oio73DEG5ibmwMQHh6Os7OzdBcVQuQJkmfylkKFChESEkJCQgLGxsb6DkcInbv9KJqt50P542wIl8OeA1DI2pSybjaUdbehsocdjcq4YGAgFcx5SUJCAi9evMDd3R0LCwt9hyPeQB/3NFLBJnQnKREMUvmjTWu9KFCSx8KRRJQ3JL9P8fHxUsEmCpTEJAXDNG523rRN6J/kmbwluWtoYmKiVLCJfGXP5QfMDrzKhfuRmnWGBiqSFIWHz2PZ//wh+68+BKC6lwPfdahIUUe5buUViYmJANK9PY/I6XsaqWATumNgCL/2h0dX/1vn5APtl+gvJpHrSDeQvEHeJ1FQGRqo+GT9aa6HR2mtL+FsxQ9dKuspKpERcv3KG+R9EvmNoigs2HeD73ZeQVHU+cTP25GWFdxoUtYVU2MDLoc951JIJBdDIvn9zH3+vvWEZj8cYOz7ZehRQ7pL5yXyXuUNOf0+SQWb0K1HVyH0rL6jEEIIITLtengUF0MitdYVsjJNswWbtGwTQoiC7WVcIp9tPMuf50IB+PBdT0Y0KomjlfaYa1WK2lOlqD0AH9X15rONZzl+6wkTfrvAjgthzOhQAXc78xyPXwihGzIinxBCCCHEW9iYG2lat7WYe1CzfLL+tFSuCVEALViwAC8vL8zMzKhatSoHDx58Y/k1a9ZQsWJFLCwscHNzo0+fPjx+/DiHohXZKeTZSzouPsKf50IxMlAxtW15vm7jm6Jy7XVFHS1YN+BdJrUqi5mxAYeuP6L9wiPcffIihyIXQuiaVLAJIfQuMUnJ1efq3bs3KpUqxXL9+vVsiFAIkZslt25LXl7vSipyp5zMM5k5n+SZvGXDhg2MGDGC8ePHc/r0aWrXrk3z5s0JDg5OtfyhQ4fo2bMn/fr14+LFi/zyyy+cOHGC/v3753DkQtfuPnlB6x8Pc+F+JA6WJqzpX4NuNYqme38DAxV9annx1yd1KOFsRWhEDN2XHOdBZEw2Ri0KIskzOUO6iAoh9C6tMY90LStjKDVr1ozly5drrStUqJDW87i4uFw74Km/vz+3b98mICBA36EIIUSOy6k8A5nPNZJn8o7Zs2fTr18/TQXZnDlz2LFjBwsXLmTatGkpyh87doxixYoxfPhwALy8vBg0aBAzZszI0biFbj2PiaffihM8fB6Lj4sVS3u9g4dD5iYr8HKyZE3/GnRcdJTgJy/oseQ4GwbVxMEyd37eRd4keSb7SQs2IUSu8HqrkOxYsnJjZWpqiqurq9bSsGFDhg0bxsiRI3FycqJx48aA+h/v8uXLY2lpiYeHB0OGDCEq6r9zBwQEYGdnx44dOyhTpgxWVlY0a9aM0NBQrXMuW7aMcuXKYWpqipubG8OGDdNsi4iIYODAgTg7O2NjY0ODBg04e1bGPxRCiLTkRJ7JSq6RPJM3xMXFERQURJMmTbTWN2nShCNHjqS6j5+fH/fu3WPbtm0oisKDBw/YuHEjLVq0yImQRTZITFL4ZP0Zrj6IwtnalJV9a2S6ci2Zi40Za/rXwNXGjGvhUfRcdpzImHgdRSyE5JmcoNcKtoULF1KhQgVsbGywsbGhZs2a/PXXX5rtiqLg7++Pu7s75ubm1KtXj4sXL+oxYiGE0LZixQqMjIw4fPgwixcvBsDAwIC5c+dy4cIFVqxYwZ49exgzZozWfi9evOC7775j1apVHDhwgODgYEaPHq3ZvnDhQoYOHcrAgQM5f/48W7ZsoUSJEoD62tiiRQvCwsLYtm0bQUFBVKlShYYNG/LkyZOce/FCCCGyneSZ3OXRo0ckJibi4uKitd7FxYWwsLBU9/Hz82PNmjV07twZExMTXF1dsbOzY968eWmeJzY2lsjISK1F5B7Tt19mz+VwTI0M+F/ParjamunkuB4OFqwZUAMnKxMu3I+kz/ITvIxL1MmxRfZQFIUXcQl6WRRFN8MfSJ7RHb12ES1SpAjffvut5pe8YsUKWrduzenTpylXrhwzZsxg9uzZBAQE4OPjw5QpU2jcuDFXrlzB2tpan6ELIQqYP//8EysrK83z5s2bA1CiRIkUXTxGjBiheezl5cXXX3/NRx99xIIFCzTr4+PjWbRoEd7e3gAMGzaMr776SrN9ypQpjBo1ik8++USz7p133gFg7969nD9/nvDwcExN1QPofvfdd/z2229s3LiRgQMH6uhVCyGEyCmSZ/IWlUp7chNFUVKsS3bp0iWGDx/OxIkTadq0KaGhoXz22WcMHjyYpUuXprrPtGnTmDx5ss7jFln3y8m7/HTgJgDfdaxIRQ87nR7fu5AVK/vWoMtPRwm685Qvf7vAdx0rpPn3JfTrZXwiZSfu0Mu5L33VFAuT9FfpSJ7JfnqtYGvVqpXW82+++YaFCxdy7NgxypYty5w5cxg/fjzt2rUD1BVwLi4urF27lkGDBukjZCFEAVW/fn0WLlyoeW5paUnXrl2pVq1airJ79+5l6tSpXLp0icjISBISEoiJiSE6OhpLS0sALCwsNMkIwM3NjfDwcADCw8MJCQmhYcOGqcYSFBREVFQUjo6OWutfvnzJjRs3ADh48KAmaYK6S4uiKGzcuFGzbty4cYwbNy6jvwohhBDZQPJM3uDk5IShoWGK1mrh4eEpWrUlmzZtGrVq1eKzzz4DoEKFClhaWlK7dm2mTJmCm5tbin3Gjh3LyJEjNc8jIyPx8PDQ4SsRmXHy9hPGbT4PwPCGJWlV0T1bzlPW3YbFH1aj+5Jj/HrqHtWK2dO1evonTxAiNZJnsl+umeQgMTGRX375hejoaGrWrMmtW7cICwvTGt/A1NSUunXrcuTIEalgE0LkKEtLS01r29fXv+rOnTu8//77DB48mK+//hoHBwcOHTpEv379iI//bxwNY2Njrf1UKpWmmbe5ufkbY0lKSsLNzY19+/al2GZnZwdAtWrVOHPmjGb93LlzuX//PtOnT9esc3BweON5hBBC5BzJM3mDiYkJVatWJTAwkLZt22rWBwYG0rp161T3efHiBUZG2rddhoaGAGl28TI1NdW06hC5Q2RMPMPXnSY+UeH98q6MaFgyW89X09uR0U1LMWP7FSZtuUj5wrb4FrbN1nOKjDM3NuTSV031du6MkDyT/fRewXb+/Hlq1qxJTEwMVlZWbN68mbJly2oGCU1tfIM7d+6kebzY2FhiY2M1z2W8AiFETjp58iQJCQnMmjULAwP1MJc///xzho5hbW1NsWLF2L17N/Xr10+xvUqVKoSFhWFkZESxYsVSPYa5ublWAnVwcCAyMjLVpCqEECLvkDyjfyNHjuTDDz+kWrVq1KxZk59++ong4GAGDx4MqFuf3b9/n5UrVwLqXjsDBgxg4cKFmi6iI0aMoHr16ri7Z08LKKF7X/1xiZCIGIo6WDCzQ0UMDLK/y+bgOt6cuvOUXf+EM3h1EFs/ro2thfHbdxQ5RqVSZaibZl4geSbz9D6LaKlSpThz5gzHjh3jo48+olevXly6dEmzPSPjG4C6Cbatra1mkabUQoic5O3tTUJCAvPmzePmzZusWrWKRYsWZfg4/v7+zJo1i7lz53Lt2jVOnTqlGQy5UaNG1KxZkzZt2rBjxw5u377NkSNH+PLLLzl58qSuX5IQQohcRPKM/nXu3Jk5c+bw1VdfUalSJQ4cOMC2bdvw9PQEIDQ0lODgYE353r17M3v2bObPn4+vry8dO3akVKlSbNq0SV8vQWRQ4KUHbAy6h0oFszpVxNI0ZypUDAxUzOpYCQ8Hc+49fcnIn8+QlKSbge2FSIvkmczTe1WriYmJpgayWrVqnDhxgh9++IHPP/8cgLCwMK1xCd40vgHIeAVC5FUlnK3eXigPnKNSpUrMnj2b6dOnM3bsWOrUqcO0adPo2bNnho7Tq1cvYmJi+P777xk9ejROTk506NABUH/xsG3bNsaPH0/fvn15+PAhrq6u1KlT543XRyGEKMhyIgfkxHkkz+QOQ4YMYciQIaluCwgISLHu448/5uOPP87mqER2eBIdx9hN5wAYULs47xTL2S5pthbGLOxelXYLj7D7cjiLDtxgSL3c24JH5H2SZzJPpehqblcdadiwIR4eHixfvhx3d3c+/fRTzXSwcXFxODs7M3369HSPwRYZGYmtrS0RERHY2NhkZ+gCYHEdCD3733O3ijDogP7iEblGTEwMt27dwsvLCzMz7anME5MUDHOgmX1Onysve9P7lVuuq9OmTWPTpk1cvnwZc3Nz/Pz8mD59OqVKldKUURSFyZMn89NPP/H06VNq1KjBjz/+SLly5TRlYmNjGT16NOvWrePly5c0bNiQBQsWUKRIkXTFkVt+H0J3Wsw9yMUQ7SEmPqjoxtyuVVJsK+duw9bhtXM6RJGK3JJn9HG+vCgv5JncRH4n+qEoCkPXnmLb+TB8XKzYMuw9zDI47pWurP87mC82ncfIQMVvQ2vJeGx68qZrl8h9cjrX6LWL6Lhx4zh48CC3b9/m/PnzjB8/nn379tG9e3dUKhUjRoxg6tSpbN68mQsXLtC7d28sLCzo1q2bPsMWQuhYTt6EyA1P/rF//36GDh3KsWPHCAwMJCEhgSZNmhAdHa0pM2PGDE23nBMnTuDq6krjxo15/vy5psyIESPYvHkz69ev59ChQ0RFRdGyZUsSExP18bKEENkgp6/9kmuEyB+2nA1h2/kwjAxUzO5USW+VawCd3/Ggua8rCUkKn244Q0y8/J8iRG6j1y6iDx484MMPPyQ0NBRbW1sqVKjA9u3bady4MQBjxozh5cuXDBkyRNPyYOfOnVhbW+szbCGEELnA9u3btZ4vX74cZ2dngoKCqFOnDoqiMGfOHMaPH0+7du0AWLFiBS4uLqxdu5ZBgwYRERHB0qVLWbVqFY0aNQJg9erVeHh4sGvXLpo21c+sUEIIIYTQr/DnMUz47QIAHzcoqfcWYyqVim/alufE7adcC49i5o4rTGhZVq8xCSG06bUF29KlS7l9+zaxsbGEh4eza9cuTeUaqC8i/v7+hIaGEhMTw/79+/H19dVjxEIIIXKriIgI4L/pum/dukVYWBhNmjTRlDE1NaVu3bqamaqDgoKIj4/XKuPu7o6vr6+mzOtiY2OJjIzUWkTekyiDRAshhHiDb7b+Q2RMAr6FbRhS31vf4QDgYGnCjA7lAVh66BZHbjzSc0RCiFfpfRZRIYQQIqsURWHkyJG89957mi9iwsLCAFIMlOri4qLZFhYWhomJCfb29mmWeZ3MVp0/GBqo+GT9aVrMPahZZu64rO+whBBC5AKHrz/i9zMhqFQwtW15jA1zz21zg9IudK2u/t/js1/OERkTr+eIhBDJcs+VQgghhMikYcOGce7cOdatW5dim0qlPRaSoigp1r3uTWXGjh1LRESEZrl7927mAxd6dT08ioshkZrl7pMX+g5JCCGEnsUmJGq6hvZ815MKRez0G1AqvmxRlqIOFtx/9pLJWy7pOxwhxL+kgk0IIUSe9vHHH7Nlyxb27t2rNfOnq6srQIqWaOHh4ZpWba6ursTFxfH06dM0y7zO1NQUGxsbrUUIIYQQ+cPi/Te5+SiaQtamjGpa6u076IGlqRGzO1VEpYJfT91j16UH+g5JCIFUsAkhhMijFEVh2LBhbNq0iT179uDl5aW13cvLC1dXVwIDAzXr4uLi2L9/P35+fgBUrVoVY2NjrTKhoaFcuHBBU0YUPN6FLCnnbqO1FLE313dYQgghstntR9HM33sdgAkty2JjZqzniNJWrZgDA2sXB+DL3y5IV1EhcgG9ziIqhBBCZNbQoUNZu3Ytv//+O9bW1pqWara2tpibm6NSqRgxYgRTp06lZMmSlCxZkqlTp2JhYUG3bt00Zfv168eoUaNwdHTEwcGB0aNHU758ec2soqLgsLcwhqRE5natknqBpEQKWZnmbFBCCCFyhKIoTPj9AnEJSdQu6USrCm76DumtRjTyYfvFMO48fsH0vy7zTdvy+g5JiAJNKtiEEELkSQsXLgSgXr16WuuXL19O7969ARgzZgwvX75kyJAhPH36lBo1arBz506sra015b///nuMjIzo1KkTL1++pGHDhgQEBGBoaJhTL0XkEpamRmBgCL/2h0dXtTc6+UD7JdiYy79OQgiRH209H8rBa48wMTLgq9a+bx2vNTcwNzFkWrvydPvfcdYcD+aDiu7UKO6o77CEKLDkv0SRcUmJ6hsQIYTQI0VR3lpGpVLh7++Pv79/mmXMzMyYN28e8+bN02F0Ik97dBVCz+o7CiGEEDnkZVwi32z9B4CP6nrj5WSp54jSz8/bia7VPVj3912+2HSevz6pjZmx3KsJoQ8yBpvIuORv9xfX+W/Z/ZW+oxJ5WVJirj5X7969UalUKZbr169nQ4BCCF1KTHp7RawoAHIyz2TifJJnhNCvhftvEBoRQxF7cz6q563vcDLsi+ZlcLY25dajaH7YfU3f4YhcSPJMzpAWbCJzXv9238lHf7GIvC+tLlm69m8Xr8xo1qwZy5cv11pXqFAhredxcXGYmJhkOjwhhO4ZGqj4ZP1prodHadbVK1WIz5qW1mNUIsflVJ6BTOcayTNC6Me9py9YvP8GAOPfL5M9rb9io+DWAYiJgISXEP8SUIGnH7hVhCx2R7U1N+brNr4MWhXETwdu0qK8G76FbXUTu8g3JM9kP2nBJoTIHZIrbbNzycKNlampKa6urlpLw4YNGTZsGCNHjsTJyYnGjRsDMHv2bMqXL4+lpSUeHh4MGTKEqKj/bu4DAgKws7Njx44dlClTBisrK5o1a0ZoaKjWOZctW0a5cuUwNTXFzc2NYcOGabZFREQwcOBAnJ2dsbGxoUGDBpw9K13ahEjN9fAoLoZEapa7T14AKWcLdbEx03OkIlvlRJ7JQq6RPCOEfkzbdpnYhCTeLe5AM19X3R1YUeDeSdjyMcwqBeu7wm+D4c9PYcc42DEWfqoLs8vCHyPg+i71PpnUtJwrLcq7kZikMG7zeWnBLVKQPJP9pIJNCCGyYMWKFRgZGXH48GEWL14MgIGBAXPnzuXChQusWLGCPXv2MGbMGK39Xrx4wXfffceqVas4cOAAwcHBjB49WrN94cKFDB06lIEDB3L+/Hm2bNlCiRIlAPXYYy1atCAsLIxt27YRFBRElSpVaNiwIU+ePMm5Fy9EHvXqbKFbh9fWLL38vPQdmhApSJ4RIvscvfGYredDMVDBpFbldDexQfBxWPQeLGkIp1ZCXBTYe4F3QyjdEnw7gE8zMLaA5yEQtBxWt4dlzSDkdKZPO+mDslibGnHuXgTr/g7WzWsRb6YoEBetnyULFbKvkjyjO9JFVAgh0uHPP//EyspK87x58+YAlChRghkzZmiVHTFihOaxl5cXX3/9NR999BELFizQrI+Pj2fRokV4e6vH+Rg2bBhfffXfWIZTpkxh1KhRfPLJJ5p177zzDgB79+7l/PnzhIeHY2pqCsB3333Hb7/9xsaNGxk4cKCOXrUQ+VOas4WWaAQNJ+ovMFGgSZ4RImclJilM/uMiAN1qFKWMm40ODpoAB2fB/umgJIKRGZRtA1V6qruDvl6BFx8Dtw/ClW1wdj3cPQY/1YfKPdT5yMo5Q6d3tjZjVBMf/P+4xMwdV2ju64qjlWnWX5dIW/wLmOqun3OPCwGT9E/IIXkm+0kLNiGESIf69etz5swZzTJ37lwAqlWrlqLs3r17ady4MYULF8ba2pqePXvy+PFjoqOjNWUsLCw0yQjAzc2N8PBwAMLDwwkJCaFhw4apxhIUFERUVBSOjo5YWVlpllu3bnHjxg2Cg4O11k+dOlWXvwoh8o/Xuww+k2/7hf5InhEiZ637O5jLYc+xNTdmVONSWT/gs2BY0RL2TVVXrpXvBCP/gXaLoVit1MdZMzaDko2h5ffwcZB6HxQ4vQrmVYPLWzMcRo93PSnrZkPEy3i+/ety1l+XyDckz2Q/acEmhBDpYGlpqWnS/Pr6V925c4f333+fwYMH8/XXX+Pg4MChQ4fo168f8fHxmnLGxsZa+6lUKpR/m3mbm5u/MZakpCTc3NzYt29fim12dnbY2dlx5swZzToHB4e3vTwhhBB6JnlGiJwT8TKeWTuvADCysQ/2llkc1D34GKztpJ7EwMQaWsyCip0zdgwbd2j/P3inP/w1BkLPwPpuUGsENJgAhum7dTcyNODrNr60X3iEX4Lu0fkdD6oVk89otjG2ULck09e5M0DyTPaTCjYhhNChkydPkpCQwKxZszAwUDcS/vnnnzN0DGtra4oVK8bu3bupX79+iu1VqlQhLCwMIyMjihUrluoxUkueQuRniUkKhgY6GjtHiFxM8owQWffj3us8fRFPSWcrutcomrWD3T4EazpBfDQUrgrtl4JDFsb0LFoD+u+CwElw7Ec4PAfuB0GHZenuMlrV057O1TzYcPIuX/52gT8/fg8jQ+m8li1Uqgx108wLJM9knnzKhBBCh7y9vUlISGDevHncvHmTVatWsWjRogwfx9/fn1mzZjF37lyuXbvGqVOnmDdvHgCNGjWiZs2atGnThh07dnD79m2OHDnCl19+ycmTJ3X9koTIEwwNVHyy/jQt5h7ULDN36LdrTFozuMnMbiIrJM8IkTXBj18QcPg2AONalMlaxdONvbC6g7pyrXh96PVn1irXkhkaQ7Op0DEATKzU47QtrgthF9J9iM+bl8bOwpjLYc9ZcfRO1mMSBYbkmcyTFmxCiNzBySdfnKNSpUrMnj2b6dOnM3bsWOrUqcO0adPo2bNnho7Tq1cvYmJi+P777xk9ejROTk506NABUDe/3rZtG+PHj6dv3748fPgQV1dX6tSpg4uLS3a8LCHyhOvhUVwMidQ89y6k32+Ukyv9rof/N619CWcrfuhSWY9RFWA5kWdy4DySZ4TImunbLxOXmETtkk7U8ymU+QNdC4T13SExFko2gU6r1GOq6VK5tuBcDjb0gEdXYHlz6Lwaitd9664OliZ83qw0Yzed5/vAq7Ss4IaLjY7jE/mS5JnMUymKjuZ2zaUiIyOxtbUlIiICGxsdzAwj1BbXUQ8Inax8R2i/JOV6t4ow6EDOxydynZiYGG7duoWXlxdmZq8l96RE9Yx+OSEnz5WHven9kuuqNvl95B4t5h7UqmD7oKIbc7tWSbF+SL3ijGlWJv25DDT5bPi6U2w5G6pZXc+nEEt7v5Nm99TXz13O3Yatw2tn8ZWK1OSaPKOP8+VBkmcyRn4nuhF05wntFx7FQAXbPqlNaddM/i7vHIGVrSExDkq1gI7LwSgbZ+t8+UxdmXfnEBgYQ5uFUKHjW3dLSlJot/AIZ+4+44OK7sztKl/wZNUbc43IdXI610gXUSGE/uXkTYjc8AghdMjG3ChXdk8Vr8npa7/kGiFyHUVR+PrPfwDoVM0j85VrD6/Cuq7qyrXSLaHTiuytXAMwt4MPN6lbtCXFw6b+cPiHt+5mYKBiShtfDFSw5WwIR64/yt44hSjg9FrBNm3aNN555x2sra1xdnamTZs2XLlyRatM7969UalUWsu7776rp4iFEEIIIVJK7p6avNx98kLfIQkhhHjFH+dCOXP3GRYmhoxsksmu3FHhsKYDxDyDIu+oWz0bGr91N50wMoX2y6DmMPXzwImwZwq8pUOab2FberzrCcCE3y8Ql5CU3ZEKUWDptYJt//79DB06lGPHjhEYGEhCQgJNmjQhOjpaq1yzZs0IDQ3VLNu2bdNTxEIIIYQQQggh8pKY+ESm/6VuWfxRXW+crTPRtS8uGtZ2hmd3wN4Luq4HY3MdR/oWBgbQ9BtoNFn9/MBM2DH+rZVso5qUwsnKhBsPo1l66FYOBCpEwaTXSQ62b9+u9Xz58uU4OzsTFBREnTp1NOtNTU1xdXXN6fCEEEIIIYQQQuRxAUduc//ZS1xtzOhfu3jGD5CUBL8OgJBTYO4APX4FSyfdB5pe740AE0vYNhqO/aiexbTF9+oKuFTYmhsztnkZRv1ylrm7r/FBJXcK2+Vw5aAQBUCuGoMtIiICAAcHB631+/btw9nZGR8fHwYMGEB4eLg+whNC6EA+n1cl35D3SYjUFbE3p5y7jWYpYq++QfEuZJnqepHz5PqVN8j7JHLKsxdxLNh7HYDRTUthbpKJMRL3T4crW8HQVN1yzdFbx1FmQvUB0HoBqAwgKAB+GwyJCWkWb1elMNWLOfAyPpGv/riYc3HmU3INyxty+n3Sawu2VymKwsiRI3nvvffw9fXVrG/evDkdO3bE09OTW7duMWHCBBo0aEBQUBCmpikHk4yNjSU2NlbzPDIyMkUZIUTOMzZWj0/x4sULzM3lxjO3e/FCPX5U8vsmRIFn5QxJiYxpVoYxzV7blpTI3K5VUu6TlEghK+3/VQpZmZKYpKQ662ha60X6SJ7JW+Li4gAwNJQJIUT2WrjvBpExCZR2taZt5cIZP8CVv2D/t+rHreZA0Ro6jS9LKncHYzPYNBDObYD4F+px2oxMUhRVqVR83caX9+ceZMfFB+y9Ek79Us56CDpvS75mxcXFSa7JA3L6nibXVLANGzaMc+fOcejQIa31nTt31jz29fWlWrVqeHp6snXrVtq1a5fiONOmTWPy5MnZHq8QImMMDQ2xs7PTtEC1sLBApZIbydxGURRevHhBeHg4dnZ2cuMjRDIzO/XMkL/2h0dX/1tfohE0nJhyvZMPtF+Cjbn2v1qvzjp6PTxKs/6dYvb4tywDpPGZS0qUmSnfQvJM3pGUlMTDhw+xsLDAyCjX3I6IfCjk2UuWH7kNwOfNS2f8S4xH19WVVwDVB0KlbroNUBd824OROfzSC/75A9Z3g86rUh0frpSrNX1rFeN/B2/hv+UiNUc4YmYsuSUjjIyMsLCw4OHDhxgbG2OQRrdcoV/6uqfJFRnt448/ZsuWLRw4cIAiRYq8saybmxuenp5cu3Yt1e1jx45l5MiRmueRkZF4eHjoNF4hROYkj6Uo3bxzPzs7Oxn7UojUPLoKoWf/e+7kk/r6t0iedTSZdyHL1Cvwks/RfklWoi4wJM/kHQYGBhQtWlQqQUW2+j7wKnEJSbxb3IF6PoUytnPsc9jQHWIjoWhNaDo1e4LUhdLvQ7cNsK4bXA+ENR2h6zowtU5R9JNGPmw5G8Kdxy9YtP8GIxplckbVAkqlUuHm5satW7e4c+eOvsMRb5HT9zR6rWBTFIWPP/6YzZs3s2/fPry8vN66z+PHj7l79y5ubm6pbjc1NU2166gQQv+SE5KzszPx8fH6DkekwdjYWFquCaEvGayoE9okz+QdJiYm0vJDZKsrYc/59dQ9AL5oXiZjlbmKAr8PhYeXwdoNOq4Aw1w+bIZ3A/hwE6zpBLcPwuoO0GNjiko2K1MjJrQsy7C1p1mw7wbtKhehqKOFnoLOm0xMTChZsqSmq7vInfRxT6PXCrahQ4eydu1afv/9d6ytrQkLCwPA1tYWc3NzoqKi8Pf3p3379ri5uXH79m3GjRuHk5MTbdu21WfoQogsMDQ0lAocIYQQ2UbyjBBi5o7LJCnwfnlXKnnYZWznw3Pg0u9gYAydVoK1S3aEqHueftDrd1jVFu4eU7dk6/5Likq2FuXdWF/iLoeuP8L/j4ss7VVNWpNmkIGBAWZmZvoOQ+Qyev3aaOHChURERFCvXj3c3Nw0y4YNGwD1P0fnz5+ndevW+Pj40KtXL3x8fDh69CjW1imbuwohhBBCCCGEKNj+vvWEXf+EY2igYnSTUhnb+fpu2P2V+vH7M8Cjuu4DzE6Fq8KHv4GZLQQfVVeyxUZpFVGpVExuXQ5jQxV7LocTeOmBfmIVIp/RexfRNzE3N2fHjh05FI0QQgghhBBCiLxMURS+/esfALq840HxQlbp3/npbdjYF5QkqPwhVO2TPUFmt8JV1JVsK9v8V8nW/Rcw/e934V3IigG1i7Ng3w0m/3GJ2iULYW4iLX+FyAoZ+EAIIYQQQgghRL6w89IDTgU/w9zYkE8alkz/jnEvYH0PiHmmbgX2/neQl7tNFq4CPTeDqS0EH4F1XSD+pVaRYQ1KUNjOnPvPXjJ/b+qTCAoh0k8q2IQQQgiRNyQlvnFbISuZ5EgIkTMWLFiAl5cXZmZmVK1alYMHD76xfGxsLOPHj8fT0xNTU1O8vb1ZtmxZDkVbcCQkJjFj+2UA+tf2wtkmnWNkKQr8+Sk8OA+WhaDTKjDOB+NrFa4KH24GE2v1xAc/94KE/wbmtzAxYmKrsgD8dOAmNx9GpXUkIUQ66LWLqBBCCCHE6xKTFAwNUmk1YGAIv/ZXz7T5KicfaL8EG3P5t0YIkf02bNjAiBEjWLBgAbVq1WLx4sU0b96cS5cuUbRo0VT36dSpEw8ePGDp0qWUKFGC8PBwEhIScjjy/G9j0D1uPIzG3sKYgXWKp3/HoAA4tx5UhtAxAGwLZ1eIOa9IVei2AVa3h2s7YPNAaL9UnVOBJmVdqFeqEPuuPGTSlous7FtdJjwQIpPkP1EhhBBC5CqGBio+WX+a6+H/fZNer1QhPmtaWl25FnpWj9EJIQq62bNn069fP/r37w/AnDlz2LFjBwsXLmTatGkpym/fvp39+/dz8+ZNHBwcAChWrFhOhlwgvIxL5Ptd6i9gPm5QEmsz4/TtGHIG/vpc/bjhRCj2XvYEqE/FakGX1bC2C1zcDMYW8MF8MDBQT3jwQTkaf3+Ag9cese18GC0quOk7YiHyJOkiKoQQQohc53p4FBdDIjXL3Scv9B2SEEIQFxdHUFAQTZo00VrfpEkTjhw5kuo+W7ZsoVq1asyYMYPChQvj4+PD6NGjefnyZarlReYsO3yLB5GxFLE3p/u7qbckTOHlM/ilFyTGgk9z8BuerTHqVYlG0GGZupXemTUQOEGzydPRko/qegPw9Z+XiIqV1pVCZIZUsAkhhBBC6Jm9hYm+QxBCpMOjR49ITEzExcVFa72LiwthYWGp7nPz5k0OHTrEhQsX2Lx5M3PmzGHjxo0MHTo0zfPExsYSGRmptYi0PY2OY9G+GwCMblIKU6N0zIapKPD7UPXMoXZFoe1CMMjnt8dlP4DWP6ofH50PxxZqNn1Uz5uiDhaERcYwd7dMeCBEZuTzK4jI9dIasPpNA1kLIYQQ+YylaTpuBoUQucbrY1QpipLmuFVJSUmoVCrWrFlD9erVef/995k9ezYBAQFptmKbNm0atra2msXDw0PnryE/+XHvdZ7HJlDGzYYPKrqnb6ejP8LlP8HQBDquAHP77A0yt6jUFRpOUj/ePhYu/Q6AmbEhkz8oB8CyQ7e4+uC5viIUIs+SCjahX8kDVi+u89/ya3/NoJtCCCEESAsvIUTu4OTkhKGhYYrWauHh4SlatSVzc3OjcOHC2NraataVKVMGRVG4d+9eqvuMHTuWiIgIzXL37l3dvYh85t7TF6w8egeAL5qXxiC1SXJeF3wcdv1bydR0KhSuko0R5kLvfQrV+gEK/DoA7hwFoH5pZ5qUdSEhSWHCbxdQFEW/cQqRx0gFm9C/5AGrk5fXZ4cTQghR4EkLLyFEbmBiYkLVqlUJDAzUWh8YGIifn1+q+9SqVYuQkBCiov6buOXq1asYGBhQpEiRVPcxNTXFxsZGaxGpm7PrGnGJSfh5O1KnpNPbd4h+BL/0hqQE8G0P7/TP9hhzHZUK3p8JpVqox59b1wUeXgFgYquymBkbcPzWE347c1/PgQqRt0gFmxBCiDzrwIEDtGrVCnd3d1QqFb/99pvW9t69e6NSqbSWd999V6tMbGwsH3/8MU5OTlhaWvLBBx+k2aJACCGEGDlyJEuWLGHZsmX8888/fPrppwQHBzN48GBA3fqsZ8+emvLdunXD0dGRPn36cOnSJQ4cOMBnn31G3759MTc319fLyBduPIxi0yl1zh7TrHSa3XQ1khJh0wB4HgKOJaHVD+rKpoLIwBDaL4Ei70DMM1jdAZ6HUcTego8blATgm63/EPEiXr9xCpGHZLiC7datW9kRhxBCiAJCl3kkOjqaihUrMn/+/DTLNGvWjNDQUM2ybds2re0jRoxg8+bNrF+/nkOHDhEVFUXLli1JTJSxIIUQQqTUuXNn5syZw1dffUWlSpU4cOAA27Ztw9PTE4DQ0FCCg4M15a2srAgMDOTZs2dUq1aN7t2706pVK+bOnauvl5BvfB94lSQFGpVxoZKH3dt3ODgLbuwBI3PotBJMrbM9xlzNxAK6bgAHb4gIhjUdIPY5A2oXp4SzFY+i4pi587K+oxQizzDK6A4lSpSgTp069OvXjw4dOmBmZpYdcQkhhMindJlHmjdvTvPmzd9YxtTUFFdX11S3RUREsHTpUlatWkWjRo0AWL16NR4eHuzatYumTZtmOjYhAIrYm1PO3UbruRAi7xsyZAhDhgxJdVtAQECKdaVLl07RrVRkzaWQSP48F4pKBaOa+Lx9h5v7Ye9U9eOWs8GlbPYGmFdYOkKPjbC0CYSdh597YtLtZ75u7UvX/x1jzfFg2lcpQuWiBWQSCCGyIMMt2M6ePUvlypUZNWoUrq6uDBo0iL///js7YhMiBSWN2UXTWi+EyH1yOo/s27cPZ2dnfHx8GDBgAOHh4ZptQUFBxMfH06RJE806d3d3fH19OXLkSKrHi42NJTIyUmsRIgUrZ0hKZEyzMmwdXluzjGlWBpISKWRlqu8IhRAiT5sdqB4zrGUFd8q4vWWMuuhHsGkgoEDlD6FSt+wPMC9xKA7dNoCxhbqF35bh1CzuQLsqhVEUGL/5AgmJSfqOUohcL8MVbL6+vsyePZv79++zfPlywsLCeO+99yhXrhyzZ8/m4cOH2RGnEACo0ph1VCWzjgqRZ+RkHmnevDlr1qxhz549zJo1ixMnTtCgQQNiY2MBCAsLw8TEBHt77W9lXVxcUswQl2zatGnY2tpqFg8PD53FK/IRM7s3zpRtY57hTgRCCCH+dSr4Kbv+CcdABZ82KvnmwooCvw+DqDBwKgXNZ+RMkHlN4arQcQWoDOHsWtg/g3Hvl8HW3JhLoZGs+HemViFE2jI9yYGRkRFt27bl559/Zvr06dy4cYPRo0dTpEgRevbsSWhoqC7jFOI/MuuoEPlCTuSRzp0706JFC3x9fWnVqhV//fUXV69eZevWrW/cT1GUNAdKHjt2LBEREZrl7t27WY5T5GOSs4QQQudm71RfS9tXKULxQlZvLvz3/+DqX2BoAh2WqscdE6nzaQItZqkf75uK043f+KJ5aQBm77xCaMRLPQYnRO6X6Qq2kydPMmTIENzc3Jg9ezajR4/mxo0b7Nmzh/v379O6dWtdximEECKf0UcecXNzw9PTk2vXrgHg6upKXFwcT58+1SoXHh6Oi4tLqscwNTXFxsZGaxFCCCFEzjh64zGHrj/C2FDF8IZvab0WdgF2fql+3PhrcC2f/QHmddX6QK1P1I+3DKNzoWCqFLUjOi6RyVsu6Tc2IXK5DFewzZ49m/Lly+Pn50dISAgrV67kzp07TJkyBS8vL2rVqsXixYs5depUdsQrhBAij9NnHnn8+DF3797Fzc0NgKpVq2JsbKw18HRoaCgXLlzAz89P5+cX+uFdyJJy7jaaxcUmj03Q9O94bqmSMUiFEAWIoih8t1M99lrX6kXxcHhDa7S4F/BrP0iMhZJNocagHIoyH2joD2U+gMQ4DDZ0Z2Z9CwwNVGy/GMb+qzIklBBpyfAAIAsXLqRv37706dMnzVnZihYtytKlS7McnBBCiPxHl3kkKiqK69eva57funWLM2fO4ODggIODA/7+/rRv3x43Nzdu377NuHHjcHJyom3btgDY2trSr18/Ro0ahaOjIw4ODowePZry5ctrZhUVeZe9hTEkJTK3axV9h5I1r47n9moXUycfaL9Eb2EJIURO23flIUF3nmJqZMCw+iXeXHjneHh4Gaxcoc0CSGPoB5EKAwNo9xMEhMD9k3jv7MNH7yxg/vGn+G+5yPYRtTE1kjGwhXhdhivYkrvVvImJiQm9evXKVEBCaL6pT+/EBW8qn5HjvEVikoKhQcrEnNZ6IUTqdJlHTp48Sf369TXPR44cCUCvXr1YuHAh58+fZ+XKlTx79gw3Nzfq16/Phg0bsLa21uzz/fffY2RkRKdOnXj58iUNGzYkICAAQ0P5xzGvszQ1Sr1iqkQjaDhRf4FlVvJ4bukgOUsIkd8kJf3Xeq2XXzGc39Qa+Z8/4OQyQAVtF4GlU84EmZ8Ym0PXdbCkITy9xQhLfzZZjuDWo2iWHbrNR/W89R2hELlOhivYli9fjpWVFR07dtRa/8svv/DixYsMVaxNmzaNTZs2cfnyZczNzfHz82P69OmUKlVKU0ZRFCZPnsxPP/3E06dPqVGjBj/++CPlypXLaOgir0jrm/q0bohy6Jt9QwMVn6w/zfXwqP9Ccrbihy6VdXYOIQoCXeaRevXqoShKmtt37Njx1mOYmZkxb9485s2bl+7zijzm9YopJx/9xZJDJGcJoW3fvn3Uq1dP32GILNhxMYyLIZFYmRoxuO4bKnci7qlnDQWoNRy866ddVryZlTN0+wWWNsHo3nE2FF5JnRvdmbfnGm0qu+Nma67vCIXIVTI8Btu3336Lk1PKbwCcnZ2ZOnVqho61f/9+hg4dyrFjxwgMDCQhIYEmTZoQHR2tKTNjxgxmz57N/PnzOXHiBK6urjRu3Jjnz59nNHSR17w+89qz4IyVz4aZ2q6HR3ExJFKzvHrjIoRIH13mESFE2iRnCfGfZs2a4e3tzZQpU2T25zwoMUlhVqD6f/u+73nhYGmSesGkRNg0CGKegXtlqP9lzgWZXzmXhs4rwcAIj/t/MdNxKy/iEvlm6z/6jkyIXCfDFWx37tzBy8srxXpPT0+Cg99SAfKa7du307t3b8qVK0fFihVZvnw5wcHBBAUFAerWa3PmzGH8+PG0a9cOX19fVqxYwYsXL1i7dm1GQxdCCJEL6DKPCCGEEOkREhLCJ598wqZNm/Dy8qJp06b8/PPPxMXF6Ts0kQ6/n7nP9fAobM2N6V875f8QGgdnw51DYGIF7ZeCURoVcSJjiteDlnMA6BC9jo6G+/nzXChHbjzSa1hC5DYZrmBzdnbm3LlzKdafPXsWR0fHLAUTEREBgIODA6AerDosLIwmTZpoypiamlK3bl2OHDmSpXMJIYTQj+zMI0IIIURqHBwcGD58OKdOneLkyZOUKlWKoUOH4ubmxvDhwzl7Nn3jG4qcF5+YxJxd6vFbB9f1xsbMOPWC94Jg3zT14xazwFHGCNOpKh9C7VEAfGu8hJoGF5n0+0XiE5P0HJgQuUeGK9i6dOnC8OHD2bt3L4mJiSQmJrJnzx4++eQTunTpkulAFEVh5MiRvPfee/j6+gIQFhYGgIuLi1ZZFxcXzbbXxcbGEhkZqbUIIYTIPbIrjwhRxN6ccu42msXlTQNg61leilWI/KZSpUp88cUXDB06lOjoaJYtW0bVqlWpXbs2Fy9e1Hd44jU/n7xL8JMXOFmZ0svPM/VC8S9h8yBQEsG3A1SU/yeyRf0voVw7DElksckckh5eYeXRO/qOSohcI8OTHEyZMoU7d+7QsGFDjIzUuyclJdGzZ88sjZ0zbNgwzp07x6FDh1JsU702pbKiKCnWJZs2bRqTJ0/OdBxCxzI6I6gQIt/Lrjwi8h6dzWj5b64Z06wMY5pl/XDZKi/FKkQ+Ex8fz++//86yZcsIDAykWrVqzJ8/n65du/LkyRM+//xzOnbsyKVLl/QdqvhXTHwi83ZfB2BofW8sTNK4fd01GR5fA2s3aPFdDkZYwBgYQJuFEHkfm7vHWW48g1677OlQpQi2Fmm0LBSiAMlwBZuJiQkbNmzg66+/5uzZs5ibm1O+fHk8PdP4NiEdPv74Y7Zs2cKBAwcoUqSIZr2rqyugbsnm5uamWR8eHp6iVVuysWPHMnLkSM3zyMhIPDw8Mh2byKK0ZviEtGcFFULka9mRR0TelNpMl/VKFeKzpqUzdqCMzj6tT3kpViHykY8//ph169YB0KNHD2bMmKHpNQNgaWnJt99+S7FixfQUoUjN2uPBhEXG4G5rRrcaRVMvdOsAHF+ofvzBfDC3z7kACyJjM+iyFmVJI4o+vcWspG9ZvKcEY1rKLNVCZLiCLZmPjw8+Plmb5l5RFD7++GM2b97Mvn37Ugx67eXlhaurK4GBgVSurP7AxsXFsX//fqZPn57qMU1NTTE1Nc1SXCIbJM/w+SqnrP39CCHyNl3kEZH3Jc90mcy7kGXmD/Z6rsnNeSYvxSpEPnDp0iXmzZtH+/btMTFJfeB7d3d39u7dm8ORibTExCeyaP8NAIY2KIGpUSo9YmIi4beh6sdVe0PJRjkXYEFm6YSq+y/E/9SQKnHXCfv7C+7W/BUPRyt9RyaEXmW4gi0xMZGAgAB2795NeHg4SUnagxru2bMn3ccaOnQoa9eu5ffff8fa2lozrpqtrS3m5uaoVCpGjBjB1KlTKVmyJCVLlmTq1KlYWFjQrVu3jIYuhBAiF9BlHhFCCCHSY9KkSfj5+WmGJkiWkJDAkSNHqFOnDkZGRtStW1dPEYrX/XLyLuHPY3G3NaND1SKpF9oxDiKCwc4TmkzJ2QALOqeSGHVdQ8KKNrxvcIxdaz7DY/hCfUclhF5luILtk08+ISAggBYtWuDr65vmWGjpsXCh+gNYr149rfXLly+nd+/eAIwZM4aXL18yZMgQnj59So0aNdi5cyfW1taZPq8QQgj90WUeEUIIIdKjfv36hIaG4uzsrLU+IiKC+vXrk5iYqKfIRGpiExJZsE/deu2jet6pt167ugNOrwJU0HYRmMr9YU5TedUmtO5MPPZ/SqMna7m/uwKFG36k77CE0JsMV7CtX7+en3/+mffffz/LJ1cU5a1lVCoV/v7++Pv7Z/l8Qggh9E+XeUQIkbbXu9tmqfutEHlcWpOkPX78GEtL+WzkNr8G3Sc0IgYXG1M6VktlPO0XT2DLx+rHNYeCp1/OBig0POr3ZfuFMzR7vALXg+NQPEuhKtFA32EJoReZmuSgRIkS2RGLEDkqrdnrdDarHaQ9g6rMrCoKMMkjQuSApETmdq2S6nrJP6IgadeuHaD+0r53795aYzUnJiZy7tw5/PykciY3iU9M4se96plDB9f1xsw4lWvW1lEQ9QCcSkGDCTkcoXhduW7T+P2HG7Q2OETChg8x6h8ILmX1HZYQOS7DFWyjRo3ihx9+YP78+dKtR+Rpqc1eV8LZih+66HAGnNRminPygfZLdHcOIfIYySNC5ADJP0IA6rGdQd2CzdraGnNzc802ExMT3n33XQYMGKCv8EQqNp+6z/1nL3GyMqVr9VRmDr3wK1zcBCpDdddQY7OcD1Jo8XC0ZG31qbj+PZAa8ZdR1nZE1X8PWLvoOzQhclSGK9gOHTrE3r17+euvvyhXrhzGxsZa2zdt2qSz4ITIbq/PXpctUptBVYgCTPKIeNXr3RaL2JunUVJkmOQfIVi+fDkAxYoVY/To0dIdNJdLSExivqb1WvGUrdeeh6lbrwHU+QwKp9JSV+jF4AZlaXnyM1Ykjad4xD1Y1xl6bwMTC32HJkSOyXAFm52dHW3bts2OWIQQQhQAkkeExhu6MRayMk25XgghMmnSpEn6DkGkw+9nQgh+8gIHSxO61Xit9ZqiqMdde/kU3CpCndH6CVKkytbCmA7vVaTP7jFsMZuEbchp2DQAOq2UoQlEgZHhCrbkb4GEEEKIzJA8IjTe0I3RxjzD/6IUWDN3XGbflYea552qFaGXn5ceIxIid6hSpQq7d+/G3t6eypUrv3FYglOnTuVgZCI1iUmKZuy1AbWLY2HyWh44tRKu7QRDU2i7GAyNUzmK0KfetYqx9NBN+saM5GfzqRhe/hMCJ0LTb/QdmhA5IlP/vSYkJLBv3z5u3LhBt27dsLa2JiQkBBsbG6ysrHQdoxC5hszIJoRuSB7JnzI1eUwa3RiL2JtTzt1G89zFRsbYScvdJy+0hjt4EBmjx2iEyD1at26tmdSgTZs2+g1GvNWf50K4+SgaOwtjPqzpqb3x6R3YMU79uMGX4Fwm5wMUb2Vrbky/94rz/a4EppsOZ9zLWXB0PjiWgGp99B2eENkuwxVsd+7coVmzZgQHBxMbG0vjxo2xtrZmxowZxMTEsGjRouyIUwj9kxnZhNAJySP5l04mj7FyhqRExjQrw5hm2RCkEKLAeLVbqHQRzd2SkhTm7VG3Xuv/nhdWpkavboTfhkBcFBStCTWH6ilKkR69axVjyaGb/PS0Ku2qDKf0pbmw7TNwLgtFa+g7PCGyVYYr2D755BOqVavG2bNncXR01Kxv27Yt/fv312lwQujC611nAOqVKsRnTUtn7EAyI5sQOiF5JH/L8uQxZnapX29LNIKGE7McnxCiYLp79y4qlYoiRYoA8Pfff7N27VrKli3LwIED9Ryd+OtCGNfDo7AxM6KnXzHtjccXwZ1DYGwJbRbIF9u5nLoVmxdzdl1j+L2G7ChzB9U/v8PPH8LA/WDjpu8Qhcg2mZpF9PDhw5iYmGit9/T05P79+zoLTAhdeb3rDGSha6fMyCZElkkeKVgKWZm+uYtoWl6/3jr56DYwIUSB0q1bNwYOHMiHH35IWFgYjRo1wtfXl9WrVxMWFsbEiVKBry/q1mvXAOj7nhc2Zq+MrfbwKuyerH7c5GtwKK6HCEVG9anlxdJDt7gaHs2OehNp9ugqPPwHfu4JvbeCkcnbDyJEHmSQ0R2SkpJITExMsf7evXtYW1vrJCghhBD5l+SRgsXG3EjTdbTF3IOaZcWRW/oOTQhRgFy4cIHq1asD8PPPP1O+fHmOHDnC2rVrCQgI0G9wBdzOSw+4HPYca1Mj+rw6QUtiPGweBAkx4N0QqvXVX5AiQ2zNjelbS/1efr8/hKTOa8DMFu79Dds/13N0QmSfDFewNW7cmDlz5mieq1QqoqKimDRpEu+//74uYxNCCJEPSR4pmJK7jiYvMhC/ECInxcfHayY82LVrFx988AEApUuXJjQ0VJ+hFWiK8l/rtV5+xbC1eKX12v4ZEHJKXTHzwTx4wyywIvfp+54X1mZGXHnwnO2hFtBuCaCCk8vg9Bp9hydEtshwBdv333/P/v37KVu2LDExMXTr1o1ixYpx//59pk+fnh0xCiGEyEckjwghhMhp5cqVY9GiRRw8eJDAwECaNVPPohISEqI1HqjIWXsuh3MxJBILE0P6vfdK67Xg43DwO/XjlnPAtrBe4hOZZ2tuTJ9/x9NbtP8GSsnGUP/fmWC3jYbwy/oLTohskuEx2Nzd3Tlz5gzr1q3j1KlTJCUl0a9fP7p37465uXl2xJhvKEmJqFIZlDOt9SLnFbIylVlBhchmkkeEEELktOnTp9O2bVtmzpxJr169qFixIgBbtmzRdB0VOUtRFObuVrde61mzGPaW/47LFfscNg0AJQkqdAHfdnqMUmRFL79iLD5wk3P3Ijh28wk1a4+GO0fg5l74pTcM2AMmFvoOUwidyXAFG4C5uTl9+/alb1/pB58RqjRmoVTJLJS5ho25kcxeJ0QOkDwihBAiJ9WrV49Hjx4RGRmJvb29Zv3AgQOxsJAbfH3Yf/UhZ+9FYG5sSP/ar7Re++sLeHYHbIvC+zP0F6DIMkcrUzpV82DVsTssPnCDmt7Vod1PsOg99aQH2z9Xd/8VIp/IcAXbypUr37i9Z8+emQ6mQJBZKPMGmb1OiGwjeUQIIYQ+GBoaalWuARQrVkw/wRRwiqLww7+t13q8WxQnK/X4eFzaAmdWAypot1g9/prI0/rX9mLN8Tvsu/KQy2GRlHZ1hnb/g5Wt4dRKKFYHKnTUd5hC6ESGK9g++eQTrefx8fG8ePECExMTLCws5MZICCHEG0keEUJPrJzTHgZBhkcQ+dyDBw8YPXo0u3fvJjw8HEVRtLanNru1yD6Hrz/mdPAzTI0MGFCnuHplZCj8MVz9+L0R4Omnt/iE7ng6WtLM15Vt58P46cBNZneqBMXrQt3PYf+38OcIKFwFHL31HaoQWZbhCranT5+mWHft2jU++ugjPvvsM50EJURO8S5kqfW8iL2M/yREdpM8IoSemNmlPgyCkw/IcBUin+vduzfBwcFMmDABNzc3VDIjpd6oW6+pr0HdahTF2doMkpLg9yHw8im4VoB64/QcpdClQXW82XY+jC1nQvisaSncbM2h7hi4cxhuH4RNA6HvDjDM1AhWQuQaOvkLLlmyJN9++y09evTg8mWZDSTPfQtcAL/NtrcwhqRE5natou9QhBBIHhEiR8lwFaIAOnToEAcPHqRSpUo6Od6CBQuYOXMmoaGhlCtXjjlz5lC7du237nf48GHq1q2Lr68vZ86c0Uksec2xm084cfspJoYGDKrzb6ulE/+DG3vAyExd4W9kot8ghU5V9LCjhpcDx289Yfnh24x7v4z6PrPtIljgB/dPqmeNrfeFvkMVIkt0VkVsaGhISEiIrg6Xt+W1QfIL4LfZlqYymYEQuY3kESGEENnFw8MjRbfQzNqwYQMjRoxgwYIF1KpVi8WLF9O8eXMuXbpE0aJF09wvIiKCnj170rBhQx48eKCTWPKieXvUY691fscDV1szCP8HAv/9/7vJFChUSo/RiewyuK43x289Ye3xYIY1KIGNmTHYFoEWs2BTf9g/Q30vVqSavkMVItMyXMG2ZcsWreeKohAaGsr8+fOpVatWho514MABZs6cSVBQEKGhoWzevJk2bdpotvfu3ZsVK1Zo7VOjRg2OHTuW0bBzXl4bJL+gfpud194nIfIBXeYRkXe83iXfxcZMT5EIIQqiOXPm8MUXX7B48eIsT2wwe/Zs+vXrR//+/TXH3rFjBwsXLmTatGlp7jdo0CC6deuGoaEhv/32W5ZiyKtO3H7CkRuPMTZUMbieNyTEwqYBkBCjrlx5p7++QxTZpF6pQvi4WHH1QRRrjwczuO6/rRcrdISrf8GFX9VdRQcfBBPLNx9MiFwqwxVsr1aAAahUKgoVKkSDBg2YNWtWho4VHR1NxYoV6dOnD+3bt0+1TLNmzVi+fLnmuYmJNBcWQoi8TJd5ROQ+r1eklXGzli75Qgi969y5My9evMDb2xsLCwuMjY21tj958iRdx4mLiyMoKIgvvtDuytakSROOHDmS5n7Lly/nxo0brF69milTprz1PLGxscTGxmqeR0ZGpiu+3G7uvzOHdqjqQWE7c9gxHsLOg7kDtP4RZGy8fEulUjGgdnE+23iO5Ydv0adWMUyN/h2OqMUsCD4GT26o/yZazdFrrEJkVoYr2JKSknR28ubNm9O8efM3ljE1NcXV1VVn5xRCCKFfuswjIpd5U0WadMnPvd40uyjk6zFZRcExZ84cnRzn0aNHJCYm4uLiorXexcWFsLCwVPe5du0aX3zxBQcPHsTIKH23X9OmTWPy5MlZjjc3ORX8lIPXHmFkoGJIPW+4ugOOzldv/GAeWMs9X37XulJhvtt5hQeRsfx+JoRO1TzUG8ztoc0CWNkagpZD6ZZQspF+gxUiE3L9NB379u3D2dkZOzs76tatyzfffIOzs3Oa5fPrtz1CCCFSettQA4qiMHnyZH766SeePn1KjRo1+PHHHylXrpymTGxsLKNHj2bdunW8fPmShg0bsmDBAooUKaKHV5THvWlsS+mSn3ulNbso5PsxWUXB0atXL50e7/VZSBVFSXVm0sTERLp168bkyZPx8Un/dW/s2LGMHDlS8zwyMhIPD4/MB5wLzPu39Vq7KoXxMHwKmwepN1QfBGVa6jEykVNMjAzoW8uLaX9d5n8HbtKhShEMDP793BSvBzUGw/FF8MdwGHIUzGz1Gq8QGZXhCrZXL/RvM3v27IweXkvz5s3p2LEjnp6e3Lp1iwkTJtCgQQOCgoIwNTVNdZ/89m1PYpKCoYE0lS4wdDmjawGcHVbkDbrMI28bamDGjBnMnj2bgIAAfHx8mDJlCo0bN+bKlStYW1sDMGLECP744w/Wr1+Po6Mjo0aNomXLlgQFBWFoKJ+VDJOKtLyroI7HKgqMGzduaLpq/vDDDzg7O7N9+3Y8PDy0vnh5EycnJwwNDVO0VgsPD0/Rqg3g+fPnnDx5ktOnTzNs2DBA3ZJbURSMjIzYuXMnDRo0SLGfqalpmvc7edG5e8/Ye+UhhgYqhtYtBr92hpdPwa0iNPla3+GJHNS1RlHm7bnOtfAo9l4Jp2GZVz43DSeqWzY+vaXuKtp6vv4CFSITMlzBdvr0aU6dOkVCQgKlSqlneLl69SqGhoZUqfJft5DUvsHJqM6dO2se+/r6Uq1aNTw9Pdm6dSvt2rVLdZ+8+m3PzB2X2Xfloda6Es5W/NClsp4iUns9rnqlCvFZ09J6jCif0+WMrgVwdliRN+gyj7xpqAFFUZgzZw7jx4/X5IwVK1bg4uLC2rVrGTRoEBERESxdupRVq1bRqJG6K8Lq1avx8PBg165dNG3aNKsvV4hsV8TenHLuNprnOp1A4k3dR+ULG5GH7N+/n+bNm1OrVi0OHDig6RVz7tw5lixZwsaNG9N1HBMTE6pWrUpgYCBt27bVrA8MDKR169YpytvY2HD+/HmtdQsWLGDPnj1s3LgRLy+vrL2wPGLu7usAtK7ojue5HyD4KJhYQ4flYJR/KhLF29mYGdO9RlEWH7jJ4gM3tSvYTCzVXUWXvw+nV0G5NuqW8ELkERmuYGvVqhXW1tasWLECe3t7AJ4+fUqfPn2oXbs2o0aN0nmQydzc3PD09OTatWtplsmr3/bcffKCiyG5rzvr63G9Pni1yAa6bEEgrRFELpRTeeTWrVuEhYXRpEkTzTpTU1Pq1q3LkSNHGDRoEEFBQcTHx2uVcXd3x9fXlyNHjkgFm8jd/q38GtOsDGOaZdM50uo+Kl/YiDzmiy++YMqUKYwcOVLTghmgfv36/PDDDxk61siRI/nwww+pVq0aNWvW5KeffiI4OJjBgwcD6i/879+/z8qVKzEwMMDX11drf2dnZ8zMzFKsz68uhkSw658HqFQwusQ9+OPf1ukf/ACO3voNTuhFn1peLDt8i79vPeF08FMqF7X/b6OnH9QYpO4qukW6ioq8JcMVbLNmzWLnzp2amyIAe3t7pkyZQpMmTbK1gu3x48fcvXsXNze3bDuHEEKI7JVTeSS5+05qA1HfuXNHU8bExEQrluQyaQ1WLWN9ilwjrcqv7JhAQr6wEXnc+fPnWbt2bYr1hQoV4vHjxxk6VufOnXn8+DFfffUVoaGh+Pr6sm3bNjw9PQEIDQ0lODhYJ3HnB/P3qFuv9Sqtwj1wCKBA1T7gm3JoB1EwuNqa0bpSYTYG3eOnAzdZ2KOqdoFXu4ru/FI9CYYQeYBBRneIjIzkwYMHKdaHh4fz/PnzDB0rKiqKM2fOcObMGUDd2uDMmTMEBwcTFRXF6NGjOXr0KLdv32bfvn20atUKJycnrebYQggh8hZd5pH0SO9A1OktM23aNGxtbTVLXhiGQORzyZVfycszubEX4nV2dnaEhoamWH/69GkKFy6c4eMNGTKE27dvExsbS1BQEHXq1NFsCwgIYN++fWnu6+/vr7n/ye+uhD3nrwthmKti+SLya4h5Bu5VoNm3+g5N6NnAOsUB2H4xjNuPorU3mlhC6x/Vj0+thOu7czg6ITInwxVsbdu2pU+fPmzcuJF79+5x7949Nm7cSL9+/dIcFy0tJ0+epHLlylSurB5nbOTIkVSuXJmJEydiaGjI+fPnad26NT4+PvTq1QsfHx+OHj2q1axbZK/kcV2SlyL25voOKcNefw3l3G10Oz6NECJDdJlH3sTV1RXgjQNRu7q6EhcXx9OnT9Ms87qxY8cSERGhWe7evauzmIUQQmSPbt268fnnnxMWFoZKpSIpKYnDhw8zevRoevbsqe/w8q15e64BCiuc1mD2+BJYOEHnVWAs/4sXdD4u1tQvVQhFgSWHbqYsUKyWeoZZUHcVjZEeAyL3y3AX0UWLFjF69Gh69OhBfHy8+iBGRvTr14+ZM2dm6Fj16tVDUZQ0t+/YsSOj4Ym0ZHQg4pwY1yW75YfXIEQ+pMs88iZeXl64uroSGBio+SInLi6O/fv3M336dACqVq2KsbExgYGBdOrUCVB37blw4QIzZsxI9bh5daxPIYQoyL755ht69+5N4cKFURSFsmXLkpCQQPfu3fnyyy/1HV6+dD38OVvPh9LbcAfVn+8ClSF0DADbIvoOTeQSg+p6s/fKQ345eY8RjXxwsnrt/6tGk+DaDnh6+9+uonP1EqcQ6ZXhCjYLCwsWLFjAzJkzuXHjBoqiUKJECSwtZfD7XC21MVog7XFacnJcl+yS1muAvPU6hMhndJlHoqKiuH79uuZ58lADDg4OFC1alBEjRjB16lRKlixJyZIlmTp1KhYWFnTr1g0AW1tb+vXrx6hRo3B0dMTBwYHRo0dTvnx5zayiQggh8j5jY2PWrFnD119/zalTp0hKSqJy5cqULFlS36HlW/P3XOcd/mGC8Wr1iiZfg1dt/QYlcpUaXg5ULGLL2XsRrDx6h5GNfbQLJHcVDWgBp1ZA2dZQoqF+ghUiHTJcwZYsNDSU0NBQ6tSpg7m5ebrGtBF6ltoAxU4+qZdNa5+3lc+NMvO6hRDZThd55OTJk9SvX1/zfOTIkQD06tWLgIAAxowZw8uXLxkyZAhPnz6lRo0a7Ny5U2uoge+//x4jIyM6derEy5cvadiwIQEBARgaZqDVbwGSmKRgaCD5XgiR+yXnhLQcO3ZM83j27NnZHU6BcvNhFMfPXmCLyQ8YkgS+HeDdIfoOS+QyKpWKQXW9GbLmFCuP3mZw3eJYmLxWRVHsPag+EP7+Cf74BD46AmY2+glYiLfIcAXb48eP6dSpE3v37kWlUnHt2jWKFy9O//79sbOzY9asWdkRpxBCiHxCl3nkbUMNqFQq/P398ff3T7OMmZkZ8+bNY948maEqPQwNVHyy/jTXw6O01neqVoRefl56ikoIIVI6ffq01vOgoCASExMpVaoUAFevXsXQ0JCqVaumtrvIgvmBF1lgPIdCqkhw8VV37ZPGGCIVTcu54ulowZ3HL/jl5D16+RVLWaiRP1zbqe4qGjgBWv2Qw1EKkT4ZnuTg008/xdjYmODgYCwsLDTrO3fuzPbt23UanBBCiPxH8kjedz08ioshkVrLg8gYfYclhBBa9u7dq1latWpFvXr1uHfvHqdOneLUqVPcvXuX+vXr06JFC32Hmq9cCXtOtX++pbLBdRJNbNSTGpjIcEIidYYGKvq/p/6CbsmhmyQkJqUsZGIJH8xXPw4KgBt7cy5AITIgwxVsO3fuZPr06RQpoj04ZcmSJblz547OAitoUpvp0ruQJCIhRP4jeUQIIUROmzVrFtOmTcPe3l6zzt7enilTpkgPHB37+9fv6Wa4hyRUGHZcBg7F9R2SyOU6VPXAwdKEu09e8teFsNQLedWGdwaoH2/5GGKf51yAQqRThruIRkdHa7U4SPbo0SOZVS0z3jbTZUZn/xQ569/3T94jIdJP8ogQQoicFhkZyYMHDyhXrpzW+vDwcJ4/lxt1Xbl+aj+dwn8AFTypPhqnko31HZLIA8xNDOlZ05M5u67x04GbtKzglvq4vMldRZ/dgcCJ0PL7HI9ViDfJcAu2OnXqsHLlSs1zlUpFUlISM2fO1BpoWqTTqzNdLq6jvfzaXypucrs3vX+7v9J3dELkSpJHhBBC5LS2bdvSp08fNm7cyL1797h37x4bN26kX79+tGvXTt/h5Q9RD7Hf2g9TVQLnrd7Dqdk4fUck8pCeNYthZmzA+fsRHL35OPVCplbQ+t+uoieXwc19ORafEOmR4RZsM2fOpF69epw8eZK4uDjGjBnDxYsXefLkCYcPH86OGAuG1Ga6FHmHzFQqRLpJHhFCCJHTFi1axOjRo+nRowfx8fEAGBkZ0a9fP2bOnKnn6PKBxASer+qOY+JDbipu2HZfCgYZbsshCjAHSxM6VfNg5dE7LN5/Ez9vp9QLetWBd/rDiSXw+8cw5AiYWqdeVogcluGrXtmyZTl37hzVq1encePGREdH065dO06fPo23t3d2xCiEECIfkTwihBAip1lYWLBgwQIeP37M6dOnOXXqFE+ePGHBggVYWsq4x1mlBE7A+sFxohQzfis1g6JurvoOSeRB/d8rjoEK9l99yD+hkWkXbDQZ7IpCRDAETsq5AIV4iwy1YIuPj6dJkyYsXryYyZMnZ1dMQggh8inJI0IIIfTJ0tKSChUq6DuM/OXcL6iOLQDgi8QhjHtfxl0TmVPU0YLm5d3Yei6U/x24yezOlVIvaGoFrX+EFa3g5FIo2xqK183RWIVITYZasBkbG3PhwoXUBxwUQggh3kLySB6SlJjm+kJWMhmFEEIIIOwCypaPAfgx4QOcqnfA3c5cz0GJvGxQHfWss1vOhhD8+EXaBZO7igL8PkxmFRW5Qoa7iPbs2ZOlS5dmRyzidckzVKYmrfVCCJHLSR7JI1KbwOXfyXdszDM8hKsQQoj85sUT2NAdVcJLDiSWZ6FBV4bUl6EeRNZUKGJHHZ9CJCQp/Lj3+psLv9pVdJd/jsQnxJtk+D/kuLg4lixZQmBgINWqVUsxZsHs2bN1FlyB9+oMlY+u/rfeyQfaL9FbWEIIkRWSR/IQmYBHCCFEapISYdMAeHqbEJUzw+OHMbhJSZytzfQdmcgHPmlYkgNXH/LrqXsMrV+Coo4WqRc0tYIP5sPKD9STHpT5QLqKCr1KVwXbuXPn8PX1xcDAgAsXLlClShUArl69qlVOuvxkE7nBEULkcZJHcrGkRPWXOUIIIUR67ZsG13cRb2BK/5cjsLAtRP/axfUdlcgnqnraU8enEAeuPuTHvdeZ3uEN4yYWrwvV+qnHYtsyDD46qq54E0IP0lXBVrlyZUJDQ3F2dubOnTucOHECR0fH7I5NCCFEPiF5JBdLraV0iUbQcKL+YhJCCJF7/fMnHJgJwJcJA7ikFGNOs9KYGcuXNUJ30t2KDaDxZLgWCM+CIXACtPw+5wIV4hXpGoPNzs6OW7duAXD79m2SkpKyNSghhBD5i+SRXC65pXTy8ixY3xEJIYTIjR5ehc2DATjs2IENcX5ULGLLBxXd9RyYyG+SW7Glayw2U2toPV/9+OQyuPJX9gcoRCrS1YKtffv21K1bFzc3N1QqFdWqVcPQMPVvKG7evKnTAIUQQuR9kkfylyL25pRzt9Fa52Ij4+4IIUS+FvscNnSHuOe8cKtBn9sfAPBly7IYGMgQD0L3MtSKrXhdqDkMjs5Xzyr60RGwdsm5YIUgnRVsP/30E+3ateP69esMHz6cAQMGYG1tnd2xibQkzy6a2pg5MpaOECIXkjyST/ybf8Y0K8OYZvoORuiV/C8iRMGiKPDbR/DoKoq1G5+pRhKnJPJ+eVfeKeag7+hEPlXV057aJZ04eO3R28diA/XwFjf3w4Pz8PsQ6L4RZHxfkYPSPYtos2bq/6SDgoL45JNP5MZIn2R2USFEHiR5JB9IK/+AjNtW0Mj/IkIULIdmwz9/gIExJ6r/wNatCRgbqvi8WWl9RybyuRGNSnLw2iM2pqcVm5EptP8f/FQPru+Cv3+CGoNyLFYh0jUG26uWL1+us5uiAwcO0KpVK9zd3VGpVPz2229a2xVFwd/fH3d3d8zNzalXrx4XL17UybnzhdfHzHn9ZkcIIXIhXeYRoSev5x8Zt63gkv9FhMj/ru+G3V8DENtkOiMOqdto9H3PC09HS31GJgqAqp4O1C7pRGKSwnc7r7x9B+cy0GSK+vHOCfDgUvYGKMQrMlzBpkvR0dFUrFiR+fPnp7p9xowZzJ49m/nz53PixAlcXV1p3Lgxz58/z+FIhRBCCCGEEKKAeXobNvYFFKjSk5mPahISEUMRe3M+aVhS39GJAuLzZqVRqWDL2RDO3H329h3e6Q8lm0BiLPzSG+KisztEIQA9V7A1b96cKVOm0K5duxTbFEVhzpw5jB8/nnbt2uHr68uKFSt48eIFa9eu1UO0QgghhBBCCFFAxL2ADT0g5hm4V+FixS9Zdlg9I/jXbXyxMEn3aENCZIlvYVvaVi4MwDdbL6Eoypt3UKmg9QKwdoNHV2DrKPU4gkJkM71WsL3JrVu3CAsLo0mTJpp1pqam1K1blyNHjqS5X2xsLJGRkVqLEEIIIYQQQoh0UhT4cwSEnQcLJxI7ruSLLddIUqBlBTfql3LWd4SigPmsaSnMjA04cfspOy6GvX0Hq0LQfimoDODsOjizJvuDFAVerq1gCwtTf2hcXLSn1nVxcdFsS820adOwtbXVLB4eHtkapxB6lZSo7wiEEEKI/yTPLpoayVlC5B3HF8O5DaAyhI4BrLyUwPn7EVibGTGxVVl9RycKIDdbcwbULg7At39dJi4h6e07FasF9cerH28dLeOxiWyX69v1ql6bVldRlBTrXjV27FhGjhypeR4ZGSmVbCL/ktn8hBBC5CYyu6gQed/tw7Dz30qJJl8TYl+N75bvB+CL5qVxtjbTY3CiIBtU15t1f9/l9uMXrD52h77veb19p/dGQvBR9ayiv/SCAXvB1Cr7gxUFUq5twebq6gqQorVaeHh4ilZtrzI1NcXGxkZrESJfk9n8hBBC5DYyu6gQeVNkiLoSIikByndEqfERE367QHRcIlU97en6TlF9RygKMCtTI0Y29gFg7p5rRLyIf/tOBgbQdjFYu6tz0e9DZTw2kW1ybQWbl5cXrq6uBAYGatbFxcWxf/9+/Pz89BiZEEIIIYQQQuQzCbGw4UOIfgguvtDqB9aduMfuy+GYGBowtW15DAzS7kkkRE7oVK0IPi5WPHsRz7w919K3k6UTdAwAA2O49BscnpONEYqCTK8VbFFRUZw5c4YzZ84A6okNzpw5Q3BwMCqVihEjRjB16lQ2b97MhQsX6N27NxYWFnTr1k2fYQshhBBCCCFE/vLX53D/JJjZQudV3IxQ+PpP9ZhVnzUtRSlXaz0HKAQYGRow7v0yAAQcuc3lsHROali0Brw/Q/1412R1l1EhdEyvFWwnT56kcuXKVK5cGYCRI0dSuXJlJk5Ujx01ZswYRowYwZAhQ6hWrRr3799n586dWFvLxV0IIYQQIt+QiRGE0K9TKyFoOaCC9suIty3GpxvO8DI+ET9vR/qlZ6wrIXJIvVLONC3nQkKSwhe/nicxKZ1dPqv2gSo9AQU29oUnN7M1TlHw6HWSg3r16qG8of+zSqXC398ff3//nAtKiPwseXY3A8OU23S1XgghhMgomRhBCP25FwRbR6kfNxgPJRsxd+cVzt6LwMbMiFmdKkrXUJHrTP7Al8PXH3Pm7jPWHL9Dz5rF3r6TSgXvfwfh/8C9E7C+O/QLlEkPhM7k+llEhcivZu64zL4rDzXPO1UrQi+/bP52MDOzu8lNjxBCiJyQPDGCECLnPA+DDd0hMQ5KtYD3RnHy9hN+3HsdgKntyuNma67nIIVIydXWjDHNSjHx94vM2H6FJmVdcbVNxwy3RqbQaRX8VBfCL8Gv/aDLWmk4IHQi105yIER+d/fJCy6GRGqWB5ExOXfyjM7uJrPBCZH3SVc7IYQQr4qPUbfgeR4KTqWg7SIi4xL59OczJCnQrkphWlZw13eUQqSpew1PKhe1Iyo2gUlbLqR/Rxs3daWakRlc3Q47xmdfkKJAkQo2IYQQoiBIbo26uM5/y+6v9B2VEEIIfVAU+PPTfyc1sIOu60gysWbUz2e5++Qlhe3M8f+gnL6jFOKNDA1UTGtXHiMDFTsuPmDHxbD071ykGrRdrH58fCH8/b/sCVIUKFLBJoQQQhQUr7dGfRas74iEECJPWrBgAV5eXpiZmVG1alUOHjyYZtlNmzbRuHFjChUqhI2NDTVr1mTHjh05GG0qjv4IZ9eCyhA6BoCjNwv33yDw0gNMDA1Y0L0KNmbG+o1RiHQo7WrDwDrFAZj0+0Wex8Snf+dybaDhJPXjv8bA1Z26D1AUKFLBJoQQQgghhBDptGHDBkaMGMH48eM5ffo0tWvXpnnz5gQHp/6lxYEDB2jcuDHbtm0jKCiI+vXr06pVK06fPp3Dkf/r+i4InKB+3PQb8K7PwWsPmbXzCgCTW5ejooedfmITIhOGNyyJp6MFYZExTP7jUsZ2fu9TqPwhKEmwsQ+E6OlzKfIFqWDLT5JniBT5i7yvQmSav78/KpVKa3F1ddVsVxQFf39/3N3dMTc3p169ely8eFGPEQshhMjtZs+eTb9+/ejfvz9lypRhzpw5eHh4sHDhwlTLz5kzhzFjxvDOO+9QsmRJpk6dSsmSJfnjjz9yOHLg0XXY2FddmVC5B9QYzL2nLxi+7jRJinrSrS7veOR8XEJkgZmxITM7VMRABRuD7rHtfGj6d1apoOX3ULwexEXB6g7qz4kQmSAVbPnJqzNEyhg7+Ye8r0JkSbly5QgNDdUs58+f12ybMWMGs2fPZv78+Zw4cQJXV1caN27M8+fP9RixEEKI3CouLo6goCCaNGmitb5JkyYcOXIkXcdISkri+fPnODg4pFkmNjaWyMhIrSXLYiJgXRf1T48a0GI2MQlJDFlziqcv4ilf2JavWvuiUqmyfi4hclh1Lwc+qucNwNhN5wmNeJn+nQ2NofNqcKsELx7BqrYQGZI9gYp8TSrY8iMZYyd/kvdViEwxMjLC1dVVsxQqVAhQt16bM2cO48ePp127dvj6+rJixQpevHjB2rVr9Rx1FkiLVyGEyDaPHj0iMTERFxcXrfUuLi6EhaVvgPVZs2YRHR1Np06d0iwzbdo0bG1tNYuHRxZblSUlqr+sfXwNbApDp1UohiZM+O0C5+5FYGdhzILuVTAzNszaeYTQoxGNfKhQxJaIl/GM+vksSUlK+nc2tYbuG8HBGyKCYVU7ePEk+4IV+ZJUsAkhhMjXrl27hru7O15eXnTp0oWbN28CcOvWLcLCwrRaIZiamlK3bt10t0LIlaTFqxBCZLvXW3kpipKull/r1q3D39+fDRs24OzsnGa5sWPHEhERoVnu3r2btYB3fwXXdoKRGXRZA9Yu/HTgJr8E3cNABXO7VMbDwSJr5xBCz4wNDZjTuRLmxoYcufGYJYduZuwAVoXgw81g7QYP/4G1nSE2KnuCFfmSVLAJIYTIt2rUqMHKlSvZsWMH//vf/wgLC8PPz4/Hjx9rWhpktBVCtnTb0TVp8SpyGxlPVOQTTk5OGBoapsgT4eHhKfLJ6zZs2EC/fv34+eefadSo0RvLmpqaYmNjo7Vk2uk1cHiO+nHrH8G9MjsuhvHt9ssATGhZljo+hTJ/fCFykeKFrJjYqiwAM3dc4cL9iIwdwN4TemwCM1u49zes7QRx0dkQqciPpIJNCCFEvtW8eXPat29P+fLladSoEVu3bgVgxYoVmjIZbYWg8247QhQEaY0nKi0sRR5jYmJC1apVCQwM1FofGBiIn59fmvutW7eO3r17s3btWlq0aJHdYf7n+m74Y7j6ce1RUL4DF+5HMGL9GRQFPnzXk95+xXIuHiFyQJd3PGhc1oX4RIXh607zPCY+YwdwKatuyWZqA3cOq1uyxb3InmBFviIVbEII3bcsSOtY0npB6JmlpSXly5fn2rVrmtlEM9oKQefddjJDPksir3q9daW0sBR50MiRI1myZAnLli3jn3/+4dNPPyU4OJjBgwcD6jzRs2dPTfl169bRs2dPZs2axbvvvktYWBhhYWFERGSwZU1GhZ2Hn3tBUgKU7wj1vyQsIoZ+K07wMj6R2iWdmNSqrExqIPIdlUrF9PYVcLM14+ajaD775RyKkoHx2AAKV1W3ZDOxhtsHYX1XiM/AxAmiQDLSdwBCiFzg1ZYFj67+t75EI2g4MePHS+1YTj7QfkmWQxUiK2JjY/nnn3+oXbs2Xl5euLq6EhgYSOXKlQH17HD79+9n+vTpaR7D1NQUU1PTnAo5dal9xiDzn1khhBDp1rlzZx4/fsxXX31FaGgovr6+bNu2DU9PTwBCQ0MJDv6v4njx4sUkJCQwdOhQhg4dqlnfq1cvAgICsifIiHuwpiPEPYditaH1j0THJ9F/5QkeRMZS0tmKH7tXwchQ2luI/MnB0oQF3avQafFRtl8M438HbzKwjnfGDuLxDvTYqJ7w4OY+WN8NOq8BExmvUKROKtiEEP9JblmQzMlHd8cSQg9Gjx5Nq1atKFq0KOHh4UyZMoXIyEh69eqFSqVixIgRTJ06lZIlS1KyZEmmTp2KhYUF3bp103fob5faZywrn1khhBDpNmTIEIYMGZLqttcrzfbt25f9Ab3q5VN15drzUChUBjqvJl5lzJA1J7lwPxIHSxOW9X4HGzPjnI1LiBxWuag9E1uVY8JvF/j2r8v4FrbFz9spYwcp+i50/wXWdIAbe2B1e+i2Xj1GmxCvka8shBBC5Fv37t2ja9eulCpVinbt2mFiYsKxY8c0rQzGjBnDiBEjGDJkCNWqVeP+/fvs3LkTa2trPUcuhBBCZELsc1jdAcIvgZUrdP8FxcyWL349z/6rDzEzNmBpr2oyY6goMHrUKEq7KoVJUuDjtacJjchEN89itf4dk80Wgo/AilYQ/Vj3wYo8TyrYhBBC5Fvr168nJCSEuLg47t+/z6+//krZsmU121UqFf7+/oSGhhITE8P+/fvx9fXVY8RCCCFEJsW/hHVd4f5JMLdXVwjYefDdziv8euoehgYqfuxWhcpF7fUdqRA5RqVS8U2b8pR2teZxdBxD1pwiLiEp4wcq+i70/gMsHNU9CJY3h8gQ3Qcs8jSpYBNCT4rYm1PO3UazuNiY6TskIYQQQgiRFyXEqSc0uH1QPSh7j03gUpZVR2/z494bAHzTxpeGZdKexEeI/MrcxJDFH1bF2syI08HPGL/5fMYnPQBwqwh9toO1Ozy6AkubQPg/ug9Y5FkyBpsQOe3fGTvHNCvDmGb6DkYIIYQQQuRpifGwaQBc2wFG5tD9Zyhchb/OhzJxy0UAPm3kQ5fqRfUcqBD64+loybyulekbcIJfgu5RvJAVH9XL4KQHAIV8oO92WN0OHl9XV7J1Wgne9XUftMhzpAWbEDnt1Rk7F9f5b9n9lb4jE0IIIYQQeUl8jLrl2qXfwMAYuqwGTz/2XQln+PrTKAp0rV6U4Q1L6DtSIfSuXilnJrUqB8D07ZfZfiE0cwey94R+gVDUD2Ij1RMgnF6tw0hFXpWrK9j8/f1RqVRai6urq77DEkI3kmcATF6eBb99HyGEEEIIIQDiomFdF7iyFQxNocsaKNGI4zcfM2hVEPGJCi3Ku/F163KoVCp9RytErtDLrxi9aqonuxqx4Qzn7j3L3IEsHKDnb1C+IyQlwO9DIXAiJCboLFaR9+TqCjaAcuXKERoaqlnOnz+v75CEEEIIIUR2+3dIhVRldL0Q+U1MJKxuDzf3grEldP8FfJpy5u4z+q04SWxCEg1KO/N950oYGeb6Wz4hctSElmWpV6oQMfFJ9F9xMnMziwIYmUK7/0Gdz9TPD/+g7joa/Uh3wYo8JdePwWZkZCSt1oQQQgghCppXh1R4dPW/9SUaQcOJKdc7+UD7JTkephA5LjJE3XIt9CyY2kKPjeBRnX9CI+m17G+iYhOoWdyRBd2rYGIklWtCvM7I0IB5XSvTYeFRrjx4Tu9lJ9gw6F3sLEwyfjCVChp8Cc5l4PeP4dZ+WFwXOq+EwlV1H7zI1XL9FffatWu4u7vj5eVFly5duHnz5hvLx8bGEhkZqbUIIYQQeZK0xhEi7SEVXl//amWbEPlV6Fn4XwP1TwtH6LUFPKpzJew5Hy49TsTLeKoUtWNJr2qYGRvqO1ohci1rM2OW9q6Gs7UpVx48p0/ACV7EZaF7p297GLAbHLwh8h4sawbHf4LMzFYq8qxcXcFWo0YNVq5cyY4dO/jf//5HWFgYfn5+PH78OM19pk2bhq2trWbx8PDIwYiFKCDe1G1HCKE7/2fvvsOiuNoGDv+W3osUAQtgAXvFHntvsSUmMXZNNJZo1BiNSTR5jUZNjGmmfLElthQ1b4y+lkSxYlTEHjsIKoiigqD0+f7YsLqyIAvLLizPfV1zsTt7ZuaZnd15mLNnzpEBUYQQQjzuxwFwPxa8asDov8CvAaeuJfLCd2HcTk6ntp8LK0Y0xdG2xN+oJITJVXR34MdRzXC1tyYi+h5jfgwnLbMI1zjeNeHV3RDcE7LS4X9vqgdAuB9nuKBFiVaiK9i6d+/OgAEDqFu3Lp06dWLLli0ArFq1Ks9lZs6cSWJiomaKiYkxVrhClB15jYQqF/9CGJ4MiCKEECJHVqr6NulRO6BcIEej7jDo/w5x70EGDSq5sXZ0c1ztrU0dpRClRrCPMytGNMHBxpJ9F28zef1xsrKL0OrMzlU94Ej3RWBlB5f+hKUt4OzvhgtalFgluoLtSY6OjtStW5eLFy/mWcbW1hYXFxetSQhRTJ688JeLfyGEEEKI4hMyCl76CexcOXDpNkOWHeZ+WiZNA8uxenQzXB2kck0IfTWq7M53Q0KwsbTgf6fjeHvjKbKLUsmmUkGzV2HMXvCpBw/vwM9D4OdhkBRruMBFiVOqKtjS0tL4559/8PX1NXUoQgghhBBCCGFcnd8HSyu2nY5jxMojPMzIom2QF6tGNMVJbgsVotCeqe7J5y81wEIFPx2N4a0NJ8nMyi7aSr2C1bdyPzMFVJZw9jf4sgkc+ka62zFTJbqCbdq0aezZs4fIyEj+/vtvnnvuOZKSkhg2bJipQxNCCCGEEEIIo1IUhS/+usjY1eGkZ2bTtXZ5vhvaGHsbGdBAiKLqVseXj5+vj4UKfgm/xoS1EUXrkw3AygY6zYZXQ6FCCKTfh21vwXft4MoeQ4QtSpASXcF27do1XnrpJYKDg+nfvz82NjYcOnQIf39/U4cmhBBCCCGEEEb15i8n+GSnesTc4S0D+GpQI2ytpHJNCEPp36giS19ujI2lBdvOxDF61dGijS6aw7cejNoJvT5V99MWdxJ+eBZ+6As3Ioq+flEilOgKtvXr13Pjxg3S09O5fv06GzZsoFatWqYOSwhhaHk1kc6v6XRhlinO9QhRFPJ5E6J4FSafCFECbTtzEysLFfP712XOs7WxsizRl3NClErd6viwfPijgQ8Gf/83iQ8yir5iCwsIGQkTwqHpGLCwhiu71a3Zfh4K148VfRvCpORGfSGE6eWMSHr7wqN5nkEw4HvDLlOc6xGiKHR9Dqt1go7vmS4mIUobJ291ZZmFjtY8ur5jIOd7Ueq4O1jz3ahmNKviYepQhDBrz1T3ZPXoZgxffphj0ffou/QAXw1qRC0/Awyi6OQFPRZCi3Gwex6c/BnO/lc9BbSGlq9D9c7qwRJEqSIVbEKIkiFnRNLiXqY41yNEUTz5OfQMMl0sQpRGdm75V1bLuV6YgXWvNKdWgFSuCWEMjSq78/PYFoxccYTI2yn0W3qAD/rUZmBIJVSGqPxyD4D+30GrSXDgMzi9AaL2qSfPIGg0DOq/CI6eRd+WMAppUyyEEEIIIcxHTkVaznQv2tQRCWEwFcs5mDoEIcqUGj4u/PF6a9oFe5GWmc1bG04x9ecThumXLUf52uqKtkknoMUEsHFW57Ids+CTGvDLcLiwAzLTDbdNUSykgk0IIYQQQgghhBBCh3KONiwf1oQ3uwZjoYKNEdfp/cV+9l28ZdgNuVaErh/ClLPqwRD8GkJ2BpzZBGufh4+rw3/Hw6U/IcsAfcIJg5MKNiGEEEIIIYQQQog8WFioGN++GmtfaY6Xsy2Xb6UwZNlhhq84zIWb9w27MTsX9WAIr4bCmH3qAREcvSH1HkSshtUD4OMg+P11uLwbsgzYmk4UiVSwFYSMMihE2ZLTUXZe9D0nyLlCCCFKpvzO93KuF0II8YTmVTzYMbkNI1oFYGWhIvT8Lbot2cvMjae4dveB4TfoW089IMLUczDsDwgZBY5e8PAOHFsFP/aFT4Lg94n/3kaaZvgYRIHJIAcFIaMMClG25NVRNuT/3ZdzhRBClC55ne/lXC+EECIP7o42zO5dm6EtAljwv3NsOxPHusPRrDscTfMq5RjQqCI96vriaGvA6hYLSwhsrZ66L4SrB9S3jv7zOzxIgGM/qCcbZwjqAjV6qUcitXU2XAziqaSCraBk5Ckhyh5TjmwqhBDCePQ9d8u5XgghyrxAT0e+GdKYw5F3+OyvCxy8nMChK3c4dOUO7/33DB1retOiqgdNA8pRzdvJMCOPAlhaQZW26qnHx3B1P/zzB5z7A+7HqkcjPb0BLG2hanuo2RuCuoOjjEBc3KSCTQghhBBCiKLIudXUwlL36/m9JoQQolRrGliONaObc/3eQzYdu8aGY9eJvJ3CHydj+eNkLADuDtaEBJSjbgVXgn2cqenjQkV3eywsiljpZmkFVdqpp+4L4cYxdau2f/6AO5fhwjb1pLIA/1bqyrYaPdUDKgiDkwo2IYQQQgghHve0CrMnFbZrASGEEGajgps9EzpUZ3z7akTE3GPP+VscjrxDRMxd7j7IYOfZm+w8e1NT3tHGkmAfZ4J9XKjp60wNHxeCfZxxtbcuXAAWFlAxRD11eh9unYN/NqunuJMQtU89/W+6eoTSmr2hRm/wCjLQOyCkgk0IIYQQQojH5VVhVq0TdHwv7+Xk1lEhhCjzVCoVjSq706iyOwDpmdmcvpHIsat3+Sf2Pufikrh4M5mU9CyORd/jWPQ9reUDPR1pWMmNBpXdaFjJnRq+zlhb6jk+pUoF3jXVU9vpcDcKzm1Rt2yLDoMbEerprw/UPwTV7K3ut82voXpZUShSwSaEMB/5tTgw1O05+rZqKCx998NQ84UQQjzyZIWZp/zKL4QQQj82VhZaFW4AGVnZRN1O4Z+4+5yPS+Jc7H3Oxd3n+r2HRN5OIfJ2ChsjrgPgYGNJ08BytKzqQcuqntTyddH/1lL3AGgxXj0lx8P5reqWbVf2qHPdvk/Uk0tFCO4GVdqrB1SwczXgO2H+pIJNCGE+ntbiQN+WCIXZhqHosx8y2p0QQgghhBClhrWlBdXLO1O9vDPU99PMv/cgneMx94iIvkdEzD2OR98lKTWT0PO3CD1/CwA3B2taVPFQV7hV86SKp6N+Ayg4eUPj4eopNREu7lT323bxT0i6Bke+V08qS6jQGAKegcrNoWITcChn2DfCzEgFmxDC/OTV4sCQLRGM0aqhoPuh73qEEEIYjzFaVwshhDALbg42tAv2pl2wNwDZ2Qrn4u5z8PJtDl5O4O8rCdx7kMH/Tsfxv9NxAJR3saVVVU9a/FvhVsHNvuAbtHOFus+pp4yHcCUULv2p/ptwCa4dVk85vGqAXyPwrQc+9cCnLti5GO4NKOWkgk0IIYQQQojiklfL50rNodt83ctIxZsQQgjAwkJFLT8Xavm5MLp1FTKysjl5LZGwy7c5cCmB8Oi73ExKY2PEdc0tpQEeDrSo6knDym40qORGVS8nLAtyS6m1PQR3V08A96LVt5BGH4KYQ+oKt1vn1NOJtY+Wc6kAHtXAszp4VAfPauq/rpXUAy+UIVLBJoQQQgghRHHT1SrZGLfxS+s5IYQwG9aWFjT2d6exvzsTOlQnNSOLY1fvcuDfFm4nryUSlfCAqIRo1h2OBtSjldap4EptP1eqeTtppnKONvlvzK0yNBqingBSbkPMYXUuizsJsSfVt5QmXVdPkXu0l7eyg3JVwD1Q3QdczlQuUF35Zm1n6LfH5KSCTQghhBBCCFPR5zb+wlSWSV+cQghhtuysLWlZzZOW1TwBuJ+aweHIO/wdeYcTMfc4dT2RlPQs/v533uPcHayp6O5ABTd7/NzsqeBuj7ezLR6ONpRzsqGcow3lHGywyhnB1NETavRQTzke3FG3bLt9ERIu/vv3Ety5ApmpEH9WPeWiAhc/7Yq3xydHr1I5mqlUsBWWsUYSFMJc6PudKQvfsdI2sqkQQojil985Xd9bTXNIX5xCCFEmONtZ07FmeTrWLA9AVrbCpfhkTsTc4/zN+1yKT+ZSfDLX7z3k7oMM7j5I5NT1xHzX6WpvjYejDe6O6ko3dwdrXOyscbW3xsXeGhd7P1zt/XGp1h2Xuv/Ot1Fhl3Id1Z3LcDcq95Se/Kjl29UDuTdq7fBYhdsTLeDcKpfY1m9SwVZYxhpJUAhzoe93Jq/y+S1T2hhq/+R8JIQQ5uNp5/SC3mr6+DJCCCHKJEsLFcE+zgT7OGvNf5CeSdTtB1y/95Ab9x5y/d5Drt99yK3kNO6kpHMnJZ27D9JRFEh8mEHiwwy4naLXtm0sLXCxt8LFrjrO9rXUFW+uVriUt8LHOoUKyk18suLwyLiBW+p1nB5ewy45Bsv7N1BlPMin9Rvg7Afu/upWcM6+4FRe/de5/KPnts5GbwVXKirYli5dyqJFi4iNjaV27dosWbKE1q1bmzosNWOMJCiEOdH3O6PrV3dz+p4Zcv/kfFQkJTrXCCHKHlPlS+mzrUD0zRl79uxhypQpnDlzBj8/P6ZPn87YsWONGLEQQjziYGOlGTwhL1nZCvceqCvbElIe/U16mKGeUtUVb0kPMx97nEFSaiZZ2QrpWdncTk7ndnJ6HluwBir9Oz1iQwYVVLepbq2eAi1vUUkVj2/2TbyzbmCX/RDu31BP+bGyV4+SaucCti7qv3aujx5nGL46rMRXsP30009MnjyZpUuX0qpVK7799lu6d+/O2bNnqVy5sqnDE0IIYQYk1wghxL/07LMtK1vJc3S6/F4rzfTNGZGRkfTo0YNXXnmF1atXc+DAAcaNG4eXlxcDBgwwwR4IIcTTWVqo8HCyxcPJlup6LKcoCinpWY8q4R6oK92S/m0Jl5SqrpR79Fg9/36qel5yGkQqvkSm+7IjV92cgjv3qayKp7IqHm/VXbxV9yivuos36r9eqnu4qB5C5kNIfgjJcboDTVMK+c7krcRXsC1evJhRo0YxevRoAJYsWcL27dv5+uuvmT//Kf1NCCGEEAUguUYIUaY8re/OJ1vD5VPekmy+3RPJmRtJWvMrlXPgza41DBl1iaFvzvjmm2+oXLkyS5YsAaBmzZocPXqUjz/+WCrYhBBmR6VS4WRrhZOtFX7Y6718ZlY2yWmZebSO0241d/lhBhH/tprLKZOWmY0DqXioEnHhIc6qBzjzABceaB47qx6iyrwP/GHQfS/RFWzp6emEh4czY8YMrfldunTh4MGDOpdJS0sjLS1N8zwxUd1hX1JSks7yBeYQAG6Zj55be0NSUvHNN5dtlNVtm/v+yXtb8GUcAtTz82KK/XtaTE+Rcz5VFMP/6mMK+uaaEptnCrNMWf1elsRtlNVty/6ZZtvOQZCcAvuXqDuYzuHbEBoOKnh5r2BoPIKXGnpDQ2+elHTvbqFuKy3JeaYw1ydhYWF06dJFa17Xrl1ZtmwZGRkZWFtb51qm2HKNEEKUAhaAuzW4W6vAxQawKfCyqRlZ3E9VV7pp/j7M4H5apuYW1uupGdy+cw/4w7C5RinBrl+/rgDKgQMHtOZ/+OGHSlBQkM5lZs+erQAyySSTTDIV8xQTE2OMVFDs9M01kmdkkkkmmYwzlcQ8U5jrk+rVqysffvih1rwDBw4ogHLjxg2dy0iukUkmmWQyznT58mXDJAhFUUp0C7YcqidGflAUJde8HDNnzmTKlCma59nZ2dy5cwcPD488l8lPUlISlSpVIiYmBheXvDsALA3MaV9A9qekk/0puYq6L4qicP/+ffz8/IohOtMpaK6RPJM/c9ofc9oXkP0p6WR/HikNeUaf65O8yuuan+PJXHPv3j38/f2Jjo7G1dW1sGGXaOb2HdBF9tE8yD6ah8TERCpXrky5cuUMts4SXcHm6emJpaUlcXHandLFx8dTvnx5ncvY2tpia2urNc/Nza3Isbi4uJjNB8uc9gVkf0o62Z+Sqyj7Yk7/3OubayTPFIw57Y857QvI/pR0sj9qJTXPFOb6xMfHR2d5KysrPDw8dC6jK9eA+n0xp8+HLub2HdBF9tE8yD6aBwsLC8Oty2BrKgY2NjY0btyYnTt3as3fuXMnLVu2NFFUQgghzInkGiGEEAVVmJzRokWLXOV37NhBSEiIzv7XhBBClE4lugUbwJQpUxgyZAghISG0aNGC7777jujoaMaOHWvq0IQQQpgJyTVCCCEK6mk5Y+bMmVy/fp0ffvgBgLFjx/Lll18yZcoUXnnlFcLCwli2bBnr1q0z5W4IIYQwsBJfwfbCCy+QkJDABx98QGxsLHXq1GHr1q34+/sbZfu2trbMnj1bZxPt0sac9gVkf0o62Z+Sy5z2xVBMmWvM7XiY0/6Y076A7E9JJ/tTejwtZ8TGxhIdHa0pHxgYyNatW3njjTf46quv8PPz4/PPP2fAgAEF3qY5v585ZB/Ng+yjeZB9LByVopTA8a+FEEIIIYQQQgghhCglSnQfbEIIIYQQQgghhBBClHRSwSaEEEIIIYQQQgghRBFIBZsQQgghhBBCCCGEEEUgFWxCCCGEEEIIIYQQQhSBVLA94cMPP6Rly5Y4ODjg5uZWoGUURWHOnDn4+flhb29Pu3btOHPmTPEGWkB3795lyJAhuLq64urqypAhQ7h3716+ywwfPhyVSqU1NW/e3DgBP2Hp0qUEBgZiZ2dH48aN2bdvX77l9+zZQ+PGjbGzs6NKlSp88803Roq0YPTZn9DQ0FzHQaVSce7cOSNGrNvevXvp3bs3fn5+qFQqfvvtt6cuU5KPjb77U5KPzfz582nSpAnOzs54e3vTt29fzp8//9TlSvLxMTeSZyTPFCdzyTNgXrnGnPIMSK4xBnPLFbqU9vyhi7nlFF3MKc/oYk65Jy/mlpOeZMocJRVsT0hPT+f555/ntddeK/AyCxcuZPHixXz55ZccOXIEHx8fOnfuzP3794sx0oIZNGgQx48fZ9u2bWzbto3jx48zZMiQpy7XrVs3YmNjNdPWrVuNEK22n376icmTJzNr1iwiIiJo3bo13bt31xr2/HGRkZH06NGD1q1bExERwdtvv83rr7/Ohg0bjBy5bvruT47z589rHYvq1asbKeK8paSkUL9+fb788ssClS/px0bf/clREo/Nnj17GD9+PIcOHWLnzp1kZmbSpUsXUlJS8lympB8fcyN5Rk3yjOGZU54B88o15pRnQHKNMZhbrtClNOcPXcwtp+hibnlGF3PKPXkxt5z0JJPmKEXotGLFCsXV1fWp5bKzsxUfHx/lo48+0sxLTU1VXF1dlW+++aYYI3y6s2fPKoBy6NAhzbywsDAFUM6dO5fncsOGDVP69OljhAjz17RpU2Xs2LFa82rUqKHMmDFDZ/np06crNWrU0Jo3ZswYpXnz5sUWoz703Z/du3crgHL37l0jRFd4gLJp06Z8y5T0Y/O4guxPaTk2iqIo8fHxCqDs2bMnzzKl6fiYE8kzfYwQYf4kz5Sec5k55RpzyzOKIrmmOJlDrtCltOcPXcwtp+hiznlGF3PKPXkxx5z0JGPmKGnBVkSRkZHExcXRpUsXzTxbW1vatm3LwYMHTRgZhIWF4erqSrNmzTTzmjdvjqur61NjCw0Nxdvbm6CgIF555RXi4+OLO1wt6enphIeHa72vAF26dMkz9rCwsFzlu3btytGjR8nIyCi2WAuiMPuTo2HDhvj6+tKxY0d2795dnGEWm5J8bIqiNBybxMREAMqVK5dnGXM9PuZC8kzxkDzzSGk4lxVEST4+hVVajo3kGtMryblCl9KcP3Qxt5yii+QZ3UrbcSyK0nocjZmjpIKtiOLi4gAoX7681vzy5ctrXjOVuLg4vL29c8339vbON7bu3buzZs0adu3axSeffMKRI0fo0KEDaWlpxRmultu3b5OVlaXX+xoXF6ezfGZmJrdv3y62WAuiMPvj6+vLd999x4YNG9i4cSPBwcF07NiRvXv3GiNkgyrJx6YwSsuxURSFKVOm8Mwzz1CnTp08y5nb8TE3kmeKh+SZ0nMuK6iSfHz0VZqOjeSakqEk5wpdSnP+0MXccooukmd0K23HsTBK83E0do6yKnSkpcicOXN4//338y1z5MgRQkJCCr0NlUql9VxRlFzzDKWg+6MrroLE9sILL2ge16lTh5CQEPz9/dmyZQv9+/cvZNSFo+/7qqu8rvmmos/+BAcHExwcrHneokULYmJi+Pjjj2nTpk2xxlkcSvqx0UdpOTYTJkzg5MmT7N+//6llzen4mILkGW2SZ0ynLOcZKPnHp6BK07GRXFNw5pYrdClL+UMXc8spupT1PKNLaTyO+ijNx9HYOapMVLBNmDCBF198Md8yAQEBhVq3j48PoK7x9PX11cyPj4/PVQNqKAXdn5MnT3Lz5s1cr926dUuv2Hx9ffH39+fixYt6x1pYnp6eWFpa5vo1JL/31cfHR2d5KysrPDw8ii3WgijM/ujSvHlzVq9ebejwil1JPjaGUtKOzcSJE/n999/Zu3cvFStWzLdsWTg+xU3yjDbJM8ZX1vMMlOzjYwgl8dhIrtGPueUKXcpC/tDF3HKKLpJndCttx9FQSsNxNEWOKhMVbJ6ennh6ehbLugMDA/Hx8WHnzp00bNgQUN+fvmfPHhYsWFAs2yzo/rRo0YLExEQOHz5M06ZNAfj7779JTEykZcuWBd5eQkICMTExWsm6uNnY2NC4cWN27txJv379NPN37txJnz59dC7TokULNm/erDVvx44dhISEYG1tXazxPk1h9keXiIgIox4HQynJx8ZQSsqxURSFiRMnsmnTJkJDQwkMDHzqMmXh+BQ3yTOSZ0z9XSnreQZK9vExhJJ0bCTXFI655QpdykL+0MXccooukmd0K23H0VBK8nE0aY7Sa0iEMuDq1atKRESE8v777ytOTk5KRESEEhERody/f19TJjg4WNm4caPm+UcffaS4uroqGzduVE6dOqW89NJLiq+vr5KUlGSKXdDSrVs3pV69ekpYWJgSFham1K1bV+nVq5dWmcf35/79+8rUqVOVgwcPKpGRkcru3buVFi1aKBUqVDD6/qxfv16xtrZWli1bppw9e1aZPHmy4ujoqERFRSmKoigzZsxQhgwZoil/5coVxcHBQXnjjTeUs2fPKsuWLVOsra2VX3/91ahx50Xf/fn000+VTZs2KRcuXFBOnz6tzJgxQwGUDRs2mGoXNO7fv6/5bgDK4sWLlYiICOXq1auKopS+Y6Pv/pTkY/Paa68prq6uSmhoqBIbG6uZHjx4oClT2o6PuZE8I3mmuJhTnlEU88o15pRnFEVyjTGYW67QpTTnD13MLafoYm55Rhdzyj15Mbec9CRT5iipYHvCsGHDFCDXtHv3bk0ZQFmxYoXmeXZ2tjJ79mzFx8dHsbW1Vdq0aaOcOnXK+MHrkJCQoLz88suKs7Oz4uzsrLz88su5htd9fH8ePHigdOnSRfHy8lKsra2VypUrK8OGDVOio6ONH7yiKF999ZXi7++v2NjYKI0aNdIaWnfYsGFK27ZtNc9XrFihAEpwcLBiY2OjBAQEKF9//bUJos6bPvuzYMECpWrVqoqdnZ3i7u6uPPPMM8qWLVt0rrdt27Zay+oLUGbPnl3g8jlDNT85DRs2TOe+KIqihIaGKg0bNiyRx0bf/dHn2Bibrv148pxV2o6PuZE880CpVq2a4uLiUix5JjIyMtf7lx99zsuKUjK/K/7+/prz1VdffaWUL19eAZTq1avrlWfq1aunDBo0KNfxU5Si55nC0OfcnHPc33rrLb2Oz5o1a5RPP/20eHdEMa88oyiSa4zB3HKFLoa6Tpk+fbqyadOmYomxrOcURXl0/sr57BV0Hw8cOKB06tRJCQgIyHUuM0VOyc/j8RTlOsfS0lJxd3fX6zjq+ozNnj1bAZRbt24Vcc8eOXPmjDJ79mxN5bQ55aQnmTJHSQWbMBs5FWxHjhwxdShGZ+wKthxHjhzR658OIYRQFEVxdHTU+ufdkFJTU5WwsDAlPj6+WNZfEj15MZSYmKiEhYUpiYmJeq1n0aJFCqBERkbmeu3MmTPKmTNnihip/tq2bavUrl37qeUKe9x79uyp+Pv7FzI6IURJIDnFsMw5p+TlyWspY+YUXdsqjgq2X375JVclfY5Lly4px44dM9i2yrIy0QebEMb24MEDHBwcTB2GEEKUGVlZWWRmZmJra0vz5s0Ntt6HDx9iZ2dXLCOBFVeucHFxMeh7AFCrVi2Drs/QDH3cjUX+XxCiZJKc8ojklOJRXJ+xwqhatapJt29OLEwdgBAFsX//fjp27IizszMODg60bNmSLVu26Cx79+5dRowYQbly5XB0dKR3795cuXJFq0xERAS9evXC29sbW1tb/Pz86NmzJ9euXdOUURSFpUuX0qBBA+zt7XF3d+e5557Lta527dpRp04d9u7dS8uWLXFwcGDkyJH07dsXf39/srOzc8XYrFkzGjVqpPe2FEVh4cKF+Pv7Y2dnR6NGjfjf//5X4PcxKSmJV155BQ8PD5ycnOjWrRsXLlzIVe7SpUuMGDGC6tWr4+DgQIUKFejduzenTp3SlAkNDaVJkyYAjBgxApVKhUqlYs6cOQAcPXqUF198kYCAAOzt7QkICOCll17i6tWrBY5XCFG85syZg0qlIiIigv79++Pi4oKrqyuDBw/m1q1bWmWzs7NZuHAhNWrUwNbWFm9vb4YOHap13oSnn19VKhUpKSmsWrVKc95o166dZvm4uDjGjBlDxYoVsbGxITAwkPfff5/MzExNmaioKFQqFQsXLmTu3LkEBgZia2vL7t27Na+tXLlSK66C5JGVK1eiUqnYsWMHI0eOxMvLCwcHB9LS0nS+f6GhoahUKlavXs2UKVPw8fHB3t6etm3bEhERoVV2+PDhODk5cerUKbp06YKzszMdO3YE1B2Rz507V/Peenl5MWLEiFzHICMjg+nTp+Pj44ODgwPPPPMMhw8fzjOu0NBQrfl///03vXv3xsPDAzs7O6pWrcrkyZMB9WfhzTffBNSdpeccm5x1tGvXTnOcMjIy8Pb2ZsiQIbm2fe/ePezt7ZkyZYpmXlJSEtOmTSMwMBAbGxsqVKjA5MmTSUlJ0fm+6nLkyBFat26Ng4MDVapU4aOPPtLKr7qO+61bt3j11VepVKmS5n1t1aoVf/75p2aftmzZwtWrVzX7+/hF7507dxg3bhwVKlTAxsaGKlWqMGvWrFyfh3v37jFq1CjKlSuHk5MTPXv25MqVK1o5Mec9VqlUHDt2jOeeew53d3fNRU1Bc2bOZ3TXrl2afO7i4sLQoUNJSUkhLi6OgQMH4ubmhq+vL9OmTSMjI6PA77MQRSE5RXJKSc8pBb2WMnROKcxnDCAmJuap36Unc02OgIAAhg8fDqg/i88//zwA7du318SWs83hw4fnGsE4NTWVmTNnar3P48eP5969e7m206tXL7Zt20ajRo2wt7enRo0aLF++PI+jYN6kBZso8fbs2UPnzp2pV68ey5Ytw9bWlqVLl9K7d2/WrVvHCy+8oFV+1KhRdO7cmbVr1xITE8M777xDu3btOHnyJG5ubqSkpNC5c2cCAwP56quvKF++PHFxcezevZv79+9r1jNmzBhWrlzJ66+/zoIFC7hz5w4ffPABLVu25MSJE1rDUcfGxjJ48GCmT5/OvHnzsLCw4N69e/Tp04ddu3bRqVMnTdlz585x+PBhPv/8c7239f777/P+++8zatQonnvuOWJiYnjllVfIysoiODg43/dRURT69u3LwYMHee+992jSpAkHDhyge/fuucreuHEDDw8PPvroI7y8vLhz5w6rVq2iWbNmREREEBwcTKNGjVixYgUjRozgnXfeoWfPngCaIZCjoqIIDg7mxRdfpFy5csTGxvL111/TpEkTzp49W2yjaAkh9NevXz8GDhzI2LFjOXPmDO+++y5nz57l77//1oyc9Nprr/Hdd98xYcIEevXqRVRUFO+++y6hoaEcO3YMT0/PAp1fw8LC6NChA+3bt+fdd98F1L+Og/pCqGnTplhYWPDee+9RtWpVwsLCmDt3LlFRUaxYsUIr7s8//5ygoCA+/vhjXFxcqF69us790zePjBw5kp49e/Ljjz+SkpLy1NGj3n77bRo1asT3339PYmIic+bMoV27dkRERFClShVNufT0dJ599lnGjBnDjBkzyMzMJDs7mz59+rBv3z6mT59Oy5YtuXr1KrNnz6Zdu3YcPXoUe3t7AF555RV++OEHpk2bRufOnTl9+jT9+/fXyl152b59O71796ZmzZosXryYypUrExUVxY4dOwAYPXo0d+7c4YsvvmDjxo2akcF0tTKwtrZm8ODBfPPNN3z11Vea4wewbt06UlNTGTFiBKBuUdG2bVuuXbvG22+/Tb169Thz5gzvvfcep06d4s8//3xqS464uDhefvllpk6dyuzZs9m0aRMzZ87Ez8+PoUOH5rnckCFDOHbsGB9++CFBQUHcu3ePY8eOkZCQAMDSpUt59dVXuXz5Mps2bdJaNjU1lfbt23P58mXef/996tWrx759+5g/fz7Hjx/XXEhnZ2fTu3dvjh49ypw5c2jUqBFhYWF069Ytz7j69+/Piy++yNixYzUXhPrmzNGjR9O/f3/Wr19PREQEb7/9NpmZmZw/f57+/fvz6quv8ueff7JgwQL8/Py0Lk6FKG6SUySnlNScUpRrqaLklBwF/YzlKMh3qSB69uzJvHnzePvtt/nqq680DT3yarmWc934119/MXPmTFq3bs3JkyeZPXs2YWFhhIWFYWtrqyl/4sQJpk6dyowZMyhfvjzff/89o0aNolq1arRp06bAcZoFU96fKkRBNG/eXPH29tYaNSkzM1OpU6eOUrFiRSU7O1tRlEd9sPXr109r+QMHDiiAMnfuXEVRFOXo0aMKoPz22295bjMsLEwBlE8++URrfkxMjGJvb69Mnz5dM69t27YKoPz1119aZTMyMpTy5csrgwYN0po/ffp0xcbGRrl9+7Ze27p7965iZ2eX5/49rQ+2//3vfwqgfPbZZ1rzP/zww6f2wZaZmamkp6cr1atXV9544w3NfH36YMvMzFSSk5MVR0fHXDEIIUwjp4+Px7/XiqLu+B1QVq9erSiKovzzzz8KoIwbN06r3N9//60Ayttvv60oSsHOr4qSd385Y8aMUZycnDSjWOX4+OOPFUDTX0tOh8BVq1ZV0tPTtcrq6ixY3zwydOjQfOPPkdNJcKNGjTTrUBRFiYqKUqytrZXRo0dr5uV0WL58+XKtdaxbt07nSFw559elS5cqivLoGOR1rPLrkFpRFKVq1apK1apVlYcPH+a5P/n1l/Nk/zQnT55UAOW7777TKte0aVOlcePGmufz589XLCwscvWP+uuvvyqAsnXr1jzjydkuoPz9999a82vVqqV07dpV81zXcXdyclImT56c7/rz6i/nm2++UQDl559/1pq/YMECBVB27NihKIqibNmyRQFydYQ8f/78XLk15/v23nvv5RuTouSdM3M+oxMnTtQq37dvXwXUI8E9rkGDBkqjRo2euj0hDEFyiuSUx5W0nKLPtZShc4q+n7GCfpcUJe++tJ/sSy+/PtiGDRumFfe2bdsUQFm4cKFWuZ9++inXcfL391fs7Oy0vmcPHz5UypUrp4wZMybXtsyd3CIqSrSUlBT+/vtvnnvuOZycnDTzLS0tGTJkCNeuXeP8+fNay7z88staz1u2bIm/vz+7d+8GoFq1ari7u/PWW2/xzTffcPbs2Vzb/eOPP1CpVAwePJjMzEzN5OPjQ/369XM1kXZ3d6dDhw5a86ysrBg8eDAbN24kMTERUN9r/+OPP9KnTx88PDz02lZYWBipqal57t/T5Oz/k8sPGjQoV9nMzEzmzZtHrVq1sLGxwcrKChsbGy5evMg///zz1G0BJCcn89Zbb1GtWjWsrKywsrLCycmJlJSUAq9DCGEcT54XBg4ciJWVlea8kfM351aDHE2bNqVmzZr89ddfQMHOr/n5448/aN++PX5+flrnw5yWtnv27NEq/+yzzz71F9zC5JEBAwboFfegQYO0fjH39/enZcuWmvctv3X/8ccfuLm50bt3b619btCgAT4+PpockNc5POdY5efChQtcvnyZUaNGYWdnp9e+5aVu3bo0btxYqwXIP//8w+HDhxk5cqTW/tWpU4cGDRpo7V/Xrl113nKki4+PD02bNtWaV69evad2OdC0aVNWrlzJ3LlzOXTokF63Su7atQtHR0eee+45rfk534Gcz3zOZ3LgwIFa5V566aU8163r86VvzuzVq5fW85o1awJoWpM/Pl+6ZhDGJjlFcoq+jJFTinotVZSckqMgn7HHPe27VFx27doF5P6OPv/88zg6Omq+ozkaNGhA5cqVNc/t7OwICgoqk/lHKthEiXb37l0URdE0K36cn58fgKZZbg4fH59cZX18fDTlXF1d2bNnDw0aNODtt9+mdu3a+Pn5MXv2bM2J8ubNmyiKQvny5bG2ttaaDh06xO3bt7XWrys+UDcJT01NZf369YC6OXVsbKymmbM+28qJP6/9e5qEhASsrKw0FXv5LTtlyhTeffdd+vbty+bNm/n77785cuQI9evX5+HDh0/dFqj/Ofjyyy8ZPXo027dv5/Dhwxw5cgQvL68Cr0MIYRxPngdyzhU5552cv3mdi/U5v+bn5s2bbN68Ode5sHbt2gAFPvc+rjB5pCDrfdzT8k4OBwcHrVtfQL3P9+7dw8bGJtd+x8XFPTUH6DqvPymnv5acW/gNZeTIkYSFhXHu3DkAVqxYga2trVbl0s2bNzl58mSufXN2dkZRlFzHVBdd+2dra/vUXPLTTz8xbNgwvv/+e1q0aEG5cuUYOnQocXFxT91mQkICPj4+uW418vb2xsrKSuu7YWVlRbly5bTKPd6NxJN0fb70zZlPbs/GxibP+ampqfnsqRCGJzlFckphFHdOKeq1VFFySo6ifhae/C4Vl5zc5uXlpTVfpVLp/CwWNk+bI+mDTZRo7u7uWFhYEBsbm+u1GzduAOTql0TXSS4uLo5q1appntetW5f169ejKAonT55k5cqVfPDBB9jb2zNjxgw8PT1RqVTs27dP6/7yHE/Oy+te/1q1atG0aVNWrFjBmDFjWLFiBX5+fnTp0kVTpqDbyjlx5bV/T3ZM+SQPDw8yMzNJSEjQOgnqWt/q1asZOnQo8+bN05p/+/Zt3Nzc8t0OQGJiIn/88QezZ89mxowZmvlpaWncuXPnqcsLIYwrLi6OChUqaJ4/ea7I+RsbG5vrH+obN25onYefdn7Nj6enJ/Xq1ePDDz/U+XrOxUuOgozCVpg8ou/obnmdl5/8h1PXej09PfHw8GDbtm061+3s7Axo5wBdxyo/Of8gP9l5eFG99NJLTJkyhZUrV/Lhhx/y448/0rdvX9zd3TVlPD09sbe3z7Oz4+Lsj9PT05MlS5awZMkSoqOj+f3335kxYwbx8fF5vt85PDw8+Pvvv1EUReu4xcfHk5mZqYk7J7feuXNHq3IrvwuuJz8HkjOFuZGcIjmlMIo7pxT1WqooOSVHYT4L+X2XQH2tqGvgjKJUwuXktlu3bmlVsimKQlxcnGagO5GbtGATJZqjoyPNmjVj48aNWjXg2dnZrF69mooVKxIUFKS1zJo1a7SeHzx4kKtXr2qNKJRDpVJRv359Pv30U9zc3Dh27BigvvVCURSuX79OSEhIrqlu3boF3ocRI0bw999/s3//fjZv3sywYcOwtLTUvF7QbTVv3hw7O7s89+9p2rdvr/P9Wbt2rc735cnKvi1btnD9+nWteTllnvx1QqVSoShKrnV8//33ZGVlPTVWIYRxPXle+Pnnn8nMzNScN3NugV+9erVWuSNHjvDPP/9oRi57XF7nV8j7V81evXpx+vRpqlatqvN8+OTFUEEUJo/oa926dSiKonl+9epVDh48qDPvPKlXr14kJCSQlZWlc59zOl3OWVdexyo/QUFBVK1aleXLl+c5eh3kfU7Pi7u7O3379uWHH37gjz/+IC4uTutWnpz9u3z5Mh4eHjr372kXNIZSuXJlJkyYQOfOnQv0WezYsSPJycn89ttvWvN/+OEHzesAbdu2BdQtGx6X03K9ICRnCnMjOUVyCpS8nFLUa6nH6ZtTCutp3yVQj+J58uRJrXK7du0iOTlZa54+xyPnO/jkd3TDhg2kpKTo/I4KNWnBJkq8+fPn07lzZ9q3b8+0adOwsbFh6dKlnD59mnXr1uX6JeDo0aOMHj2a559/npiYGGbNmkWFChUYN24coL53f+nSpfTt25cqVaqgKAobN27k3r17dO7cGYBWrVrx6quvMmLECI4ePUqbNm1wdHQkNjaW/fv3U7duXV577bUCxZ/za8xLL71EWlparnvZC7otd3d3pk2bxty5c7X2b86cOQVq1tylSxfatGnD9OnTSUlJISQkhAMHDvDjjz/mKturVy9WrlxJjRo1qFevHuHh4SxatCjXr4xVq1bF3t6eNWvWULNmTZycnPDz88PPz482bdqwaNEiPD09CQgIYM+ePSxbtqxALeCEEMa1ceNGrKys6Ny5s2aUqvr162v6lQoODubVV1/liy++wMLCgu7du2tGfKtUqRJvvPEGULDzK6hbJISGhrJ582Z8fX1xdnYmODiYDz74gJ07d9KyZUtef/11goODSU1NJSoqiq1bt/LNN98U6pYUffOIvuLj4+nXrx+vvPIKiYmJzJ49Gzs7O2bOnPnUZV988UXWrFlDjx49mDRpEk2bNsXa2ppr166xe/du+vTpQ79+/ahZsyaDBw9myZIlWFtb06lTJ06fPq0ZiexpvvrqK3r37k3z5s154403qFy5MtHR0Wzfvl3zD3zODzqfffYZw4YNw9ramuDgYE2LB11GjhzJTz/9xIQJE6hYsaLWqNkAkydPZsOGDbRp04Y33niDevXqkZ2dTXR0NDt27GDq1Kk0a9bsqfHrKzExkfbt2zNo0CBq1KiBs7MzR44cYdu2bfTv319Trm7dumzcuJGvv/6axo0bY2FhQUhICEOHDuWrr75i2LBhREVFUbduXfbv38+8efPo0aOHZj+7detGq1atmDp1KklJSTRu3JiwsDBNRZyFxdN/y3ZxcZGcKcyK5BTJKVDyckpRrqWKmlMK62nfJVCPbvruu+/y3nvv0bZtW86ePcuXX36Jq6ur1rrq1KkDwHfffYezszN2dnYEBgbqvL2zc+fOdO3albfeeoukpCRatWqlGUW0YcOGDBkypND7ZPaMOqSCEIW0b98+pUOHDoqjo6Nib2+vNG/eXNm8ebNWmZyRenbs2KEMGTJEcXNzU+zt7ZUePXooFy9e1JQ7d+6c8tJLLylVq1ZV7O3tFVdXV6Vp06bKypUrc213+fLlSrNmzTTbrVq1qjJ06FDl6NGjmjJt27ZVateunW/8gwYNUgClVatWeZYpyLays7OV+fPnK5UqVVJsbGyUevXqKZs3b841Ek9e7t27p4wcOVJxc3NTHBwclM6dOyvnzp3LNfrM3bt3lVGjRine3t6Kg4OD8swzzyj79u3TuZ1169YpNWrUUKytrbXWc+3aNWXAgAGKu7u74uzsrHTr1k05ffp0rhFthBCmkzNKVXh4uNK7d2/FyclJcXZ2Vl566SXl5s2bWmWzsrKUBQsWKEFBQYq1tbXi6empDB48WImJidGUKej59fjx40qrVq0UBweHXCN33bp1S3n99deVwMBAxdraWilXrpzSuHFjZdasWUpycrKiKI9G3Fq0aFGufdI1Gpei6JdHnhydLC85I6v9+OOPyuuvv654eXkptra2SuvWrbXO3YqiHqHL0dFR53oyMjKUjz/+WKlfv75iZ2enODk5KTVq1FDGjBmjlb/S0tKUqVOnKt7e3oqdnZ3SvHlzJSwsLNd5VdeIb4qiHrW6e/fuiqurq2Jra6tUrVo11whlM2fOVPz8/BQLCwutdeSVZ7KyspRKlSopgDJr1iyd+5ecnKy88847SnBwsGJjY6O4uroqdevWVd544w0lLi4uj3dX0WxXV459csSzJ497amqqMnbsWKVevXqKi4uLYm9vrwQHByuzZ89WUlJSNMvduXNHee655xQ3NzdFpVIpj/9rnJCQoIwdO1bx9fVVrKysFH9/f2XmzJlKamqqVix37txRRowYoZVbDx06lGvk7pzv261bt3LtT0FzZl6f0bzWnd/nTghDk5wiOaWk55SCXksZOqfo+xnT57uUlpamTJ8+XalUqZJib2+vtG3bVjl+/LjOa64lS5YogYGBiqWlpdY2n8ypiqIeCfStt95S/P39FWtra8XX11d57bXXlLt372qV8/f3V3r27Jlrvwp6fWpuVIryWPtTIYQQQpQZc+bM4f333+fWrVvF2heWuQoNDaV9+/b88ssvuUabFGXb2rVrefnllzlw4AAtW7Y0dThCGIXklKKRnCJE6Se3iAohhBBCCFFI69at4/r169StWxcLCwsOHTrEokWLaNOmjVSuCSGEEGWIVLAJIYQQQghRSM7Ozqxfv565c+eSkpKCr68vw4cPZ+7cuaYOTQghhBBGJLeICiGEEEIIIYQQQghRBE8f2kgIIYQQQgghhBBCCJEnqWATQgghhBBCCCGEEKIIpIJNCCGEEEIIIYQQQogiMPtBDrKzs7lx4wbOzs6oVCpThyOEEKWeoijcv38fPz8/LCzkdxrJM0IIYViSZ3KTXCOEEIZVHLnG7CvYbty4QaVKlUwdhhBCmJ2YmBgqVqxo6jBMTvKMEEIUD8kzj0iuEUKI4mHIXGP2FWzOzs6A+k1zcXExcTRCCFH6JSUlUalSJc35tayTPCOEEIYleSY3yTVCCGFYxZFrzL6CLacJtYuLiyQjIYQwILlFRU3yjBBCFA/JM49IrhFCiOJhyFwjnRoIIYQQQgghhBBCCFEEUsEmhBBCCCGEEEIIIUQRSAWbEEIIIYQQQgghhBBFYPZ9sAkhDCcrK4uMjAxThyGKmbW1NZaWlqYOQwhRBmVnZ5Oenm7qMIQR2NjYYGEhv/ULIYxPrmnKBlNc00gFmxDiqRRFIS4ujnv37pk6FGEkbm5u+Pj4SAfTQgijSU9PJzIykuzsbFOHIozAwsKCwMBAbGxsTB2KEKKMkGuassfY1zRSwSaEeKqcROTt7Y2Dg4NUupgxRVF48OAB8fHxAPj6+po4IiFEWaAoCrGxsVhaWlKpUiVp2WTmsrOzuXHjBrGxsVSuXFn+rxAiDylpmSQkp+Nga4mHo418V4pIrmnKDlNd00gFmxAiX1lZWZpE5OHhYepwhBHY29sDEB8fj7e3t9wuKoQodpmZmTx48AA/Pz8cHBxMHY4wAi8vL27cuEFmZibW1tamDkcIk4u584CDl29z4FICJ67d49b9NB6kZ2let7O2wM/NnqpeTjxb34/OtcpjZy3/oxWUXNOUPaa4ppEKNmEesrPAQscXJq/5osBy+ieQC56yJed4Z2RkSAWbEIWUla1gaZH71/G85pdlWVnqi0i5XbDsyDnWWVlZUsEmyqzktEw2HbvG6kPRnL95X2cZWysL0jKzSc3I5sqtFK7cSmHn2Zu42lvTp4Efr7SuQqVy8n/608g1Tdlk7GsaqWAT5sHCEjaMhtsXHs3zDIIB35suJjMjTajLFjneQhSdpYWKSesjuBSfrJlXzduJz15saMKoSjY595QdcqxFWXYzKZWluy+x4dh1ktMyAXXOaFDJjVZVPWhWxYMKbvZ4OtviaGNJelY2cYmpXL/7kLArCfwafo3YxFR+CLvKr+HXmNWzJoOayu3WBSHvUdli7OMtFWzCfNy+ALEnTB2FEEIIoXEpPpkzN5JMHYYQQogSID0zm+UHIvnir4uk/Hv7ZxUvR4Y296dfo4q42utuzWlrZYm/hyP+Ho60rObJ5E5BHLh0my93XeJw1B1mbTrN9jM3WTigHj6udsbcJSHEY6SCTQghhBBCCCGEKEZhlxOYtekUV26nANCoshtTOgfTqpqH3q1sLC1UtAny4plqniw/EMnC7efZe+EW3T/by5rRzanl51IcuyCEeAoZokkIUWhZ2Uqp2F5cXByTJk2iWrVq2NnZUb58eZ555hm++eYbHjx4YOAohRClQV7nE2Of10T+JM8IIUo7RVH4v71XePn7Q1y5nYKnky2fPF+fX8e25JnqnkW6hc3CQsXo1lXY+voz1PJ14e6DDAZ9f4iz0nLa7EieKR2kBZsQotB09S9UXArbb9GVK1do1aoVbm5uzJs3j7p165KZmcmFCxdYvnw5fn5+PPvss3qvNyMjo9R1yhwQEMDKlStp166dqUMRwuSkf7TSQfKM5BkhSrPUjCxmbDjJb8dvAPBc44q817sWLnaG/W5X83Zm3avNGbr8MCdi7jHo+0OslZZsZkPyzCMlPc9ICzYhRJHk9C9U3FNhL67GjRuHlZUVR48eZeDAgdSsWZO6desyYMAAtmzZQu/evQFITEzk1VdfxdvbGxcXFzp06MCJE4/69JszZw4NGjRg+fLlVKlSBVtbWxRFQaVS8e2339KrVy8cHByoWbMmYWFhXLp0iXbt2uHo6EiLFi24fPmyZl2XL1+mT58+lC9fHicnJ5o0acKff/6pFXdAQADz5s1j5MiRODs7U7lyZb777jvN6x06dGDChAlayyQkJGBra8uuXbsK9V4JUdY8ef4yRiWO0J/kGckzQpRGCclpPPfNQX47fgNLCxXvP1ubRc/VM3jlWg5Xe2t+HNWU+pXcuPdvS7bzcbpHJhWli+SZ0kMq2MxNdpZ+84UwYwkJCezYsYPx48fj6Oios4xKpUJRFHr27ElcXBxbt24lPDycRo0a0bFjR+7cuaMpe+nSJX7++Wc2bNjA8ePHNfP/85//MHToUI4fP06NGjUYNGgQY8aMYebMmRw9ehRAK3kkJyfTo0cP/vzzTyIiIujatSu9e/cmOjpaK7ZPPvmEkJAQIiIiGDduHK+99hrnzp0DYPTo0axdu5a0tDRN+TVr1uDn50f79u2L/N4JIQpObistuyTPCCF0SUrNYNiKw5y+nkQ5RxtWj2rGsJYBxT6ioYudupKtwb+VbGNXh5OUmlGs2yzNFEXhQXqm0SdFKfj/DZJnShe5RdTcWFjChtHqETVzeAbBgO9NF5MQJnLp0iUURSE4OFhrvqenJ6mpqQCMHz+erl27curUKeLj47G1tQXg448/5rfffuPXX3/l1VdfBSA9PZ0ff/wRLy8vrfWNGDGCgQMHAvDWW2/RokUL3n33Xbp27QrApEmTGDFihKZ8/fr1qV+/vub53Llz2bRpE7///rtW4urRowfjxo3TrPfTTz8lNDSUGjVqMGDAACZOnMh///tfzbZXrFjB8OHDZfhxIYpJVraCpUXu75eu2xjbBXvxZtcaxgxPmIDkGSHEk1Izshi96iinryfh4WjDz2NbUNXLyWjbd7GzZsXwJvT8fB+Rt1OY/stJvh7cSL63OjzMyKLWe9uNvt2zH3TFwaZgVTGSZ0oXacFmjm5fgNgTj6bHK9uEKIOePEEfPnyY48ePU7t2bdLS0ggPDyc5ORkPDw+cnJw0U2RkpFZTaH9//1zJCKBevXqax+XLlwegbt26WvNSU1NJSlJ3OJuSksL06dOpVasWbm5uODk5ce7cuVy/+Dy+XpVKhY+PD/Hx8QDY2toyePBgli9fDsDx48c5ceIEw4cP1ywzduxYrf2Jjo6me/fuueYJYdbyadnt5WSr16pyKtJ6fr5PMy3arv4V9snbGGPuSIfDZYnkGckzQgBkZGUzbs0xDkfewdnWilUjmxq1ci2Hu6MNSwc3xtpSxbYzcSzbH2n0GIRhSZ4pHXnGpC3Y5s+fz8aNGzl37hz29va0bNmSBQsWaNXODh8+nFWrVmkt16xZMw4dOmTscIUQpUy1atVQqVSaZsg5qlSpAoC9vT0A2dnZ+Pr6Ehoammsdbm5umsd5Nct+vHPQnOSna152djYAb775Jtu3b+fjjz+mWrVq2Nvb89xzz5Genp7nenPWk7MOUDerbtCgAdeuXWP58uV07NgRf39/zesffPAB06ZN0zxv164dCxYsoFmzZpp5fn5+OvdJCLORT8tuF3v9/w3KqUjLUdVL93lBlA2SZyTPCPG49/57hl3n4rG1smDZ8CbUqeBqslgaVHLj3V61eO+/Z5j/v3PUr+RGk4ByJounJLK3tuTsB11Nst2CkjxTuvKMSSvY9uzZw/jx42nSpAmZmZnMmjWLLl26cPbsWa0D361bN1asWKF5bmNjY4pwhRCljIeHB507d+bLL79k4sSJeSaURo0aERcXh5WVFQEBAcUe1759+xg+fDj9+vUD1H0YREVF6b2eunXrEhISwv/93/+xdu1avvjiC63Xvb298fb21jy3srKiQoUKVKtWrUjxC1Hq5LTsFsLAJM9InhEixx8nb7DucDQqFXw9uBFNA01fmTWkuT9Hou6y+cQNXl8Xwc4pbXGylV6icqhUqgLfqmkqkmdKV54x6S2i27ZtY/jw4dSuXZv69euzYsUKoqOjCQ8P1ypna2uLj4+PZipXzvQnKyFE6bB06VIyMzMJCQnhp59+4p9//uH8+fOsXr2ac+fOYWlpSadOnWjRogV9+/Zl+/btREVFcfDgQd555x1Np56GVK1aNTZu3KhpBj1o0CCtX3L0MXr0aD766COysrI0CU4IIYTxSJ4RQsTcecDMjacAGNeuKh1qlDdxRGoqlYqP+telcjkHYhNTWbTt3NMXEiWO5JnSo0RV1yYmJgLkqkALDQ3F29sbNzc32rZty4cffqhVi/m4tLQ0rVEocu4RFkIUj2rexulXorDbqVq1KhEREcybN4+ZM2dy7do1bG1tqVWrFtOmTWPcuHGoVCq2bt3KrFmzGDlyJLdu3cLHx4c2bdpo+iAwpE8//ZSRI0fSsmVLPD09eeuttwp9rnrppZeYPHkygwYNws7OzsCRCiGE6Ume0Z/kGSGMJzMrm8k/Hed+aiYNK7sxuVOQqUPS4mhrxbx+dRm87G9+OHSVZxtUoLG/u6nDEnqQPFN6qBR9xogtRoqi0KdPH+7evcu+ffs083/66SecnJzw9/cnMjKSd999l8zMTMLDwzWjYzxuzpw5vP/++7nmJyYm4uLiUqz7UGJ820b7Vhjf+jBmr+niMaTsLHV/Oro8ud/VO8NLP+VdPr91CY3U1FQiIyMJDAzMdcLLa0S94mLs7ZUGMTExBAQEcOTIERo1amSw9eZ33JOSknB1dS1b59V8yPtRCuSRF19fd4zfT8RqZtf2c2HL663zXVXPz/dp9cH2bH1fPn+pUYHntwvyYtnwJjrPZWX5HJfXOUfyjOlJnikZ5D0puRbvOM/nuy7hbGvF1kmtqVTOwdQh6TTtlxP8Gn6N6t5ObHm9NTZWZWu8w/zOOcK0iivPgPFzTYlpwTZhwgROnjzJ/v37tea/8MILmsd16tQhJCQEf39/tmzZQv/+/XOtZ+bMmUyZMkXzPCkpiUqVKhVf4MK4dHVWXa0TdHwvd1k7N93lQdPBtSgaY1+EyEXPIxkZGcTGxjJjxgyaN29u8GQkhCgeLvZWmtFIL8Una+ZX83bisxcbmjCykknyjOlInsnf0qVLWbRoEbGxsdSuXZslS5bQunXeFfRr1qxh4cKFXLx4EVdXV7p168bHH3+Mh4eHEaMWhnbmRiJf7r4EwNx+dUps5RrArB412X0unovxyXwdeplJnaqbOiRRxpljnikR1dYTJ07k999/Z/fu3VSsWDHfsr6+vvj7+3Px4kWdr9va2uLi4qI1CTOT01l1znTvKcPyPlk+9kTuCjchSpkDBw7g7+9PeHg433zzjanDMYn58+fTpEkTnJ2d8fb2pm/fvpw/f16rjKIozJkzBz8/P+zt7WnXrh1nzpzRKpOWlsbEiRPx9PTE0dGRZ599lmvXrhlzV0QZlDMaac70eGWbECWB5Jm8/fTTT0yePJlZs2YRERFB69at6d69O9HRuv8n3b9/P0OHDmXUqFGcOXOGX375hSNHjjB69GgjRy4MSVEU5vx+hmwFetb1pU+DCuoXsjIh6gDseAe+aw/ftYPl3eCHPvDrKAhfCXevGj1ed0cbZj9bG4Cvdl/i8i3JO8K0zDHPmLQFm6IoTJw4kU2bNhEaGkpgYOBTl0lISCAmJgZfX18jRCiEECVTu3btKCF3+JtMQUaiXrhwIYsXL2blypUEBQUxd+5cOnfuzPnz53F2dgZg8uTJbN68mfXr1+Ph4cHUqVPp1asX4eHhWFrKbeRCiLJJ8kzeFi9ezKhRozQVZEuWLGH79u18/fXXzJ8/P1f5Q4cOERAQwOuvvw5AYGAgY8aMYeHChUaNWxjW7yducCTqLvbWlszqWRNSE+GvD+D0Bnh4N+8FT/+q/luuCtTqA01Gg2v+jUwMpXc9XzYeu0bo+VvM2/IPy4Y3Mcp2hdDFHPOMSVuwjR8/ntWrV7N27VqcnZ2Ji4sjLi6Ohw8fAuqhXqdNm0ZYWBhRUVGEhobSu3dvPD09S/3oEkIIIYrmaSNRK4rCkiVLmDVrFv3796dOnTqsWrWKBw8esHbtWkDdP+eyZcv45JNP6NSpEw0bNmT16tWcOnWKP//805S7J4QQogRKT08nPDycLl26aM3v0qULBw8e1LlMy5YtuXbtGlu3bkVRFG7evMmvv/5Kz54989xOWloaSUlJWpMoOVLSMpm39R8Axrevil/icfj6GTjyvbpyzd4d6r0A/b+HQT/DwB+g//9Bu5lQqTmoLOHOFdj/KSypBz8PhasHoZgrG1QqFe/2qoWVhYq/zsWz/+LtYt2eEGWNSSvYvv76axITE2nXrh2+vr6a6aeffgLA0tKSU6dO0adPH4KCghg2bBhBQUGEhYVpWh4IIYQQkHsk6sjISOLi4rQugmxtbWnbtq3mIig8PJyMjAytMn5+ftSpUyfPCyW56DEfFd3tqe3noplC/N3JyjavX1KFEIZ1+/ZtsrKyco3KV758eeLi4nQu07JlS9asWcMLL7yAjY0NPj4+uLm58cUXX+S5nfnz5+Pq6qqZpE/pkuWLXZe4mZRGoLsNY7PXw8oekBgNbv4weANMuwT9v4N6z0NQV3VLtXoDod0MGLUd3oqE51dCYBtQsuDsf2FFd1jVG66HF2vsVb2cGNzcH4C5W85K3hPCgEx+i2h+7O3t2b59u5GiEUIIUVopisKUKVN45plnqFOnDoDmQkfXRdDVq1c1ZWxsbHB3d89VJq8Lpfnz5+scrVqUIk7ekJ3F9G41md7tideys5jz+z8cidK+vaddsBdvdq1RbCF5OdnmO4KljG4pRMmiUml/HxVFyTUvx9mzZ3n99dd577336Nq1K7Gxsbz55puMHTuWZcuW6VxGBm4ruSJvp7Bs/xUsyeJn96VY7d+lfqH+IOi+AOwK0Ae4nSvU7qeebp6Fw9/C8XUQtQ/+rwPU6qsexM2jarHsw+RO1dkUcZ1zcff5+WgMLzWtXCzbEaKsKTGjiAohhBCFlddI1KDfRVBByshFjxnIa5Tpf0eYvpOSzpkb2i0Tq3o5av3NUdHd3iAh5TW6KMgIo0KUJJ6enlhaWub6ESY+Pj7XDzo55s+fT6tWrXjzzTcBqFevHo6OjrRu3Zq5c+fq7Fva1tYWW1tbw++AKLKPd5wnIyub5Z7r8bqxC6zsoM9XUPe5wq2wfC3o/Rm0nga758GJdXD2Nzi/FdpMh1aTwMrGoPvg5mDDpI7V+eCPs3yy4zy96vnibGdt0G0IURZJBZsQQohSLWck6r1792qNRO3j4wOoW6k9fvHy+EWQj48P6enp3L17V6sVW3x8PC1bttS5PbnoMSM5o0wXgLuDNWRn8flLOoaQz87Cy8kwn4mc0UWFECWTjY0NjRs3ZufOnVp9Qu/cuZM+ffroXObBgwdYWWlfduUMomNuHXybu/Nx99l6KpZxlr/TIXkLoIIB30PN3kVfuVsl6Pc1tBgPO9+Fy7tg91w4swn6fAEVGhd9G48Z3NyfHw9dJfJ2Cl+HXmZ6t+JrpS1EWWHSPtiEEEKIwlIUhQkTJrBx40Z27dqVayTqwMBAfHx82Llzp2Zeeno6e/bs0VSeNW7cGGtra60ysbGxnD59Os8KNmH+nuybrbafC1W8nB61evu2zaNpw2iwsMTFXn6zFKKsmDJlCt9//z3Lly/nn3/+4Y033iA6OpqxY8cC6pbOQ4cO1ZTv3bs3Gzdu5Ouvv+bKlSscOHCA119/naZNm+Ln52eq3RCF8NlfF3hWtZ/p1uo+w+n2kWEq1x7nUwcGb1QPkODgAfFn4PtO6hFKszINthkbKwtmdldXqi0/EEn8/VSDrVuIskr+GxRCCFEqjR8/nrVr1/Lf//5XMxI1gKurK/b29qhUKiZPnsy8efOoXr061atXZ968eTg4ODBo0CBN2VGjRjF16lQ8PDwoV64c06ZNo27dunTq1MmUuydMIb++2XLo0epNCGGeXnjhBRISEvjggw+IjY2lTp06bN26FX9/dcfxsbGxREdHa8oPHz6c+/fv8+WXXzJ16lTc3Nzo0KEDCxYsMNUuiEL4JzaJ66f384vNt+oZLSZA87HFszGVSj1AQtUOsG0GnPoZ9n0CMYdhwDJw1n07sr461ypPg0puHI+5x9Ldl5nzbG2DrFeIskpasAkhCi87q1RsLy4ujkmTJlGtWjXs7OwoX748zzzzDN988w0PHjwwcJDCWJ42EjXA9OnTmTx5MuPGjSMkJITr16+zY8cOrZGoP/30U/r27cvAgQNp1aoVDg4ObN68WXP7jihDHu+b7fFWat+2UbccEMYneUaUUOPGjSMqKoq0tDTCw8Np06aN5rWVK1cSGhqqVX7ixImcOXOGBw8ecOPGDVavXk2FChWMHLUoiq92nOFj62+xUWWpW611/k/xb9TRAwb8Hzy3Amyc1IMgfNsaonL3OVsYKpWKN7sGA7D272iu33tokPUKw5M8UzpICzYhROHp6iS8uPzb+bi+rly5QqtWrXBzc2PevHnUrVuXzMxMLly4wPLly/Hz8+PZZ5/Ve70ZGRlYW0tnsKZUkH5rVCoVc+bMYc6cOXmWsbOz44svvuCLL74wYHSiVNPVSs0zyDSxlHWSZ/ReTghheGduJFLz4lKqW10n094Lq96fg4UR26rU6Q8+deGnIXDrH1j1LPRaDI2HF3nVLat60LxKOQ5ducMXf13kowH1ih6vMCjJM6WHtGATQhRNzoVocU+FvLgaN24cVlZWHD16lIEDB1KzZk3q1q3LgAED2LJlC717q/vNSExM5NVXX8Xb2xsXFxc6dOjAiROPLrDnzJlDgwYNWL58OVWqVMHW1lYz0uS3335Lr169cHBwoGbNmoSFhXHp0iXatWuHo6MjLVq04PLly5p1Xb58mT59+lC+fHmcnJxo0qQJf/75p1bcAQEBzJs3j5EjR+Ls7EzlypX57rvvNK936NCBCRMmaC2TkJCAra0tu3btKtR7JYQwvKpejlp9uRlq1NEyRfKM5BkhTOy3rVsYY/kHAFbPfgoO5YwfhGd1eOUvqPcCKFmweRLsWQRFHCjj8VZsv4RfI+p2iiGiFQYkeab0kAo2IYTZSkhIYMeOHYwfPx5HR0edZVQqFYqi0LNnT+Li4ti6dSvh4eE0atSIjh07cufOHU3ZS5cu8fPPP7NhwwaOHz+umf+f//yHoUOHcvz4cWrUqMGgQYMYM2YMM2fO5OjRowBaySM5OZkePXrw559/EhERQdeuXendu7dWfy0An3zyCSEhIURERDBu3Dhee+01zp07B8Do0aNZu3YtaWlpmvJr1qzBz8+P9u3bF/m9E0IUzeOjjm55vbVmmt6tpkFHHRWmJXlGCPN3KfYOA6LnYaXK5n61Zw0/qIE+bByh37fQepr6+e65sPXNIt9O39i/HO2DvcjKVljypxFaDJcUigLpKcaf9KgUlTxTusgtokIIs3Xp0iUURSE4OFhrvqenJ6mp6pGSxo8fT9euXTl16hTx8fHY2qovej/++GN+++03fv31V1599VVAPQLljz/+iJeXl9b6RowYwcCBAwF46623aNGiBe+++y5du3YFYNKkSYwYMUJTvn79+tSvX1/zfO7cuWzatInff/9dK3H16NGDcePGadb76aefEhoaSo0aNRgwYAATJ07kv//9r2bbK1asYPjw4ahUqqK/eUKIInG0tdJ9e+O/tyHKqKPmQfKMEObv6qY5dLSIIcnCDZd+n5o6HPUACB3fVQ/M87/pcOT/4OEd6PcdWBY+t0ztEszu87f474kbTOhQjWrezk9fqLTLeADzTDCS79s31JWlBSB5pnSRFmxCCLP35An68OHDHD9+nNq1a2s6J05OTsbDwwMnJyfNFBkZqdUU2t/fP1cyAqhX71FfFeXLq0d1qlu3rta81NRUkpKSAEhJSWH69OnUqlULNzc3nJycOHfuXK5ffB5fr0qlwsfHh/j4eABsbW0ZPHgwy5cvB+D48eOcOHGC4cOHA9C9e3fNftSuLSNCCWEyT97eaIy+xITRSZ6RPCPMU8K1C7S+uRqA+Nb/AUdPE0f0mGZj1COKWljD6Q2w+XXIzi706upUcKVr7fIoCny565IBAxWGIHmmdOQZ+flUCGG2qlWrhkql0jRDzlGlShUA7O3VfSFlZ2fj6+uba8QvADc3N83jvJplP945aE7y0zUv+99/et588022b9/Oxx9/TLVq1bC3t+e5554jPT09z/XmrCf7sX+cRo8eTYMGDbh27RrLly+nY8eO+Pv7A/D999/z8OFDnesRQghhGJJnJM8I83brt1l4qLI4bt2A+m0Hmzqc3Oo+B5Y28MswOL4GbF2g23x1K7dCmNihOtvP3OT3EzeY1CmIQM+CtbIqtawd1K3JTLHdApI8U7ryjFSwCSHMloeHB507d+bLL79k4sSJeSaURo0aERcXh5WVFQEBAcUe1759+xg+fDj9+vUD1H0YREVF6b2eunXrEhISwv/93/+xdu1arVEwK1SoYKhwhRBC5EHyjBDm6+HVo9S4vQOA5DbvoTLmqKH6qPUs9PkKfnsN/v4a7N2g3YxCrapOBVc61PBm17l4lu6+xKLn6z99odJMpSrwrZqmInmmdCmhZwkhhDCMpUuXkpmZSUhICD/99BP//PMP58+fZ/Xq1Zw7dw5LS0s6depEixYt6Nu3L9u3bycqKoqDBw/yzjvvaDr1NKRq1aqxceNGTTPoQYMGaf2So4/Ro0fz0UcfkZWVpUlwQgjjq+hurzVaaHkXO1OHJIxE8owQZkhRuPfftwHYYdmWFq06mDigp2gwCLovVD8OnQ+H/6/Qq5rYoRoAmyKuE3PngSGiE0Ukeab0kBZsQoii8Qwq0dupWrUqERERzJs3j5kzZ3Lt2jVsbW2pVasW06ZNY9y4cahUKrZu3cqsWbMYOXIkt27dwsfHhzZt2mj6IDCkTz/9lJEjR9KyZUs8PT156623NP0Z6Oull15i8uTJDBo0CDs7uaAXwuicvCE7i+ndajK9m6mDMVOSZ/QmeUaIosm6+Be+d/4mTbHifqu3sLQoBR2uNxsDqUnqkUX/9xZ4Vocq7fReTcPK7rSu7sm+i7f5es9l5vWr+/SFRLGSPFN6qBRFjzFiS6GkpCRcXV1JTEzExcXF1OEYx7dt1B0p5/CtD2P2Fv92s7PUI6YVdH5hPbl/dZ+HAd8XfD4Y7z0xA6mpqURGRhIYGJj7hGfoY/s0xt5eKRATE0NAQABHjhyhUaNGBltvfse9TJ5X8yHvRylgiLzxtGWeHC20Wifo+F6eOfn1dcf4/USsZvaz9X35/KVG9Px8H2duaP+DWtvPhS2vty7KO1Di5XnOkTxjcpJnSgZ5T4woO4ukz1rgknieH+nJgLd/wMGmlLRLURT1raIn1oGdG7y6G8pV0Xs1hyPvMPDbMKwtVex5sz1+bvaGj9XI8r2mESZVXHkGjJ9rSsmZQpQKFpa5LzA8g9QXHsI8GfsiRC56NDIyMoiNjWXGjBk0b97c4MlICKGnnNFCcxir1ZW5kzxjMpJnRJl18mdcEs+TpDhwN2RS6alcA3WfYr2WwO2LcP0orHsJRu0EO/0qD5oGlqNZYDn+jrzDd3uvMOfZ0jGCoyhdzDHPSB9swrByLjBypscr24QQBnPgwAH8/f0JDw/nm2++MXU4Qohi5OVkS1a27hsO8povRFFJnhFlUkYqGX/+B4Cvs57ludb1TBxQIVjbwQurwdkXbp2Dja9CIfrGmvBvX2w/HYnhTkr6U0oLoT9zzDOlqDpeCCFEjnbt2mHmd/gLYdZyBkV4/HleXOytsLRQMWl9BJfikzXzq3k78dmLDYs1TlF2SZ4RZdLh77BOvs4NpRzXqg8rvbdGuvjCi2tgeXe48D84+Bk884Zeq3immid1Krhw+noSqw5G8UZnaZktDMsc84xUsAkhhBBCGEt+gyJkZ+HlZJvnopfik3P1zyaEEMJAHtxB2fsxKuDTzOcY9EywqSMqmgqNoefH8PtE2DUX/J+BSk0KvLhKpWJs26pMWBvBqrAoxrStUrpulxXCBOQWUSGEEEIIY7Fze9Rn6bdtHk0bRoOFJS72cvEihBAmsX8xqrREzmVX4rRHD5pXKWfqiIqu4RCo3R+yM2HDSHh4T6/Fu9fxxd/DgXsPMlh/OKZ4YhTCjEgFmxCiQLIL0XeDKL3keIvSptT1RSZ9lupkbreKiLzJsRYlyr0YlL+/A+CjzBcZ3KoKKpXKxEEZgEoFvZeAmz/ci4Y/JqtHGi0gSwsVr7ZRj0L6/b4rZGSV/v8P5X/cssXYx1t+Ji0L/r0dJc+RsfQdkl6GsNdmyPe2BLKxscHCwoIbN27g5eWFjY2NefzDIXRSFIX09HRu3bqFhYUFNjY2pg5JiALR1UfZwJCKDGsZaMKoREFZW1ujUqm4desWXl5ekmfMnKIo3Lp1C5VKhbW1tanDEQJ2f4gqK42wrFocswlhacMKpo7IcOxc4bkVsLwLnNkEVdpD42EFXnxAo4p8uvMiNxJT+f34DQY0rliMwRYfuaYpW0x1TSMVbGXB47ejPPkLuWcQDPhev/XpWle1TtDxvSKHWioZ8r0tgSwsLAgMDCQ2NpYbN26YOhxhJA4ODlSuXBkLC2noLEqPJ/sou5mUasJohD4sLS2pWLEi165dIyoqytThCCNQqVRUrFgRS8vS/UOkMANxp+DEegDmZ77EwGaVza+vsYqN1ddqO9+DbTMgsA2UK9gPUHbWlox8JoCF287z7d7L9G9UoVRWTMk1Tdlk7GsaMztziHzl3I5SHOvyLOOjyhjyvS2BbGxsqFy5MpmZmWRlZZk6HFHMLC0tsbKyKpX/PAkhSi8nJyeqV69ORkaGqUMRRmBtbS2Va6Jk2DkbUNic1ZxTVOWLFv6mjqh4tJgIF3dC1D747wQYthkKWOkwuLk/S3df5sLNZEIv3KJ9sHcxB1s85JqmbDHFNY1JK9jmz5/Pxo0bOXfuHPb29rRs2ZIFCxYQHPxoxBZFUXj//ff57rvvuHv3Ls2aNeOrr76idu3aJoxciLIn5zYOuZVDCCFEcbG0tJRKFyGE8VwJhct/kaWyYlHmC7QP9sbfw9HUURUPCwt49gv4uiVc3Q9HvodmrxZoURc7a15oUoll+yP5ft+VUlvBBnJNI4qXSe/92bNnD+PHj+fQoUPs3LmTzMxMunTpQkpKiqbMwoULWbx4MV9++SVHjhzBx8eHzp07c//+fRNGLoQQQgghhBCi1MrOVt8yCazP7kS0Up5hLQNMG1NxKxcInd5XP/5zNty5UuBFR7QKwNJCxYFLCZy5kVhMAQpRupm0gm3btm0MHz6c2rVrU79+fVasWEF0dDTh4eGAuvXakiVLmDVrFv3796dOnTqsWrWKBw8esHbtWlOGLoQQQgghhBCitDq9AWJPkG7pyCdpfQn0dKR1NU9TR1X8moyGgNaQ8UB9q2gBR1ms6O5A9zo+ACzbH1mcEQpRapWo3qsTE9U14eXKlQMgMjKSuLg4unTpoilja2tL27ZtOXjwoM51pKWlkZSUpDUJIYQQQpgbLydbsrIVna/lNV8IIQSQmQa7PgBgtVU/7uDC0Bb+WFiUgf5nc24VtXaAqwfg6LICL/pK6yoAbD5xQwYSEkKHElPBpigKU6ZM4ZlnnqFOnToAxMXFAVC+fHmtsuXLl9e89qT58+fj6uqqmSpVqlS8gRe37Dw6X8xrfmlTAvdPLkqEEEKUBi72VlhaqJi0PoKen+/TTJPWR2BZFi4ShRCisI4sg3vRpNt7syixA442ljzXuKKpozKecoHQaY768V8fwP2bBVqsfiU3mgaUIyNLYeXBqGILT4jSqsSMIjphwgROnjzJ/v37c7325KgPiqLkORLEzJkzmTJliuZ5UlJS6a5ks7CEDaPVo1Tm8AyCAd+bLiZDMvH+Ldp+jtDztzTPq3k78dmLDY2ybSGEEMIQLsUnc+aGtNgXQogCeXAH9iwAYL3jYB7etWNo44o425WxTu+bjIbjayH2OOyYVeDrr9GtAzkcdYc1h64yoX01HG1LTJWCECZXIr4NEydO5Pfff2fv3r1UrPjolwMfH/U93nFxcfj6+mrmx8fH52rVlsPW1hZbW9viDdjYbl+A2BOmjqL4mHD/Yu48kIsSIYQQQgghyoo9CyD1HukeNfjPdfUP60Nb+Js4KBOwsITeS+D/OsCpX6DBy1C1/VMX61SzPIGejkTeTuHX8GvmPzCEEHow6S2iiqIwYcIENm7cyK5duwgMDNR6PTAwEB8fH3bu3KmZl56ezp49e2jZsqWxwxVCCCGEKFYV3e2p7eeiNVV0tzd1WEIIYR5unYfD/wfAr17jyVAseaaaJ9W8nU0cmIn4NVS3ZAPYOk3dN91TWFioGNEqAIBVB6PIlu51hNAwaQu28ePHs3btWv773//i7Oys6VfN1dUVe3t7VCoVkydPZt68eVSvXp3q1aszb948HBwcGDRokClDF0IIIYQwHCdvyM5iereaTO+m4/XsLLyczKyFvhBCGNv2WaBkkVW9Owsv+AAZ0gKrwztw9r+QcAkOfAZtpz91kf6NKrJo23mu3E5hz8VbtA/2NkKgQpR8Jq1g+/rrrwFo166d1vwVK1YwfPhwAKZPn87Dhw8ZN24cd+/epVmzZuzYsQNn5zL6K4MQQgghzI+dm+5+SUHTN6mLfYno2UMIIUqnizvh0k6wsGZ7hQncO5VIRXd7OtQo45VDdq7QdR5sGAV7P4Z6A8E9IN9FnGytGNikEsv2R7LyQJRUsAnxL5P+p6YoT29OqlKpmDNnDnPmzCn+gIQQQghRalX1ctR6Xt7FzkSRFIG597sqhBCmkJUB298GQGk2hi9PqK9DhzT3l1GXAeoMgGOrIHIv/DkHnl/51EWGtQhg+YFI9ly4xaX4ZKp5OxV7mEKUdPJTqBBCCCFKv+wsPn+pkamjEEIIURId/k79A4aDBxEBr3B29xlsrSx4oUklU0dWMqhU6lZs37SGM5ug2Vio3DzfRSp7ONCxRnn+/Ocmqw5G8Z++dYwUrBAll0kHORBlwL99yhT7MsZQEmMSQgihlnN75bdtHk1/fWDqqIQQQpha4nXYPU/9uON7LA+/A0DfBhVwc7AxYWAljE9daDRE/XjbTMjOfuoiI/8d7GDDsWskPswoxuCEKB30rmCLjIwsjjiEuXq8T5nHL3ryu/DJaxlTXyiVxJiEKIUkj4hik3N7Zc50L9rUEQkhzNTSpUsJDAzEzs6Oxo0bs2/fvnzLp6WlMWvWLPz9/bG1taVq1aosX77cSNGWcdvegvRkqNiUm9UGsu20emC9Mj+4gS7t3wEbJ7hxDE798tTiLap6EFzemQfpWfxyNMYIAQpRsuldwVatWjXat2/P6tWrSU1NLY6YhDl68qKnIBc+JfFCqSTGJEQpY8g8snfvXnr37o2fnx8qlYrffvtN6/Xhw4ejUqm0pubNtW95SEtLY+LEiXh6euLo6Mizzz7LtWvXihSXKB5Z2U/vu1UIIYrbTz/9xOTJk5k1axYRERG0bt2a7t27Ex2d9/+FAwcO5K+//mLZsmWcP3+edevWUaNGDSNGXUad3wb/bAaVJfT6lDV/x5CZrdA0oBy1/FxMHV3J41weWk9RP/5zDqSn5FtcpVIx/N9WbKvCosiWPC3KOL0r2E6cOEHDhg2ZOnUqPj4+jBkzhsOHDxdHbEIIIcyQIfNISkoK9evX58svv8yzTLdu3YiNjdVMW7du1Xp98uTJbNq0ifXr17N//36Sk5Pp1asXWVlyW3hJY8nTb1cRQojitnjxYkaNGsXo0aOpWbMmS5YsoVKlSnz99dc6y2/bto09e/awdetWOnXqREBAAE2bNqVly5ZGjryMSU+BrW+qH7cYT5pnTdb8ra4EldZr+Wg+Hlwrw/0bcDDv/69y9G1QARc7K2LuPGTPxVtGCFCIkkvvCrY6deqwePFirl+/zooVK4iLi+OZZ56hdu3aLF68mFu35EslhBAib4bMI927d2fu3Ln0798/zzK2trb4+PhopnLlymleS0xMZNmyZXzyySd06tSJhg0bsnr1ak6dOsWff/5ZpP0UxUDfLgeEEMLA0tPTCQ8Pp0uXLlrzu3TpwsGDB3Uu8/vvvxMSEsLChQupUKECQUFBTJs2jYcPH+a5nbS0NJKSkrQmoac9CyAxGlwrQbsZbD4RS0JKOr6udnStXd7U0ZVc1nbQeY768cHPISUh3+L2NpY8H6IeLOLHsKvFHJwQJVuhBzmwsrKiX79+/PzzzyxYsIDLly8zbdo0KlasyNChQ4mNjTVknEIIIcyMsfJIaGgo3t7eBAUF8corrxAfH695LTw8nIyMDK0LJT8/P+rUqZPnhZJc9JhYYbocKGO8nGzzvJ1WbrMVomhu375NVlYW5ctrV9CUL1+euLg4nctcuXKF/fv3c/r0aTZt2sSSJUv49ddfGT9+fJ7bmT9/Pq6urpqpUiUZ7VIvsSch7Cv14x6LUKwdWHFA3QfskBb+WFnKWH/5qtUPfOqp+6478OlTiw9u7g/A7vPxxNx5UNzRCVFiFfrMcvToUcaNG4evry+LFy9m2rRpXL58mV27dnH9+nX69OljyDiFEEKYGWPkke7du7NmzRp27drFJ598wpEjR+jQoQNpaWkAxMXFYWNjg7u7u9Zy+V0oyUWPKOlc7K2wtFAxaX0EPT/fp5kmrY/A0kJl6vCEMAsqlfZ3SVGUXPNyZGdno1KpWLNmDU2bNqVHjx4sXryYlStX5tmKbebMmSQmJmqmmBjpQL7AsjLgv+MgOxNqPgvB3Tl69S5nbiRha2XBS00qmzrCks/CAjq8o358+P/gvu7/iXIEejrSuronigKr/5ZWbKLsstJ3gcWLF7NixQrOnz9Pjx49+OGHH+jRowcWFuq6usDAQL799lvptFMIIYROxswjL7zwguZxnTp1CAkJwd/fny1btuR7W2l+F0ozZ85kypQpmudJSUlSySaMoqK7PbUf65S7ors9AFW9HHOVA7gUn8yZG9LCUghD8vT0xNLSMtePMPHx8blateXw9fWlQoUKuLq6aubVrFkTRVG4du0a1atXz7WMra0ttra2hg2+rNi/BOJOgb079PwEQNN6rV/DCrg72pgwuFKkeheo2BSuHYa9H0PPj/MtPqS5P/su3ubnIzG80SkIO2tLIwUqRMmhdwXb119/zciRIxkxYgQ+Pj46y1SuXJlly5YVOTghhBDmx5R5xNfXF39/fy5evAiAj48P6enp3L17V6sVW3x8fJ6dT8tFjzA6J2/IzmJ6t5pM7/bEa9lZfP5So9zLZGfh5SSfUyEMzcbGhsaNG7Nz50769eunmb9z5848W163atWKX375heTkZJycnAC4cOECFhYWVKxY0Shxlxnx/6j7XgPovhCcvLl+7yHbz9wE0Ix4KQpApYKO78Kq3hC+ElpOBHf/PIt3rFmeCm72XL/3kC0nYxnQWD7bouzRu4It56IkPzY2NgwbNqxQAQkhhDBvpswjCQkJxMTE4OvrC0Djxo2xtrZm586dDBw4EIDY2FhOnz7NwoULDb59IQrFzu3RAA+3LzyaX60TdHwv93zPIBjwPS72ev+bJ4QogClTpjBkyBBCQkJo0aIF3333HdHR0YwdOxZQt3S+fv06P/zwAwCDBg3iP//5DyNGjOD999/n9u3bvPnmm4wcORJ7e3tT7op5ycqE38ZBdgYEdYe6zwPqjvezshVaVvWgho/LU1YitAS2gcC2ELkH9iyEvl/lWdTSQsWgZpVZtP08Pxy6KhVsokzSuw+2FStW8Msvv+Sa/8svv7Bq1SqDBCWEEMJ8GTKPJCcnc/z4cY4fPw5AZGQkx48fJzo6muTkZKZNm0ZYWBhRUVGEhobSu3dvPD09Na0OXF1dGTVqFFOnTuWvv/4iIiKCwYMHU7duXTp16lTkfRXCoJ4c4CFncIcn5z9e2SaEANQD3hjKCy+8wJIlS/jggw9o0KABe/fuZevWrfj7q1v3xMbGEh39aPAVJycndu7cyb179wgJCeHll1+md+/efP755waLSQCHvoIbx8DWFXotBpWKh+lZrDusPhbDWwaYNr7SquN76r8n1sLtS/kWfaFJJWwsLTgRc4/T1xONEJwQJYveFWwfffQRnp6eueZ7e3szb948gwQlhBDCfBkyjxw9epSGDRvSsGFDQN2qoGHDhrz33ntYWlpy6tQp+vTpQ1BQEMOGDSMoKIiwsDCcnZ016/j000/p27cvAwcOpFWrVjg4OLB582YsLaXvECGEMBfdunWjatWqzJ071yADBowbN46oqCjS0tIIDw+nTZs2mtdWrlyZq0KvRo0a7Ny5kwcPHhATE8Mnn3wirdcM6fZF2PWh+nHXD8HFD4Dfjl8n8WEGlcrZ07Gm7j7yxFNUDIGgbqBkw/7F+Rb1dLKlax119x85FZtClCV6V7BdvXqVwMDAXPP9/f21fqkRQgghdDFkHmnXrh2KouSaVq5cib29Pdu3byc+Pp709HSuXr3KypUrcw1IYGdnxxdffEFCQgIPHjxg8+bNMmiBqWVnmToCIYSZuXHjBpMmTWLjxo0EBgbStWtXfv75Z9LT000dmiiq7Cz47wTISoOqHaHhYEA9YFHO4AbDWgTIKMpF0eZN9d+TPz1qPZ2Hl5qo/4f67/EbPEjPLO7IhChR9K5g8/b25uTJk7nmnzhxAg8PD4MEJYQQwnxJHhFPldPf2LdtHk1/fWDqqIQQpVi5cuV4/fXXOXbsGEePHiU4OJjx48fj6+vL66+/zokTJ0wdoiisw99BzCGwcYben6k75wcOXk7gws1kHGwseT5Efjgrkooh6r7YsjPh4Bf5Fm1exQN/DweS0zLZcjLWSAEKUTLoXcH24osv8vrrr7N7926ysrLIyspi165dTJo0iRdffLE4YhTF6d+RyXSSFgRCiGIgeUQUSF79jQkhRBE1aNCAGTNmMH78eFJSUli+fDmNGzemdevWnDlzxtThCX3cuQJ/vq9+3OUDcHtUkbbiQBQAzzWuiKu9tQmCMzNtpqn/HvsBkuPzLGZhoeKFf1uxrT9S9NuxhShN9K5gmzt3Ls2aNaNjx47Y29tjb29Ply5d6NChg/TBVho9PjLZ4y0FNoxWzxdCCAOTPCI05IccIYQRZWRk8Ouvv9KjRw/8/f3Zvn07X375JTdv3iQyMpJKlSrx/PPPmzpMUVDZ2fD765D5EAJaQ6PhmpeuJqTw17mbAAyTwQ0MI6A1VGwCmakQlvdooqCu1LS0UBF+9S4Xbt43UoBCmJ7e47fb2Njw008/8Z///IcTJ05gb29P3bp1NaPmiFIqp6WAEEIUM8kjQiPnB57HR72s1unRiGVCCGEgEydOZN26dQAMHjyYhQsXUqdOHc3rjo6OfPTRRwQEBJgoQqG38BUQtQ+sHeDZL8DiUduRVQevoijQNsiLql5OJgzSjKhU0HoqrHsRjiyDZyaDvbvOot7OdnSs4c2OszdZfziG93rXMm6sQpiI3hVsOYKCgggKCjJkLEIIIcoQySMCyP0Dj6d8JoQQhnf27Fm++OILBgwYgI2Njc4yfn5+7N6928iRiUK5Fw07//0xpuNsKPdo8KTktEx+Oaq+NXFEqwATBGfGqncF79oQfwYOfw9t38yz6EtNK7Pj7E02Rlxjerdg7Kzl7ihh/vSuYMvKymLlypX89ddfxMfHk52drfX6rl27DBacEEII8yN5RAghhLHNnj2bli1bYmWlffmTmZnJwYMHadOmDVZWVrRt29ZEEYoCUxT1raHpyVC5BTR9VevlDeHXuJ+WSRVPR9pU9zJRkGbKwgJaT4ENo+DQUmgxHmwcdBZtE+SFn6sdNxJT2X4mjj4NKhg5WCGMT+8+2CZNmsSkSZPIysqiTp061K9fX2sSQggh8iN5RAghhLG1b9+eO3fu5JqfmJhI+/btTRCRKLSI1XBlN1jZwbNfat0amp2tsPJgFADDWwVgYaEyUZBmrHY/cPOHh3fgxLo8i1laqDSjt64/LIMdiLJB7xZs69ev5+eff6ZHjx7FEY8QQggzJ3lECOOo6G5PbT8XzfOqXo4mjEYI01IUBZUqd2VLQkICjo7y3Sg1km7A9lnqx+1ngWc1rZf3XLxF5O0UnG2t6N+oogkCLAMsLKH5ONj2lroVW+MRWpWcjxvYpBKf77pI2JUEom6nEOAp3zVh3go1yEG1atWeXlCIUsjLyZasbAXL4v61KztL9yit+s4XohSSPFIGyTnMuJy8ITuL6d1qMr2b9ktKdhYqHcfCKLlPCBPo378/ACqViuHDh2Nra6t5LSsri5MnT9KyZUtThSf0oSjwxxuQlggVQtS3Jz5hxYEoQF2x42Rb6O7GxdM0HAy750HCJbi4HYK76yxWwc2etkFehJ6/xfojMczoXsPIgQphXHqfdaZOncpnn33Gl19+qfNXICFKMxd7KywtVExaH8Gl+GTN/HbBXrzZ1YAJIb+R856c7xkEA7433LaFMDHJI2WQjBZqXHZuut9zzyBUA75n0fZzhJ6/pZldzduJz15saPw4hTACV1dXQN2CzdnZGXt7e81rNjY2NG/enFdeecVU4Ql9nPsDLmwDC2vo81WuH24uxSez98ItVCoY1iLANDGWFbZOEDIcDnwGB7/Ms4IN4MUmlQk9f4tfw68xtUsQ1pZ691IlRKmhdwXb/v372b17N//73/+oXbs21tbWWq9v3LixwOvau3cvixYtIjw8nNjYWDZt2kTfvn01rw8fPpxVq1ZpLdOsWTMOHTqkb9hC6OVSfDJnbiRpnhfLbTV5jZz35HwhzIwh84goRWS0UOPLI5/E3HmgleOEMGcrVqwAICAggGnTpsntoKVVegr8b4b68TOTwTv3D9+r/u17rWON8lT20N3xvjCgpmMg7Cu4uh9uRICf7h9qOtb0xtPJltvJafz1z0261fE1cqBCGI/eFWxubm7069fPIBtPSUmhfv36jBgxggEDBugs061bN01iBPIcVlsIIUTpYMg8IoQQQhTE7NmzTR2CKIo9CyHpGrhVhmem5Ho58WEGG45dA2BkqwAjB1dGuVaA2v3h1M/qirY87rixtrTg+ZCKfB16mfVHYqSCTZg1vSvYHq/sKqru3bvTvXvezUkBbG1t8fHxMdg2hRBCmJYh84gQQgiRl0aNGvHXX3/h7u5Ow4YN8+2W4NixY0aMTOgl/hyEfal+3H0R2ORunfbL0RgepGcRXN6ZFlU9jBxgGdZivLqC7cwm6DQHXHUPLPFCSCW+Dr3Mngu3uH7vIRXc7HWWE6K0K1TPj5mZmYSGhnL58mUGDRqEs7MzN27cwMXFBScnJ4MGGBoaire3N25ubrRt25YPP/wQb29vg25DCCGEcRkzjwghhCib+vTpoxnU4PFuaEQpoiiwZSpkZ0JwTwjulqtIVrbCqrAoAIa3CpD+XY3JrwEEtIaoffD3t9DlPzqLBXg60qKKB2FXEvj5SAxvdJZuIoR50ruC7erVq3Tr1o3o6GjS0tLo3Lkzzs7OLFy4kNTUVL755huDBde9e3eef/55/P39iYyM5N1336VDhw6Eh4drjQD0uLS0NNLS0jTPk5KkjxGRt4ru9tT2c9F6Drn7XMuZL4QoOmPmESGEEGXX47eFyi2ipdSpX9R9fFnZQ/ePdBbZdS6emDsPcbW3pm+DCkYOUNBivLqC7dgqaDcDbHT3c/hi00rqCrajMbzesbqMXC3Mkt4VbJMmTSIkJIQTJ07g4fGo+W2/fv0YPXq0QYN74YUXNI/r1KlDSEgI/v7+bNmyRTPk9pPmz5/P+++/b9A4hBly8obsLKZ3q8n0J38Iy87i85camSQsIcoCY+YRIYQQAiAmJgaVSkXFiupb2A4fPszatWupVasWr776qomjEzqlp8DOf0ebbjNN3f+aDjmDG7zYpBL2NpY6y4hiVL0ruAfC3Ug4sR6ajNJZrGttH9wcrIlNTGX/pdu0DfIycqBCFD+9x8jdv38/77zzTq7BBvz9/bl+/brBAtPF19cXf39/Ll68mGeZmTNnkpiYqJliYmKKNSZRStm5qYf23jAavm3zaPrrg7znCyEMwpR5RAghRNk0aNAgdu/eDUBcXBydOnXi8OHDvP3223zwgfyfVyId+Bzux6or1lpM0Fnk4s377L90GwsVDG7ub+QABQAWFtBsrPrx399AdrbOYnbWlvSp7weo+8wTwhzpXcGWnZ1NVlZWrvnXrl3D2dnZIEHlJSEhgZiYGHx98x55xNbWFhcXF61JiDzdvgCxJx5N96Lzny+EKDJT5hEhhBBl0+nTp2natCkAP//8M3Xr1uXgwYOsXbuWlStXmjY4kVvidTjwmfpx5w/A2k5nsZy+1zrVLE+lcrkHPxBG0mAQ2Dirr6Gu7Mqz2PMhlQDYceYm9x6kGys6IYxG7wq2zp07s2TJEs1zlUpFcnIys2fPpkePHnqtKzk5mePHj3P8+HEAIiMjOX78ONHR0SQnJzNt2jTCwsKIiooiNDSU3r174+npSb9+/fQNWwghRAlhyDwihBBCFERGRoamD+c///yTZ599FoAaNWoQGxtrytCELn99AJkPoVJzqNVXZ5Gk1Aw2HlO3fB/eMsB4sYnc7Fyg4WD140N596Vbp4IrNX1dSM/K5vcTN4wUnBDGo3cF26effsqePXuoVasWqampDBo0iICAAK5fv86CBQv0WtfRo0dp2LAhDRs2BGDKlCk0bNiQ9957D0tLS06dOkWfPn0ICgpi2LBhBAUFERYWJi0chBCiFDNkHhFCCCEKonbt2nzzzTfs27ePnTt30q2buhPeGzduaPUHKkqA6+Fwcr36cbd5kMeooL8cvcaD9CyCyjvRoqocQ5Nr9iqggks74daFPIsNDFH3g/iz3CYqzJDegxz4+flx/Phx1q1bx7Fjx8jOzmbUqFG8/PLL2NvrN9Jiu3btUBQlz9e3b9+ub3hCCCFKOEPmESGEEKIgFixYQL9+/Vi0aBHDhg2jfv36APz++++aW0dFCaAosO1t9eN6L0CFxjqLZWcr/PDv7aHDWgagyqMSThhRuSoQ3B3Ob4XD30LPT3QW69ugAvO3nuP09STO3kiilp906STMh94VbAD29vaMh0Us1AABAABJREFUHDmSkSNHGjoeIYQQZYDkESGEEMbUrl07bt++TVJSEu7u7pr5r776Kg4O0ndXiXFuC8QcAit76Dg7z2KhF+K5mvAAFzsr+jWsYMQARb6ajVVXsB1fCx3eAXv3XEXcHW3oVMubrafi+CU8htl+tU0QqBDFQ+8Kth9++CHf14cOHVroYEQBOXlDdpZ6tMvSvA1zJ++hEDpJHhFCCGEKlpaWWpVrAAEBAaYJRuSWlanuew2gxThwzbvibOXBqwC80KQSDjaFajMiikNgG/CuBfFn4diP0Op1ncWeD6nE1lNx/BZxnZnda2JjpXfPVUKUSHqfjSZNmqT1PCMjgwcPHmBjY4ODg4NcGBmDnZu60mbDaPVILTmqdYKO75WebZg7eQ+F0EnyiBAli5eTLVnZCpYWum+xyu81IUqLmzdvMm3aNP766y/i4+NzdVOja3RrYWQn1sHt8+pWT60m5Vns8q1k9l64hUoFQ5oHGC8+8XQqFTR/DX6fCIf/D5qPA8vcVQ5tqntR3sWWm0lp/PXPTbrX9TVBsEIYnt4VbHfv3s017+LFi7z22mu8+eabBglKFNDtCxB74tFzz6DSuQ1zJ++hEFokjwhRsrjYW2FpoWLS+gguxSdrvVbN24nPXmxoosiEMJzhw4cTHR3Nu+++i6+vr/TZVdJkpELofPXj1lPBzjXPoj8cjAKgYw1vKnvI7b0lTt3nYedsSIxW3y5a69lcRSwtVAxoVJGloZf5+WiMVLAJs2GQ9rTVq1fno48+YvDgwZw7d84QqxRCCFGGSB4RwvQuxSdz5kaSqcMQoljs37+fffv20aBBA1OHInQ58n+QdB1cKkCTV/Isdj81g1/DrwEwvGWgsaIT+rC2h5ARsO8TOPS1zgo2gOcaqyvY9ly4xc2kVMq72Bk5UCEMz2A3O1taWnLjxg1DrU4IIUQZI3lECCFEcalUqVKu20JFCZGaqK6MAWg3E6zzrmj5NfwaKelZVPN2olU1DyMFKPTWZDRYWEH0Qe07eR5TxcuJJgHuZCuw4dg1IwcoRPHQuwXb77//rvVcURRiY2P58ssvadWqlcECE0IIYZ4kjwghhDC2JUuWMGPGDL799lsZ2KCkOfA5PLwLnsFQ/6U8i2VnK/wQph7cYFgLf7nNtyRz8YNafeH0r3DoG+j3tc5iz4dU4kjUXX45eo3X2laVYypKPb0r2Pr27av1XKVS4eXlRYcOHfjkk08MFZcQQggzJXlECCGEsb3wwgs8ePCAqlWr4uDggLW1tdbrd+7cMVFkZVzyLfVthAAd39XZIX6OvRdvEXk7BWdbK/o3qmikAEWhNX9NXcF2+lfo/D44eecq0rOuL3N+P0Pk7RTCr94lJKCcCQIVwnD0rmDLzs4ujjiEEEKUEZJHhBBCGNuSJUtMHYLQ5cASyEgBv4ZQo1e+RVf+O7jB8yGVcLQ1SFfiojhVDIEKIXD9KBxdDu1m5CriaGtFz7q+/BJ+jZ+PxkgFmyj15MwkhBBCCCGEMGvDhg0zdQjiSUmxcOR79eP270A+twdG3k4h9PwtVCoY2sLfSAGKImv+GmwYpT7OrSapB0B4wvMhlfgl/BpbTsYyu3dtqTwVpZren94pU6YUuOzixYv1Xb0QQggzZ8g8snfvXhYtWkR4eDixsbFs2rRJ6xZURVF4//33+e6777h79y7NmjXjq6++onbt2poyaWlpTJs2jXXr1vHw4UM6duzI0qVLqVhRbj8RQghzcvnyZVasWMHly5f57LPP8Pb2Ztu2bVSqVEkrLxTE0qVLWbRoEbGxsdSuXZslS5bQunXrpy534MAB2rZtS506dTh+/Hgh98RM7PsEMlOhUnOo1jHfoj+ERQHQPtibAE9HIwQnDKJWH/hzDiTGwIl1EDIyV5EmAe4EeDgQlfCAradieT6kkvHjFMJA9K5gi4iI4NixY2RmZhIcHAzAhQsXsLS0pFGjRppy0kGhEEIIXQyZR1JSUqhfvz4jRoxgwIABuV5fuHAhixcvZuXKlQQFBTF37lw6d+7M+fPncXZ2BmDy5Mls3ryZ9evX4+HhwdSpU+nVqxfh4eFYWloaaK/LiOwssJD3TAhR8uzZs4fu3bvTqlUr9u7dy4cffoi3tzcnT57k+++/59dffy3wun766ScmT57M0qVLadWqFd9++y3du3fn7NmzVK5cOc/lEhMTGTp0KB07duTmzZuG2K3S6140hK9UP+4wK9/Wa8lpmfxyVD3K5LCWAcUfmzAcS2toMR62zYCDX0CjYbn+T1CpVDwfUolF28/zS/g1qWATpZreFWy9e/fG2dmZVatW4e7uDsDdu3cZMWIErVu3ZurUqQYPUgghhPkwZB7p3r073bt31/maoigsWbKEWbNm0b9/fwBWrVpF+fLlWbt2LWPGjCExMZFly5bx448/0qlTJwBWr15NpUqV+PPPP+natWsR97aMsbCEDaPh9oVH86p1go7vmS4mIYQAZsyYwdy5c5kyZYrmBxaA9u3b89lnn+m1rsWLFzNq1ChGjx4NqPt32759O19//TXz58/Pc7kxY8YwaNAgLC0t+e233wq1H2Zj7yLIzoDANuopHxuPXSM5LZMqno60ruZppACFwTQaCnsWwJ0r8M9mqN03V5H+jSrwyY7zHI68Q+TtFAKllaIopSz0XeCTTz5h/vz5mosiAHd3d+bOnSujvwkhhHgqY+WRyMhI4uLi6NKli2aera0tbdu25eDBgwCEh4eTkZGhVcbPz486depoygg93b4AsSceTfeiTR2REEJw6tQp+vXrl2u+l5cXCQkJBV5Peno64eHhWnkDoEuXLvnmjZxbU2fPnl2g7aSlpZGUlKQ1mY2EyxCxRv24/Tv5Fs3OVlj17+AGw1oGYGEhd0mVOjaO0OQV9eMDn4Gi5Cri62pPmyAvAH4NjzFmdEIYlN4VbElJSTqbNMfHx3P//n2DBCWEEMJ8GSuPxMXFAVC+fHmt+eXLl9e8FhcXh42NjVZl35NlnmTWFz1CCGGm3NzciI2NzTU/IiKCChUqFHg9t2/fJisrK9/c8qSLFy8yY8YM1qxZg5VVwW4gmj9/Pq6urpqpUiUzum0u9CNQsqBaZ6jcLN+i+y/d5vKtFJxsrRjQWPpGLbWavgpWdnDjGETt11nk+cbqz/iG8OtkZeeuhBOiNNC7gq1fv36MGDGCX3/9lWvXrnHt2jV+/fVXRo0apbkFRwhhJNlZhXtNCBMydh55si83RVGe2r9bfmXM+qJHCCHM1KBBg3jrrbeIi4tDpVKRnZ3NgQMHmDZtGkOHDtV7fQXNLVlZWQwaNIj333+foKCgAq9/5syZJCYmaqaYGDNp1RP/D5z6Rf24w6ynFs9pvfZc44o4yeiSpZeTFzR4Wf34gO5bsjvV8sbNwZq4pFT2XbxlxOCEMBy9z1LffPMN06ZNY/DgwWRkZKhXYmXFqFGjWLRokcEDFELkQ1d/RwCeQTDge9PEJMRTGCuP+Pj4AOpWar6+vpr58fHxmpYHPj4+pKenc/fuXa1WbPHx8bRs2VLnemfOnKk1EmpSUpJUsgkhRAn34YcfMnz4cCpUqICiKNSqVYvMzExefvll3nkn/9sUH+fp6YmlpWWu1mqP55bH3b9/n6NHjxIREcGECRMAyM7ORlEUrKys2LFjBx06dMi1nK2tLba2tnruZSmw+0NAgZq9wa9hvkWvJqSw63w8AENb+BshOFGsWk6A8BVwaSfEnQafOlov21pZ0rdBBVYejOKX8Gu0C/Y2UaBCFJ7eLdgcHBxYunQpCQkJmpHg7ty5w9KlS3F0lM4IhTC6J/s7ij2Ru8JNiBLEWHkkMDAQHx8fdu7cqZmXnp7Onj17NJVnjRs3xtraWqtMbGwsp0+fzrOCzdbWFhcXF61JCCFEyWZtbc2aNWu4ePEiP//8M6tXr+b8+fP8+OOPeo0YbWNjQ+PGjbXyBsDOnTt15g0XFxdOnTrF8ePHNdPYsWMJDg7m+PHjNGuW/y2SZuVGhLqTe1TQ/umt11YejEJRoF2wF1W8nIo/PlG8ylWBWn3Uj/fq/kH1+RD1bcA7z9zkbkq6sSITwmAK3c42NjaW2NhY2rRpg729fYFuuRFCCCFyGCKPJCcnc+nSJc3zyMhIjh8/Trly5ahcuTKTJ09m3rx5VK9enerVqzNv3jwcHBwYNGgQAK6urowaNYqpU6fi4eFBuXLlmDZtGnXr1tWMKiqEEKJ0ery1sS6HDh3SPF68eLFe6x0yZAghISG0aNGC7777jujoaMaOHQuoWzpfv36dH374AQsLC+rU0W6p4+3tjZ2dXa75Zm/XXPXfegPBu2a+Re+nZvDL0WsAjGgVWNyRCWNp8yac+Q3O/qazFVttP1dq+bpwNjaJ/x6/znA59qKU0buCLSEhgYEDB7J7925UKhUXL16kSpUqjB49Gjc3NxlJVAghRL4MmUeOHj1K+/btNc9zLqaGDRvGypUrmT59Og8fPmTcuHHcvXuXZs2asWPHDpydnTXLfPrpp1hZWTFw4EAePnxIx44dWblypV4tGoQQQpQ8ERERWs/Dw8PJysoiODgYgAsXLmBpaUnjxo31Wu8LL7xAQkICH3zwAbGxsdSpU4etW7fi76++jTE2NpboaBlBWcvVMLj0J1hYQbsZTy3+a/g1ktMyqerlSJvqnkYIUBhF+dpQux+c2Qih8+HFNbmKDAypyJzNZ/kl/JpUsIlSR+9bRN944w2sra2Jjo7GwcFBM/+FF15g27ZtBg1OCCGE+TFkHmnXrh2KouSaVq5cCag7oZ4zZw6xsbGkpqayZ8+eXC0G7Ozs+OKLL0hISODBgwds3rxZ+lQTQggzsHv3bs3Uu3dv2rVrx7Vr1zh27BjHjh0jJiaG9u3b07NnT73XPW7cOKKiokhLSyM8PJw2bdpoXlu5ciWhoaF5LjtnzhyOHz9eiD0qpRQFdv1H/bjhYPWtgvnIzlY0gxsMbxUod0mZm3YzABWc+0N92/AT+jSogI2lBWduJHH6eqLx4xOiCPSuYNuxYwcLFiygYkXtYZKrV6/O1atXDRaYEEII8yR5RAghhLF98sknzJ8/X2tAG3d3d+bOnSt34BS3y7vg6gGwtIU2059afPf5eKISHuBsZ8WARhWMEKAwKq9gqPu8+nHoR7ledne0oWsd9UBVa/6W/wtF6aJ3BVtKSopWi4Mct2/fNs+RbowhO8vUEQghhNFIHhHCtCq621Pbz0UzVXS3N3VIQhS7pKQkbt68mWt+fHw89+/fN0FEZcTjrdeajALXp1eYrTgQBcCLTSrhYFPoLsNFSdZuBqgs4cI2uHY018tDmqtvt/4t4gZJqRnGjk6IQtO7gq1Nmzb88MMPmucqlYrs7GwWLVqk1Q+O0IOFJWwYDd+20Z7++sDUkQkhhMFJHinl5Eeh0svJG7KzmN6t5v+zd9/hTZXtA8e/6Up3aemmpZS99yyyhDIEFEEQkCkgiIqAvCjyKtUfgooiOFBRZMhWwVdEGcqWvaFsLFBoS5ktLd05vz9CA6HpTpM0vT/XdS6S56z75KS5yZNnsH5cG90yuWst0GTh4yoV3MJ6PfvsswwfPpyff/6Zq1evcvXqVX7++WdGjBhB7969zR2e9TqzXtsN0N4Fnsh70gmA89fvsevCTWxUMKRVpZKPT5hH+SrQoL/28dYPcqxuVsmT6n6upGRksebQVRMHJ0TRFfongVmzZtG+fXsOHjxIeno6kydPJjIyktu3b/PPP/+URIxlw81zEHtMv8y7unliEUKIEiR5pJTL/lHo5jn98qqdoOO75olJFIxjOcP3z7s69Pked6ec/y30cVWTpVGwtck5BlJu5UJYom+++YZJkyYxaNAgMjK0LWLs7OwYMWIEs2bNMnN0VkqT9bDypOUYcPXJd5eFD8ZeC6/tR7BXztbuwoq0/Q8cX6XtQnxxK1R5+COrSqVicMsQ3vlfJEv3XWFoWCUZi0+UCoVuwVa7dm2OHz9O8+bNCQ8PJzk5md69e3PkyBGqVKlSqGPt2LGDnj17EhgYiEql4tdff9VbrygKERERBAYG4uTkRPv27YmMjCxsyEIIISyIMfOIMJPsH4UeXe7KjHmlxuP37/HK0ke4O9lha6Pi9ZVH6P75Tt3y+sojUrkmShVnZ2fmzZvHrVu3OHLkCIcPH+b27dvMmzcPFxcXc4dnnU6ugfhToPaAsNfy3fzu/XTWHNa2Vhous0daP69QaDZS+3jDFMjK1Fvdq1EFnB1suRCfxN5/b5shQCEKr1At2DIyMujcuTPffvst7733XrFPnpycTIMGDRg+fDh9+vTJsf7jjz9m9uzZLFq0iOrVqzN9+nTCw8M5e/Ysbm5uxT6/EEII0zJ2HhFCmMaF+CQiYxLNHYYQxebi4kL9+vXNHYb1y8qAbTO0j1u/Bk6eeW8PrDwQTWqGhloB7rQI9SrhAIVFaP8WHF8NN07DoYXQfJRulZujPc82qsCyfVdYuvcyraqUN2OgQhRMoVqw2dvbc/LkSaM1z+zWrRvTp083OO6BoijMmTOHqVOn0rt3b+rWrcvixYu5f/8+y5cvN8r5hRBCmJax84gQQgghLNDR5XD7X3D2hhYv57t5ZpaGJQ+6hw5vLd0BywwnT3hyqvbxlulwX7+l2qAHkx1sjIwjPjHV1NEJUWiF7iI6ZMgQFixYUBKx6ImKiiIuLo7OnTvrytRqNe3atWP37t257peWlkZiYqLeIoQQwnKYKo+IYpLJDIQQQhRFWhJsfdB6rc1EULvmu8umU9eJSUilvIsDTzcILOEAhUVpPAx860DqXdg2U29VrQB3moZ4kqlRWLE/2izhCVEYhZ7kID09ne+//57NmzfTtGnTHGMWzJ492yiBxcXFAeDn56dX7ufnx+XLl3Pdb+bMmdLtSAghLJip8ogoJkOD4ctEBkIIIfLzz1xIigPPSg/H2MrHwn+iABjYoiKO9rYlGJywOLZ20HUmLHkaDiyAJsPBr7Zu9eBWIRy8fIcf915mdLvK8v4QFq1AFWzHjx+nbt262NjYcPLkSRo3bgzAuXP6g+KWRFPex4+pKEqe55kyZQoTJz6cAjoxMZHg4GCjxyWEEKLgzJlHRDE8PsO1zG4thBAiL3ejYffn2sfh/wd26nx3OXktgQOX7mBno9J1CRRlTOV2ULMHnPkd1r8Bw9aDjbaz3VP1AvjozzPEJKTy65Fr9G9e0czBCpG7AlWwNWrUiNjYWHx9fbl8+TIHDhygfPmSHWTQ398f0LZkCwgI0JXHx8fnaNX2KLVajVqd/we5EEII0zFHHhFCCCGEif39HmSmQsgTUKtngXb54UHrte71A/BzdyzJ6IQl6/IBXNwKV3bDge+hxUsA2Nva8OIToUxff5rvdv5Lv6bB2Mgs1sJCFWgMtnLlyhEVpf3gu3TpEhqNpkSDAggNDcXf35/NmzfrytLT09m+fTthYWElfn4hhBDGY448IoQQQggTunoQTvwEqLSVJQVolR6bkMK6YzEADG8dWsIBCovmWQnCHwz19FcE3I7SrerfvCJujnZcvJHM1rPxZglPiIIoUAu2Pn360K5dOwICAlCpVDRt2hRbW8N9n//9998CnzwpKYkLFy7onkdFRXH06FG8vLyoWLEi48ePZ8aMGVSrVo1q1aoxY8YMnJ2dGThwYIHPIYQQwvxKKo8IIYQQwgIoCmx4S/u44UAIbFig3RbsjCIjS6FFqBcNg8uVWHiilGg6AiJ/hcu74LfXYMhvYGODq9qOgS0q8u32f5m/41861sq9R5sQ5lSgCrb58+fTu3dvLly4wLhx4xg1ahRubm7FPvnBgwfp0KGD7nn22GlDhw5l0aJFTJ48mZSUFMaOHcudO3do0aIFmzZtMsq5hRBCmE5J5REhhBBCWIBjK+HqAbB3gSffKdAud++ns2L/FQBebl+lJKMTpYWNDTzzBcwLg0s74dBCaDYCgOFhoSzYGcW+qNsci75LA6mQFRaowLOIdu3aFYBDhw7x+uuvG+WLUfv27VEUJdf1KpWKiIgIIiIiin0uIYQQ5lUSeUQIYTxBnk7UCXTPUQZQxUd/tt/HnwshyrDkm7Dxbe3jdv8B94C8t3/gxz2XSU7PolaAO+2q+5RggKJU8aoMnSJgw5uw+V2o2hE8K+Hv4cjTDQNZc/ga83f+y1cDG5s7UiFyKHAFW7aFCxeWRBxCCGNy9QVNFtgY6IKXW7kQJiJ5RAgL8yBnTO5ai8ldDazXZPH5AANfZCSfCCEANkyBlNvgVw9avVqgXVIzsli0+xIAY9pVllnEhb7mL8Gp/2knPPhpOLy4AezUvNS2MmsOX+PPE7FciE+iqq+ruSMVQk+hK9iEEKWAYzntl55fRsLNcw/LvatDn+/NFpYQQggLlFvOAKjaCTq+K/lECGHYhb/gxGpQ2cDTc8HWvkC7/XQwmlvJ6QR5OtG9XsFavIkyxMYGes+Hb9tAzGHY9A489TE1/d3pVMuPv05fZ+7f5/liQCNzRyqEHqlgE8Ka3TwHscfMHYUQQojSwFDO8K6e+zohRNmWngy/T9A+bjEGKjQp0G6ZWRrm79ROaPRS28rY2dqUVISiNCsXDM9+C8v7wf5vISQM6vRiYnh1/jp9nd+Px/BKhyrU9HfP/1hCmIh8mgkhhBBCCCGEKJwtH8DdK+BRETpMLfBu/zsaQ/TtFLxcHOjbJLgEAxSlXvUu0Hq89vFvr8Htf6kd6E73egEoCny2+VyeuwthalLBJoQQQgghhBCi4C78DXvnaR/3mA3qgo2FlZGlYe7f5wFt6zUnBxnHUeTjyXegYitIS4TVQyA9mQnh1bBRwcbI65y8lmDuCIXQkQo2IYQQQgghhBAFcy8O1rwEKND0RagWXuBdfz50lSu37+Pt6sCQViElF6OwHrZ28NwP4OwNcSdg7WiqervwTMMKAMyWVmzCgkgFmxBCCCGEEEKI/GmytJOe3L8JfnWhy4wC75qWmcUXD1qvvdy+Ks4OMhy4KCD3QOi/DGwd4PQ62PJ/vN6xGrY2KraciefQ5dvmjlAIQCrYhBBCCCGEEEIUxI5P4NJOsHeBvovA3qnAu646EE1MQip+7mpeaFGx5GIU1qliS3j6S+3jXbOpdPV/9G0SBMD7606h0ShmDE4ILalgE8LSufpqfy0UQgghhBDCXP7dBts/1D7u8Rl4VyvwrqkZWXy55QIAr3aoiqO9jL0miqDB89Bmkvbxb+N4s/YtXNV2HLuawM+Hrpo3NiGQCjYhLJ9jObCx1TbH/7btw+Xv980dmRBCCCGEKAuuR8KqIaBooOEgbUVHIfy45zLx99KoUM6Jfs1k5lBRDB2mQu1nQJOB569Deb+FtuXaRxvOkJCSYebgRFknFWxClBY3z0HssYfL3SvmjkgIIYQQQli7hKuw9DlIS4CKYdD900LtfjMpjc+3aMdeG9exKmo7ab0misHGBp799sHMogk8e2ocT5RP5FZyOnP/Om/u6EQZJxVsQgghhBCicPIavkCGNRDCeqTc0Vau3YsBn5owYDnYOxbqELM2nOVeaiZ1K7jzXBNpvSaMwN4JBqwEv7qokq7zneoDfLjD4j2XOHf9nrmjE2WYVLAJIYQQQojCyW34gl9GasuFEKVfejKsfAFunAa3AHjhZ3DyLNQhjkXfZfWhaAAietbB1kZVEpGKssipHAxaA56hOCVFs9b9E1w193j3fydlwgNhNlLBJoQQQgghiubx4QtunjN3REIIY0hNgKV94PI/oHbXVq6VK1zrM41GYdpvkSgKPNuoAk0reZVQsKLMcvODwWvB1Y+g9ChWqGdw+t8rLNt32dyRiTJKKtiEEEIIIUSJy5IWBUKUDvdvw+Kn4coeUHvAoF/Av26hD7PmyDWORt/FxcGWt7rVLIFAhQC8QmHI/8DFh9qqSyxzmMFXfxzkyq375o5MlEF25g5ACGFC2WPmGOq+Y6zyvJjiHEIIIcxu1sYzbDt7Q/e8qq8rc/s3MmNEQogCuRcHS3ppu4U6l9e2DgpoUOjD3ElO58M/zwDwWsdq+LkXbtw2IQrFtxYMXYeyqAd171/iO83/MW21OwtGh2Mj3ZKFCUkFmxBlyaNj5jzajce7OvT53vA+hd0+L4aOVbUTdHzXeOcQQghhdtG37xMZk2juMIQQhRF3ElYMgIQr2jHXBv8KvoVveaYoCm+vPcHNpDSq+royvHUlo4cqRA6+tVAN+52shd2pl3KJSbGTWLXtBwY82dTckYkyRLqIClEWFXbMHGOOsfP4se5eMf45hHggIiIClUqlt/j7++vWK4pCREQEgYGBODk50b59eyIjI80YsRHIzI7CAgR5OlEn0F23VPFxMXdIQhjVvHnzCA0NxdHRkSZNmrBz585ct12zZg3h4eH4+Pjg7u5Oq1at2LhxowmjLYDTv8OCztrKNa/KMPzPIlWuAaw5fI0/T8ZhZ6NizvMNUdtJbwRhIr61sB2+nhQHL+rYXKbV9he4dPG0uaMSZYi0YBNCCGHV6tSpw19//aV7bmv78D/6H3/8MbNnz2bRokVUr16d6dOnEx4eztmzZ3FzczNHuMVX2Fan0hVbGNODoQgmd63F5K6PrZP3mrASq1atYvz48cybN4/WrVvz7bff0q1bN06dOkXFihVzbL9jxw7Cw8OZMWMG5cqVY+HChfTs2ZN9+/bRqJGZu04rCuz8BLZM1z4PbQd9F4Fz0SYkiL59n2m/aX+omhBenboVPIwUqBAF5FsLx5c2c+Prp6iUFceNpT1IGbUOp8Da5o5MlAFSwSaEEMKq2dnZ6bVay6YoCnPmzGHq1Kn07t0bgMWLF+Pn58fy5csZPXq0qUM1nuwWoQWRV9dtIQqrKEMRCFHKzJ49mxEjRjBy5EgA5syZw8aNG/n666+ZOXNmju3nzJmj93zGjBn873//Y926deatYMtIgf+9Aid/0T5v/hJ0mQG29kU6XJZG4Y2fjpGUlkmTEE9Gt61sxGCFKDiVd1VUIzbw7/yeVFaukrSgK8rwNaiCpLuoKFnSRVQIIYRVO3/+PIGBgYSGhtK/f3/+/fdfAKKiooiLi6Nz5866bdVqNe3atWP37t25Hi8tLY3ExES9pdTLreu2EEUl3f6FlUpPT+fQoUN6uQOgc+fOeeaOR2k0Gu7du4eXV+6txEo81yTGwMJu2so1Gzvo8Rk8NavIlWsAc/86x/6o27g42PJZv4bY2cpXTWE+3oGVud3vV45rKuOalUDWD0/Bqf+ZOyxh5eRTTwghhNVq0aIFS5YsYePGjXz33XfExcURFhbGrVu3iIuLA8DPz09vHz8/P906Q2bOnImHh4duCQ4OLtFrMIrsGYSFEEIUy82bN8nKyip07njUp59+SnJyMv369ct1mxLNNVcPwfwOEHMEnLy0kxk0fbFYh/z1yDU+33IBgPefqUvF8s5GCFSI4mlauxp72yzi76xG2GnSYPUQ2DVH2zVaiBIgFWymJF9uRBmRpZGkJSxDt27d6NOnD/Xq1aNTp06sX78e0HYFzaZS6U/frihKjrJHTZkyhYSEBN0SHR1dMsEb06Pd9r5t+3D5+31zRyYEIHlDlD6FzR3ZVqxYQUREBKtWrcLX1zfX7Uos1xz/SdtyLSkOfGrBqC0Q2qZYhzx0+TaTfz4OwJh2VejTJMgYkQphFCM71mdZ6EwWZnbRFvw1DdaNg6wM8wYmrJKMwWZKMs6NKCNsbVS8vvIIF+KTdGXta/jwny5Fm41KCGNxcXGhXr16nD9/nl69egEQFxdHQECAbpv4+PgcLRMepVarUavVJR1qyXh8bDbv6uaLRZRJszaeYdvZG3plVX1dmdvfzAO9C1FA3t7e2Nra5mitll/uAO3kCCNGjOCnn36iU6dOeW5r9Fyj0cCW/4Nds7XPq3eD3vPB0b1Yh42+fZ+XlhwiPUtD59p+TO5SwwjBCmE8NjYqPn2+Cb3mvczlu368Y78U28NLtMNh9F0MTuXMHaKwIhbdgi0iIgKVSqW3GBqoulSRcW5EGXEhPonImETdEn37vrlDEoK0tDROnz5NQEAAoaGh+Pv7s3nzZt369PR0tm/fTlhYmBmjFMJ6Rd++r5cbImMS9X6MEcLSOTg40KRJE73cAbB58+Y8c8eKFSsYNmwYy5cvp3v37iUdpr60e7Bq0MPKtScmQP9lxa5cu56YytCF+7mVnE6dQHfm9G+IjU3+rfiEMDVPFwcWDG3GGvsejEqfSJrKEf7dBj90gTuXzR2esCIWXcEGUKdOHWJjY3XLiRMnzB2SEEKIUmLSpEls376dqKgo9u3bx3PPPUdiYiJDhw5FpVIxfvx4ZsyYwdq1azl58iTDhg3D2dmZgQMHmjv0vMmQA0IIYTYTJ07k+++/54cffuD06dNMmDCBK1euMGbMGEDbvXPIkCG67VesWMGQIUP49NNPadmyJXFxccTFxZGQkFDywSbGwA/d4Ox6sFXDs/OhU4S2Z00xxCWk0n/+Xv69kUyghyPfD22Ks4N0jhKWq6qvK18PasJ2mtA79V2SHHzgxhn4viNEHzB3eMJKWPynoJ2dXelvtSaEEMIsrl69yoABA7h58yY+Pj60bNmSvXv3EhISAsDkyZNJSUlh7Nix3LlzhxYtWrBp0ybc3NzMHHk+DA05ADLsgLB4QZ5O1AnUbzVTxcfFTNEIUTTPP/88t27d4v333yc2Npa6devyxx9/6HJLbGwsV6487KXy7bffkpmZySuvvMIrr7yiKx86dCiLFi0quUCvR8KyvpB4DVx8oP8KCG5W7MPGJqQwYP5eLt26T4VyTqx8qSUBHk5GCFiIktW6qjf/90xd3l6r0DFxGht8v8Qz8Qws6g5PfwENnjd3iKKUs/gKtvPnzxMYGIharaZFixbMmDGDypUrmzssIYQQpcDKlSvzXK9SqYiIiCAiIsI0ARnT4+OpgYypJizXg5lsJ3etxeSuBtZrsgy3qClsuRAmMnbsWMaOHWtw3eOVZtu2bSv5gB53cat2xsS0RG1ueOEn8KxU7MNevpXMkB/2c/nWfYI8nVgxqiXBXjJjqCg9BraoyJXb9/lmO7S5MZm/Ki3DP/ZvWPsSxEdCx2mSX0SRWXQFW4sWLViyZAnVq1fn+vXrTJ8+nbCwMCIjIylfvrzBfdLS0khLS9M9T0xMNFW4QohHPN4iIchTftkUQogy69GZbHNreZnbRFCPl3tXhz7fmyRsIUqlI8u0syRqMiGkNTy/FJy9in3YQ5fvMGrJQW4npxPspa1cC/KUyjVR+rzZtQYJKems2B9N2ysv8lfD6lSM/Br+mQvxZ7Q5pphjFIqyyaIr2Lp166Z7XK9ePVq1akWVKlVYvHgxEydONLjPzJkzee+990wVomHyq6oo6zRZfD6gsbmjEEIIYWnyanmZ2yy3hvYRQuSkKLDtQ9j+ofZ53eeg1zywK/5spOuPxzJh9VHSMzXUreDOgqHN8HN3LPZxhTAHlUrF9F71SEzJZP2JWLocb8/vHWpSZfebcH4jLAiHASvBK9TcoYpSxqIr2B7n4uJCvXr1OH/+fK7bTJkyRa/yLTExkeDgYFOE95ChX2hlXBxRCszaeIZtZ2/onrev4cN/utQs/IHkb0AIIYQQwnQy02Hd63Bsufb5ExPhyXfApnhz2mk0CvO2XeCTTdr/03Wq5cvnAxrJhAai1LO1UfHZ8w25l5bJjnM36LnNn5XdV1B/11jt5AffdYB+SyC0rblDFaWIxc8i+qi0tDROnz5NQEBArtuo1Wrc3d31FrPI/rU1e7l7Jf99hDCz6Nv3iYxJ1C3Rt+8X/WDyNyBE8clsoUIIIfKTmgDLntNWrqlsoccc6DSt2JVriakZvPTjIV3l2rCwSnw7WGYLFdbDwc6Gbwc1oU01b+6nZ9F3XRp7Ov4MgY0h5Q78+CwckCEJRMFZdAXbpEmT2L59O1FRUezbt4/nnnuOxMREhg4dau7QhBBCiJKX3Rr027YPl7/fN3dUQgghLEXCVfihK0RtB3sXGLgKmg4v9mHPxt3j6S928dfp6zjY2fBRn3pEPF0HWxuVEYIWwnI4Odjy3ZCmdKzpS1qmhqE/RfN3y0VQr692HMP1b2iXrAxzhypKAYuuYLt69SoDBgygRo0a9O7dGwcHB/bu3aubAlsIIYSwetIaVAghhCGxx+C7jhB/Clz94cU/oVp4sQ/727EYen31D5du3adCOSd+HtOK55tVNELAQlgmR3tbvh7UhK51/EnP0vDSykiWVfivdkZRVNpWbD8+C/dvmztUYeEsun3vypUrzR2CEEIIIYQQQliWc5vg5+GQngQ+teCFn6Bc8cadzsjSMPOPM/zwTxQAT1T15vMBjfBycTBGxEJYNAc7G74c2Ii31pzg50NXmfprJNHtnmLy8zWxWTsKLu3Ujss2YBX4FmGMalEmWHQLNiGEaQV5OlEn0F23BHk6mTskIYQQQgiRTVFg9xewvJ+2ci20Lby4odiVa/GJqbzw3T5d5drY9lVY/GJzqVwTZYqdrQ2znqvPhE7aWay/2X6RcUf8SR2yAcqFwJ1L8H0nOLvBvIEKi2XRLdiEECbi6guaLCZ3rcXkruYORgghhBBCGLT+DTj3k/Zx4yHw1KdgV7xKsK1n45m0+hi3ktNxVdvxSd8GdK3rb4RghSh9VCoVr3eqRpCnE2+tOc7vx2O5EO/Gt31+J+Svl+HyLljRHzpFQOvXQSXjEoqHpIJNCAGO5R4Opn7z3MPyqp2g47u57jZr4xm2nb2hV9avaRBDw0JLKFAhhBBCiDLsxGpwtIUuM6HF6GJ9uU/P1PDJprPM3/EvADX93fjqhcZU8XE1VrRClFp9mgRRwdOJV5cf5kzcPXp8f5pP+syji/dncGgh/DVNO/5hjzng4GzucIWFkAo2IcRD2YOpZ/Ounufm0bfvExmTqFd2PTG1JCITQgghhBAO7vDCYqjasViHuXLrPq+tOMyxqwkADG0VwpSnauFob2uMKIWwCi0rl2f9uDa8uvwwBy7dYfTykwxtNZKpXWrhsGkKHF8FcSeh3xLwrmrucIUFkDHYhBBCCCGEEKI0GP57sSvXfjsWw1Of7+TY1QQ8nOz5dnAT3numrlSuCWGAn7sjy0e15KW2lQFYvOcy4buqc6bzj+DiC/GRML8dnFxj5kiFJZAKNiGEEMLcNFnmjkAIIURp4FW5yLsmp2Xy5s/HGbfiCElpmTQN8eSP19vQpY6MtyZEXuxtbXj7qVosebE5gR6OXL51n26/wadVviczuJV2wpGfh8PvEyA92dzhCjOSCjYhhBDC3LLHQPy27cPl7/fNHZUQQggr8c+Fm3T+bAerDkajUsFrT1Zl5UstqVBOZowXoqDaVvdhw4S2PN80GEWBL/Yn0TpmPKerjNRucPAH+KYNXD1o3kCF2cgYbEIIIYQlKOQYiEIIIUR+7qVmMPPPMyzfdwWACuWcmNW3PmFVvM0cmRClk7ujPR89V5/u9QOIWBfJvzeS6Rb5JIN9K/HfzC9R374IC8KhzRvQdnKxZ/kVpYu0YBNCCCGEEEIIK6IoCmsOX+XJT7frKtcGtwxh44S2UrkmhBG0re7DhtfbMvWpWrip7fgxvjLNbr/PTscOoGhgxyz45gm49I+5QxUmJC3YhBBCCCGEEMJKnLyWwLTfIjl0+Q4Alco7M7N3fVpVKW/myISwLg52NoxqW5lejSrw1dYLLN93hcF3R9Hdph4fOC6h3M2zsOgpaDgIwt8HF/kbtHZSwSaEEEIIIaxClkbB1kaVc4UmSzvWoSF5rROiFLkQn8Scv87x+/FYAJwdbHn1yaqMeCIUtZ28x4UoKT5uaiKersPodpWZt/Uiqw7YsPN+Xd60W8ULdn/D0aVozvyOTbs3odlI6TZqxaSCTQghhBBClB6uvrlWitmiAQxUJGRPJHLznH65d3Xo833JxCmEiVy8kcS8rRdZe+QqGkVb9kzDQN7qVpMAD5nEQAhTCfBw4v961eWVDlVZsucSH+/z5JfUNnxg/wO1Uq/Aximk7v4Wdbf3UdV6GlQGfhASpZpUsAkhhBBCiNLDsZzhCrP8Kssen0hEiFJMURT2Rd3m+53/8tfpeF15eG0/JoZXp1aAuxmjE6Js8/dwZHLXmrz6ZFV+OVSdCXsa0PDWet6w+wmfe5dg9RBiXOuiaf82QU2ekoo2KyIVbEIIIYQQovSRCjNRBt1LzeC3U5dZsf8KkTGJgPa7eceafrz6ZFUaBpczb4BCCB1nBzsGt6rEoJYhHL7SkDl7nqPCqW8ZrlpPYNJJ+H0gJ/6sw4U6r9GoTU8q+biaO2RRTFLBJoQosiBPJ+oE6v9C6ufuaKZohBBClGl5dB0Vwlp0+GQb6Tba/2up7Wzo0ySIEU+EUkW+mAthsVQqFU1CvGgS0oqktGZsP3IS291zaZuwjnpZkdQ7PoZDRz/lR4/+uNfvSfuaftSr4IGNoTFFhUWTCjYhROE9+BIzuWstJnct2XPk9kVJ0WShMrAu1wGuc5Hb9oU9jhBCCDPLreto1U7Q8V2jnUbyhjCn1AwN1YNd6d8smD6Ng/B0kcHShShNXNV2dG3ZEFouJPH6FaL/+ICKl3+hic15mtz7P87t/IHvtnVnl7odLapXoH0NX9pW98FL/tZLBalgE0IUXm5fYsB4X2TyOod3dVR9vmfWxjNsO3vj4al9XZnbv1GhTmNro+L1lUe4EJ9UrOMIIYSwEI93HfWunvu2ef2Yk9tECpI3hBktGt6MDvVCUMmYTUKUeu5+FXEf/i3ce5+UnV9ie/gHqmdeY5bNfO5kLWfVyQ58cqwTE/ChflA5WlcpT6sq5Wka4oWTg7TWtkRSwSaEKDpD49/k9UXGWOd4IPr2fd34I8VxIT7JKMcRQghRyhRxwgTJG8Jcmlbykso1IayNmx9OT/0fPDkJDi5EOfA9ngnRjLFbx0t2v7Mrqy5rrrVhYXRT5m1zxN5WRaNgT1pWKU9YlfI0qlgOtZ1UuFkCqWATQgghhBBlm0yYIIQQwtwcPeCJ8ajCXoNzG2H/fGz+3Upb2xO0tT1BmsqJbapm/JraiJ2X6rH/0m0+//s8ajsbmoR4EvaghVv9oHLY29qY+2rKJKlgE0IIIYQQQgghhLAENrZQ8yntcjsKjq+GYytQ34mii7KDLg47yFLZcd6pIRtSa7MtpSr7L1Zi98VbADg72NKskhetHrRwqxPoIWOEmohUsAkhhBBCCCGEEEJYGq9QaP8mtJsMVw/Aqf/B2T+xvX2RmvcPUpODjFdDhq0j/zrUZH9KEEfSgzh9PoTZ5wL5EHvcHO1oEapt3dYkxJPaAe442EkLt5IgFWxCiFIryNOJOoHuuudVfFyKdJzH9yvqcYQQQgghhBDC6FQqCG6uXbp8ADfPa7uRXv4HruzBPuUONVKOUoOjDH5kwtHriifRGh+uXvDm6nkfVio+XLfxxd2vEpUqhlArtCKNK3nh6+ZovmuzIlLBJoQofR7M+ja5ay0md31sXW6zweVGk8XnAxobLM/1OIWccS6vcxf6HIU9VmGPI4QQIt/ZRX1c1XpFNfzcUDRZqHL5vM11nXzWCyGEKArvatol7FXQaODmWW0Lt7iTcP2k9t+0BPxUd/BT3aEp5/T3v6ldMg/ZcAdX/rXxIEPthY2rN04evnh6eePs5onK0R3U7qB20y6O2Y8flNs5GAyvrJIKNiFE6VPEWd8MKspxSvLcxjxWUY4jhBAi3zxTO9CNG0lpuuIGwR7aCjRDn+lVO6Hq+G6hPqNzrZCTz3ohhBCPs7EB31raJZuiwP1bcPcy3L2iW5S7V8i4eQnVvRjsM5OwU2nwIREfJRFSoyEVbeXbxQKe21b9oMLNFRzcHj5Wu4GD68OKucef6x67PqzAs7UvgRfHtKSCTQhRehlr1reiHMec5zbFsYQQQuT8XM2rBbWh7UFbAZbbOmDWxjNsO3tD97x9DR/+06Vmzoq0qp2g47uF/6yXVm9CCFH2qFTg4q1dKjR5WAzo2pxlpsH92yTfieNSdDTXY69y52Yc9+9eJyM5ARdScFPdx5UU3FQpuHFf+69NKs5KivYYWWlwPw3u3yx+zGoPcPUBF98H/z7y2D0IPEOgXEWwdyr+uUpIqahgmzdvHrNmzSI2NpY6deowZ84c2rRpY+6whBBCWBHJNUKIfOXWsi278qsIom/fJzImUfe8aYin9sHjFWnZFXWFZSje4JbQdabh7aXirUAKmzO2b9/OxIkTiYyMJDAwkMmTJzNmzBgTRiyEEI+xU4N7AC7uAdQJaUSdR1alpGdxJi6RyJhEdsYkEhmTwJm4e6RnagCwQaOteOM+LqpUXFUphLhk4e+Uhb9DOuUd0ilvl045uzTcVKk4K/dxyLqPXWYSdpnJ2KQnoUpPQpV2DzIfVNalJWiXWxfyjtvVD8o9qGzzDNE+zv7XI8isLeEsvoJt1apVjB8/nnnz5tG6dWu+/fZbunXrxqlTp6hYsaK5wxNCCGEFJNcIIQrFWJVf5Jywp3JJTLRjKF6peCuywuaMqKgonnrqKUaNGsXSpUv5559/GDt2LD4+PvTp08cMVyCEEHlzcrClUUVPGlX01JVlZGmIupnMvzeSuHgjmYs3kvj3wb/3UjM5fA+4V/Bz2NqocLa3xdkOvOxS8LVNwtcmAW9VIt7cxYtEPJW7eGru4J0VT/mMWBw19yHpuna5uj/HMRVsSHX0Ic05gHSXADJdA8lyC0DjVgGVRwVsXH2xdfbA3rkcaakZRnil9Fl8Bdvs2bMZMWIEI0eOBGDOnDls3LiRr7/+mpkzc/kPgBBCCFEIkmuEECaXX3fTQh6nSJVfRqh4y2tyB2tV2JzxzTffULFiRebMmQNArVq1OHjwIJ988olUsAkhSg17Wxuq+7lR3c9Nr1xRFG4mpXPl9n1u3Evjxr1UbtxLI/5emu7fuynp3E/LIjk9k9QMbSu4LI3CvbRM7qXBdew5jSfgaeDMujPhQTLBqniCVTce+Vf7OEh1E7UqA6fU6zilXofbR/O8nmup6jzXF4VFV7Clp6dz6NAh3nrrLb3yzp07s3v3boP7pKWlkZb2cNDZhIQEABITEw1uX2KcK0G5zIfP7X0hMbHg5UXZxxLPUVbPbe3XZ6mvrXMlbXlhFeU4JXVuYx6rqMfJR/bnqaIoRj+2ORQ215RYnikNf39l9dzWfn3y2prnHG7VISkZds2BxGsPywMaQaOBBT9HbscpyrGyy++nQ8oj5Zl2hs/hXgGeGE9usjQKtjaqXNfnxpLzTFG+n+zZs4fOnTvrlXXp0oUFCxaQkZGBvX3O7kwW851GCCEKQA1U87Slmqcz4JzntlkahfvpmaSkayvc0jI0pGdpSM/UkJGlkJaZRUamtiwt8+G69EwNGZkK6VlVSMvUkJCl4Uamhr2Z2eszccy4g1taPO4Z8Xhk3sQz8waeWbfw1tzGm1u4K/dwUmlbrinp2q6pRs01igW7du2aAij//POPXvkHH3ygVK9e3eA+06ZNUwBZZJFFFllKeImOjjZFKihxhc01kmdkkUUWWUyzWGKeKcr3k2rVqikffPCBXtk///yjAEpMTIzBfSTXyCKLLLKYZrl48aJxEoSiKBbdgi2bSqX/y5eiKDnKsk2ZMoWJEyfqnms0Gm7fvk358uVz3ScviYmJBAcHEx0djbu7e/47WDBruhaQ67F0cj2Wq7jXoigK9+7dIzAwsASiM5+C5hrJM3mzpuuxpmsBuR5LJ9fzUGnIM4X5fpLb9obKsz2ea+7evUtISAhXrlzBw8OjqGFbNGv7GzBErtE6yDVah4SEBCpWrIiXl5fRjmnRFWze3t7Y2toSFxenVx4fH4+fn5/BfdRqNWq1fl/acuXKFTsWd3d3q3ljWdO1gFyPpZPrsVzFuRZr+s99YXON5JmCsabrsaZrAbkeSyfXo2WpeaYo30/8/f0Nbm9nZ0f58uUN7mMo14D2dbGm94ch1vY3YIhco3WQa7QONjY2xjuW0Y5UAhwcHGjSpAmbN2/WK9+8eTNhYWFmikoIIYQ1kVwjhBCioIqSM1q1apVj+02bNtG0aVOD468JIYQonSy6BRvAxIkTGTx4ME2bNqVVq1bMnz+fK1euMGbMGHOHJoQQwkpIrhFCCFFQ+eWMKVOmcO3aNZYsWQLAmDFj+PLLL5k4cSKjRo1iz549LFiwgBUrVpjzMoQQQhiZxVewPf/889y6dYv333+f2NhY6tatyx9//EFISIhJzq9Wq5k2bZrBJtqljTVdC8j1WDq5HstlTddiLObMNdZ2P6zpeqzpWkCux9LJ9ZQe+eWM2NhYrly5ots+NDSUP/74gwkTJvDVV18RGBjI559/Tp8+fQp8Tmt+PbPJNVoHuUbrINdYNCpFscD5r4UQQgghhBBCCCGEKCUsegw2IYQQQgghhBBCCCEsnVSwCSGEEEIIIYQQQghRDFLBJoQQQgghhBBCCCFEMUgFmxBCCCGEEEIIIYQQxSAVbI/54IMPCAsLw9nZmXLlyhVoH0VRiIiIIDAwECcnJ9q3b09kZGTJBlpAd+7cYfDgwXh4eODh4cHgwYO5e/dunvsMGzYMlUqlt7Rs2dI0AT9m3rx5hIaG4ujoSJMmTdi5c2ee22/fvp0mTZrg6OhI5cqV+eabb0wUacEU5nq2bduW4z6oVCrOnDljwogN27FjBz179iQwMBCVSsWvv/6a7z6WfG8Kez2WfG9mzpxJs2bNcHNzw9fXl169enH27Nl897Pk+2NtJM9InilJ1pJnwLpyjTXlGZBcYwrWlisMKe35wxBryymGWFOeMcSack9urC0nPc6cOUoq2B6Tnp5O3759efnllwu8z8cff8zs2bP58ssvOXDgAP7+/oSHh3Pv3r0SjLRgBg4cyNGjR9mwYQMbNmzg6NGjDB48ON/9unbtSmxsrG75448/TBCtvlWrVjF+/HimTp3KkSNHaNOmDd26ddOb9vxRUVFRPPXUU7Rp04YjR47w9ttvM27cOH755RcTR25YYa8n29mzZ/XuRbVq1UwUce6Sk5Np0KABX375ZYG2t/R7U9jryWaJ92b79u288sor7N27l82bN5OZmUnnzp1JTk7OdR9Lvz/WRvKMluQZ47OmPAPWlWusKc+A5BpTsLZcYUhpzh+GWFtOMcTa8owh1pR7cmNtOelxZs1RijBo4cKFioeHR77baTQaxd/fX/nwww91ZampqYqHh4fyzTfflGCE+Tt16pQCKHv37tWV7dmzRwGUM2fO5Lrf0KFDlWeeecYEEeatefPmypgxY/TKatasqbz11lsGt588ebJSs2ZNvbLRo0crLVu2LLEYC6Ow17N161YFUO7cuWOC6IoOUNauXZvnNpZ+bx5VkOspLfdGURQlPj5eAZTt27fnuk1puj/WRPLMMyaIMG+SZ0rPZ5k15RpryzOKIrmmJFlDrjCktOcPQ6wtpxhizXnGEGvKPbmxxpz0OFPmKGnBVkxRUVHExcXRuXNnXZlaraZdu3bs3r3bjJHBnj178PDwoEWLFrqyli1b4uHhkW9s27Ztw9fXl+rVqzNq1Cji4+NLOlw96enpHDp0SO91BejcuXOuse/ZsyfH9l26dOHgwYNkZGSUWKwFUZTrydaoUSMCAgLo2LEjW7duLckwS4wl35viKA33JiEhAQAvL69ct7HW+2MtJM+UDMkzD5WGz7KCsOT7U1Sl5d5IrjE/S84VhpTm/GGIteUUQyTPGFba7mNxlNb7aMocJRVsxRQXFweAn5+fXrmfn59unbnExcXh6+ubo9zX1zfP2Lp168ayZcvYsmULn376KQcOHODJJ58kLS2tJMPVc/PmTbKysgr1usbFxRncPjMzk5s3b5ZYrAVRlOsJCAhg/vz5/PLLL6xZs4YaNWrQsWNHduzYYYqQjcqS701RlJZ7oygKEydO5IknnqBu3bq5bmdt98faSJ4pGZJnSs9nWUFZ8v0prNJ0byTXWAZLzhWGlOb8YYi15RRDJM8YVtruY1GU5vto6hxlV+RIS5GIiAjee++9PLc5cOAATZs2LfI5VCqV3nNFUXKUGUtBr8dQXAWJ7fnnn9c9rlu3Lk2bNiUkJIT169fTu3fvIkZdNIV9XQ1tb6jcXApzPTVq1KBGjRq6561atSI6OppPPvmEtm3blmicJcHS701hlJZ78+qrr3L8+HF27dqV77bWdH/MQfKMPskz5lOW8wxY/v0pqNJ0byTXFJy15QpDylL+MMTacoohZT3PGFIa72NhlOb7aOocVSYq2F599VX69++f5zaVKlUq0rH9/f0BbY1nQECArjw+Pj5HDaixFPR6jh8/zvXr13Osu3HjRqFiCwgIICQkhPPnzxc61qLy9vbG1tY2x68heb2u/v7+Bre3s7OjfPnyJRZrQRTlegxp2bIlS5cuNXZ4Jc6S742xWNq9ee211/jtt9/YsWMHQUFBeW5bFu5PSZM8o0/yjOmV9TwDln1/jMES743kmsKxtlxhSFnIH4ZYW04xRPKMYaXtPhpLabiP5shRZaKCzdvbG29v7xI5dmhoKP7+/mzevJlGjRoB2v7p27dv56OPPiqRcxb0elq1akVCQgL79++nefPmAOzbt4+EhATCwsIKfL5bt24RHR2tl6xLmoODA02aNGHz5s08++yzuvLNmzfzzDPPGNynVatWrFu3Tq9s06ZNNG3aFHt7+xKNNz9FuR5Djhw5YtL7YCyWfG+MxVLujaIovPbaa6xdu5Zt27YRGhqa7z5l4f6UNMkzkmfM/bdS1vMMWPb9MQZLujeSa4rG2nKFIWUhfxhibTnFEMkzhpW2+2gslnwfzZqjCjUlQhlw+fJl5ciRI8p7772nuLq6KkeOHFGOHDmi3Lt3T7dNjRo1lDVr1uief/jhh4qHh4eyZs0a5cSJE8qAAQOUgIAAJTEx0RyXoKdr165K/fr1lT179ih79uxR6tWrp/To0UNvm0ev5969e8obb7yh7N69W4mKilK2bt2qtGrVSqlQoYLJr2flypWKvb29smDBAuXUqVPK+PHjFRcXF+XSpUuKoijKW2+9pQwePFi3/b///qs4OzsrEyZMUE6dOqUsWLBAsbe3V37++WeTxp2bwl7PZ599pqxdu1Y5d+6ccvLkSeWtt95SAOWXX34x1yXo3Lt3T/e3ASizZ89Wjhw5oly+fFlRlNJ3bwp7PZZ8b15++WXFw8ND2bZtmxIbG6tb7t+/r9umtN0fayN5RvJMSbGmPKMo1pVrrCnPKIrkGlOwtlxhSGnOH4ZYW04xxNryjCHWlHtyY2056XHmzFFSwfaYoUOHKkCOZevWrbptAGXhwoW65xqNRpk2bZri7++vqNVqpW3btsqJEydMH7wBt27dUl544QXFzc1NcXNzU1544YUc0+s+ej33799XOnfurPj4+Cj29vZKxYoVlaFDhypXrlwxffCKonz11VdKSEiI4uDgoDRu3Fhvat2hQ4cq7dq10z1fuHChAig1atRQHBwclEqVKilff/21GaLOXWGu56OPPlKqVKmiODo6Kp6ensoTTzyhrF+/3uBx27Vrp7dvYQHKtGnTCrx99lTNjy9Dhw41eC2Koijbtm1TGjVqZJH3prDXU5h7Y2qGruPxz6zSdn+sjeSZ+0rVqlUVd3f3EskzUVFROV6/vBTmc1lRLPNvJSQkRPd59dVXXyl+fn4KoFSrVq1QeaZ+/frKwIEDc9w/RSl+nimKwnw2Z9/3N998s1D3Z9myZcpnn31WsheiWFeeURTJNaZgbbnCEGN9T5k8ebKydu3aEomxrOcURXn4+ZX93ivoNf7zzz9Kp06dlEqVKuX4LDNHTsnLo/EU53uOra2t4unpWaj7aOg9Nm3aNAVQbty4UcwreygyMlKZNm2arnLamnLS48yZo6SCTViN7Aq2AwcOmDsUkzN1BVu2AwcOFOo/HUIIoSiK4uLiovefd2NKTU1V9uzZo8THx5fI8S3R41+GEhISlD179igJCQmFOs6sWbMUQImKisqxLjIyUomMjCxmpIXXrl07pU6dOvluV9T73r17dyUkJKSI0QkhLIHkFOOy5pySm8e/S5kypxg6V0lUsP300085KumzXbhwQTl8+LDRzlWWlYkx2IQwtfv37+Ps7GzuMIQQoszIysoiMzMTtVpNy5YtjXbclJQUHB0dS2QmsJLKFe7u7kZ9DQBq165t1OMZm7Hvu6nI/xeEsEySUx6SnFIySuo9VhRVqlQx6/mtiY25AxCiIHbt2kXHjh1xc3PD2dmZsLAw1q9fb3DbO3fuMHz4cLy8vHBxcaFnz578+++/etscOXKEHj164Ovri1qtJjAwkO7du3P16lXdNoqiMG/ePBo2bIiTkxOenp4899xzOY7Vvn176taty44dOwgLC8PZ2ZkXX3yRXr16ERISgkajyRFjixYtaNy4caHPpSgKH3/8MSEhITg6OtK4cWP+/PPPAr+OiYmJjBo1ivLly+Pq6krXrl05d+5cju0uXLjA8OHDqVatGs7OzlSoUIGePXty4sQJ3Tbbtm2jWbNmAAwfPhyVSoVKpSIiIgKAgwcP0r9/fypVqoSTkxOVKlViwIABXL58ucDxCiFKVkREBCqViiNHjtC7d2/c3d3x8PBg0KBB3LhxQ29bjUbDxx9/TM2aNVGr1fj6+jJkyBC9z03I//NVpVKRnJzM4sWLdZ8b7du31+0fFxfH6NGjCQoKwsHBgdDQUN577z0yMzN121y6dAmVSsXHH3/M9OnTCQ0NRa1Ws3XrVt26RYsW6cVVkDyyaNEiVCoVmzZt4sUXX8THxwdnZ2fS0tIMvn7btm1DpVKxdOlSJk6ciL+/P05OTrRr144jR47obTts2DBcXV05ceIEnTt3xs3NjY4dOwLagcinT5+ue219fHwYPnx4jnuQkZHB5MmT8ff3x9nZmSeeeIL9+/fnGte2bdv0yvft20fPnj0pX748jo6OVKlShfHjxwPa98J//vMfQDtYeva9yT5G+/btdfcpIyMDX19fBg8enOPcd+/excnJiYkTJ+rKEhMTmTRpEqGhoTg4OFChQgXGjx9PcnKywdfVkAMHDtCmTRucnZ2pXLkyH374oV5+NXTfb9y4wUsvvURwcLDudW3dujV//fWX7prWr1/P5cuXddf76Jfe27dvM3bsWCpUqICDgwOVK1dm6tSpOd4Pd+/eZcSIEXh5eeHq6kr37t35999/9XJi9musUqk4fPgwzz33HJ6enrovNQXNmdnv0S1btujyubu7O0OGDCE5OZm4uDj69etHuXLlCAgIYNKkSWRkZBT4dRaiOCSnSE6x9JxS0O9Sxs4pRXmPAURHR+f7t/R4rslWqVIlhg0bBmjfi3379gWgQ4cOutiyzzls2LAcMxinpqYyZcoUvdf5lVde4e7duznO06NHDzZs2EDjxo1xcnKiZs2a/PDDD7ncBesmLdiExdu+fTvh4eHUr1+fBQsWoFarmTdvHj179mTFihU8//zzetuPGDGC8PBwli9fTnR0NP/9739p3749x48fp1y5ciQnJxMeHk5oaChfffUVfn5+xMXFsXXrVu7du6c7zujRo1m0aBHjxo3jo48+4vbt27z//vuEhYVx7NgxvemoY2NjGTRoEJMnT2bGjBnY2Nhw9+5dnnnmGbZs2UKnTp102545c4b9+/fz+eefF/pc7733Hu+99x4jRozgueeeIzo6mlGjRpGVlUWNGjXyfB0VRaFXr17s3r2bd999l2bNmvHPP//QrVu3HNvGxMRQvnx5PvzwQ3x8fLh9+zaLFy+mRYsWHDlyhBo1atC4cWMWLlzI8OHD+e9//0v37t0BdFMgX7p0iRo1atC/f3+8vLyIjY3l66+/plmzZpw6darEZtESQhTes88+S79+/RgzZgyRkZG88847nDp1in379ulmTnr55ZeZP38+r776Kj169ODSpUu88847bNu2jcOHD+Pt7V2gz9c9e/bw5JNP0qFDB9555x1A++s4aL8INW/eHBsbG959912qVKnCnj17mD59OpcuXWLhwoV6cX/++edUr16dTz75BHd3d6pVq2bw+gqbR1588UW6d+/Ojz/+SHJycr6zR7399ts0btyY77//noSEBCIiImjfvj1HjhyhcuXKuu3S09N5+umnGT16NG+99RaZmZloNBqeeeYZdu7cyeTJkwkLC+Py5ctMmzaN9u3bc/DgQZycnAAYNWoUS5YsYdKkSYSHh3Py5El69+6tl7tys3HjRnr27EmtWrWYPXs2FStW5NKlS2zatAmAkSNHcvv2bb744gvWrFmjmxnMUCsDe3t7Bg0axDfffMNXX32lu38AK1asIDU1leHDhwPaFhXt2rXj6tWrvP3229SvX5/IyEjeffddTpw4wV9//ZVvS464uDheeOEF3njjDaZNm8batWuZMmUKgYGBDBkyJNf9Bg8ezOHDh/nggw+oXr06d+/e5fDhw9y6dQuAefPm8dJLL3Hx4kXWrl2rt29qaiodOnTg4sWLvPfee9SvX5+dO3cyc+ZMjh49qvsirdFo6NmzJwcPHiQiIoLGjRuzZ88eunbtmmtcvXv3pn///owZM0b3hbCwOXPkyJH07t2blStXcuTIEd5++20yMzM5e/YsvXv35qWXXuKvv/7io48+IjAwUO/LqRAlTXKK5BRLzSnF+S5VnJySraDvsWwF+VsqiO7duzNjxgzefvttvvrqK11Dj9xarmV/b/z777+ZMmUKbdq04fjx40ybNo09e/awZ88e1Gq1bvtjx47xxhtv8NZbb+Hn58f333/PiBEjqFq1Km3bti1wnFbBnP1ThSiIli1bKr6+vnqzJmVmZip169ZVgoKCFI1GoyjKwzHYnn32Wb39//nnHwVQpk+friiKohw8eFABlF9//TXXc+7Zs0cBlE8//VSvPDo6WnFyclImT56sK2vXrp0CKH///bfethkZGYqfn58ycOBAvfLJkycrDg4Oys2bNwt1rjt37iiOjo65Xl9+Y7D9+eefCqDMnTtXr/yDDz7Idwy2zMxMJT09XalWrZoyYcIEXXlhxmDLzMxUkpKSFBcXlxwxCCHMI3uMj0f/rhVFO/A7oCxdulRRFEU5ffq0Aihjx47V227fvn0KoLz99tuKohTs81VRch8vZ/To0Yqrq6tuFqtsn3zyiQLoxmvJHhC4SpUqSnp6ut62hgYLLmweGTJkSJ7xZ8seJLhx48a6YyiKoly6dEmxt7dXRo4cqSvLHrD8hx9+0DvGihUrDM7Elf35Om/ePEVRHt6D3O5VXgNSK4qiVKlSRalSpYqSkpKS6/XkNV7O4+PTHD9+XAGU+fPn623XvHlzpUmTJrrnM2fOVGxsbHKMj/rzzz8rgPLHH3/kGk/2eQFl3759euW1a9dWunTpontu6L67uroq48ePz/P4uY2X88033yiAsnr1ar3yjz76SAGUTZs2KYqiKOvXr1eAHAMhz5w5M0duzf57e/fdd/OMSVFyz5nZ79HXXntNb/tevXopoJ0J7lENGzZUGjdunO/5hDAGySmSUx5laTmlMN+ljJ1TCvseK+jfkqLkPpb242Pp5TUG29ChQ/Xi3rBhgwIoH3/8sd52q1atynGfQkJCFEdHR72/s5SUFMXLy0sZPXp0jnNZO+kiKixacnIy+/bt47nnnsPV1VVXbmtry+DBg7l69Spnz57V2+eFF17Qex4WFkZISAhbt24FoGrVqnh6evLmm2/yzTffcOrUqRzn/f3331GpVAwaNIjMzEzd4u/vT4MGDXI0kfb09OTJJ5/UK7Ozs2PQoEGsWbOGhIQEQNvX/scff+SZZ56hfPnyhTrXnj17SE1NzfX68pN9/Y/vP3DgwBzbZmZmMmPGDGrXro2DgwN2dnY4ODhw/vx5Tp8+ne+5AJKSknjzzTepWrUqdnZ22NnZ4erqSnJycoGPIYQwjcc/F/r164ednZ3ucyP73+yuBtmaN29OrVq1+Pvvv4GCfb7m5ffff6dDhw4EBgbqfR5mt7Tdvn273vZPP/10vr/gFiWP9OnTp1BxDxw4UO8X85CQEMLCwnSvW17H/v333ylXrhw9e/bUu+aGDRvi7++vywG5fYZn36u8nDt3josXLzJixAgcHR0LdW25qVevHk2aNNFrAXL69Gn279/Piy++qHd9devWpWHDhnrX16VLF4Ndjgzx9/enefPmemX169fPd8iB5s2bs2jRIqZPn87evXsL1VVyy5YtuLi48Nxzz+mVZ/8NZL/ns9+T/fr109tuwIABuR7b0PursDmzR48ees9r1aoFoGtN/mi5DM0gTE1yiuSUwjJFTinud6ni5JRsBXmPPSq/v6WSsmXLFiDn32jfvn1xcXHR/Y1ma9iwIRUrVtQ9d3R0pHr16mUy/0gFm7Bod+7cQVEUXbPiRwUGBgLomuVm8/f3z7Gtv7+/bjsPDw+2b99Ow4YNefvtt6lTpw6BgYFMmzZN90F5/fp1FEXBz88Pe3t7vWXv3r3cvHlT7/iG4gNtk/DU1FRWrlwJaJtTx8bG6po5F+Zc2fHndn35uXXrFnZ2drqKvbz2nThxIu+88w69evVi3bp17Nu3jwMHDtCgQQNSUlLyPRdo/3Pw5ZdfMnLkSDZu3Mj+/fs5cOAAPj4+BT6GEMI0Hv8cyP6syP7cyf43t8/iwny+5uX69eusW7cux2dhnTp1AAr82fuoouSRghz3UfnlnWzOzs56XV9Ae813797FwcEhx3XHxcXlmwMMfa4/Lnu8luwu/Mby4osvsmfPHs6cOQPAwoULUavVepVL169f5/jx4zmuzc3NDUVRctxTQwxdn1qtzjeXrFq1iqFDh/L999/TqlUrvLy8GDJkCHFxcfme89atW/j7++foauTr64udnZ3e34adnR1eXl562z06jMTjDL2/CpszHz+fg4NDruWpqal5XKkQxic5RXJKUZR0Tinud6ni5JRsxX0vPP63VFKyc5uPj49euUqlMvheLGqetkYyBpuwaJ6entjY2BAbG5tjXUxMDECOcUkMfcjFxcVRtWpV3fN69eqxcuVKFEXh+PHjLFq0iPfffx8nJyfeeustvL29UalU7Ny5U69/ebbHy3Lr61+7dm2aN2/OwoULGT16NAsXLiQwMJDOnTvrtinoubI/uHK7vscHpnxc+fLlyczM5NatW3ofgoaOt3TpUoYMGcKMGTP0ym/evEm5cuXyPA9AQkICv//+O9OmTeOtt97SlaelpXH79u189xdCmFZcXBwVKlTQPX/8syL739jY2Bz/oY6JidH7HM7v8zUv3t7e1K9fnw8++MDg+uwvL9kKMgtbUfJIYWd3y+1z+fH/cBo6rre3N+XLl2fDhg0Gj+3m5gbo5wBD9yov2f9Bfnzw8OIaMGAAEydOZNGiRXzwwQf8+OOP9OrVC09PT9023t7eODk55TrYcUmOx+nt7c2cOXOYM2cOV65c4bfffuOtt94iPj4+19c7W/ny5dm3bx+Koujdt/j4eDIzM3VxZ+fW27dv61Vu5fWF6/H3geRMYW0kp0hOKYqSzinF/S5VnJySrSjvhbz+lkD7XdHQxBnFqYTLzm03btzQq2RTFIW4uDjdRHciJ2nBJiyai4sLLVq0YM2aNXo14BqNhqVLlxIUFET16tX19lm2bJne8927d3P58mW9GYWyqVQqGjRowGeffUa5cuU4fPgwoO16oSgK165do2nTpjmWevXqFfgahg8fzr59+9i1axfr1q1j6NCh2Nra6tYX9FwtW7bE0dEx1+vLT4cOHQy+PsuXLzf4ujxe2bd+/XquXbumV5a9zeO/TqhUKhRFyXGM77//nqysrHxjFUKY1uOfC6tXryYzM1P3uZndBX7p0qV62x04cIDTp0/rZi57VG6fr5D7r5o9evTg5MmTVKlSxeDn4eNfhgqiKHmksFasWIGiKLrnly9fZvfu3QbzzuN69OjBrVu3yMrKMnjN2YMuZx8rt3uVl+rVq1OlShV++OGHXGevg9w/03Pj6elJr169WLJkCb///jtxcXF6XXmyr+/ixYuUL1/e4PXl94XGWCpWrMirr75KeHh4gd6LHTt2JCkpiV9//VWvfMmSJbr1AO3atQO0LRseld1yvSAkZwprIzlFcgpYXk4p7nepRxU2pxRVfn9LoJ3F8/jx43rbbdmyhaSkJL2ywtyP7L/Bx/9Gf/nlF5KTkw3+jQotacEmLN7MmTMJDw+nQ4cOTJo0CQcHB+bNm8fJkydZsWJFjl8CDh48yMiRI+nbty/R0dFMnTqVChUqMHbsWEDbd3/evHn06tWLypUroygKa9as4e7du4SHhwPQunVrXnrpJYYPH87Bgwdp27YtLi4uxMbGsmvXLurVq8fLL79coPizf40ZMGAAaWlpOfqyF/Rcnp6eTJo0ienTp+tdX0RERIGaNXfu3Jm2bdsyefJkkpOTadq0Kf/88w8//vhjjm179OjBokWLqFmzJvXr1+fQoUPMmjUrx6+MVapUwcnJiWXLllGrVi1cXV0JDAwkMDCQtm3bMmvWLLy9valUqRLbt29nwYIFBWoBJ4QwrTVr1mBnZ0d4eLhulqoGDRroxpWqUaMGL730El988QU2NjZ069ZNN+NbcHAwEyZMAAr2+QraFgnbtm1j3bp1BAQE4ObmRo0aNXj//ffZvHkzYWFhjBs3jho1apCamsqlS5f4448/+Oabb4rUJaWweaSw4uPjefbZZxk1ahQJCQlMmzYNR0dHpkyZku++/fv3Z9myZTz11FO8/vrrNG/eHHt7e65evcrWrVt55plnePbZZ6lVqxaDBg1izpw52Nvb06lTJ06ePKmbiSw/X331FT179qRly5ZMmDCBihUrcuXKFTZu3Kj7D3z2Dzpz585l6NCh2NvbU6NGDV2LB0NefPFFVq1axauvvkpQUJDerNkA48eP55dffqFt27ZMmDCB+vXro9FouHLlCps2beKNN96gRYsW+cZfWAkJCXTo0IGBAwdSs2ZN3NzcOHDgABs2bKB379667erVq8eaNWv4+uuvadKkCTY2NjRt2pQhQ4bw1VdfMXToUC5dukS9evXYtWsXM2bM4KmnntJdZ9euXWndujVvvPEGiYmJNGnShD179ugq4mxs8v8t293dXXKmsCqSUySngOXllOJ8lypuTimq/P6WQDu76TvvvMO7775Lu3btOHXqFF9++SUeHh56x6pbty4A8+fPx83NDUdHR0JDQw127wwPD6dLly68+eabJCYm0rp1a90soo0aNWLw4MFFviarZ9IpFYQoop07dypPPvmk4uLiojg5OSktW7ZU1q1bp7dN9kw9mzZtUgYPHqyUK1dOcXJyUp566inl/Pnzuu3OnDmjDBgwQKlSpYri5OSkeHh4KM2bN1cWLVqU47w//PCD0qJFC915q1SpogwZMkQ5ePCgbpt27dopderUyTP+gQMHKoDSunXrXLcpyLk0Go0yc+ZMJTg4WHFwcFDq16+vrFu3LsdMPLm5e/eu8uKLLyrlypVTnJ2dlfDwcOXMmTM5Zp+5c+eOMmLECMXX11dxdnZWnnjiCWXnzp0Gz7NixQqlZs2air29vd5xrl69qvTp00fx9PRU3NzclK5duyonT57MMaONEMJ8smepOnTokNKzZ0/F1dVVcXNzUwYMGKBcv35db9usrCzlo48+UqpXr67Y29sr3t7eyqBBg5To6GjdNgX9fD169KjSunVrxdnZOcfMXTdu3FDGjRunhIaGKvb29oqXl5fSpEkTZerUqUpSUpKiKA9n3Jo1a1aOazI0G5eiFC6PPD47WW6yZ1b78ccflXHjxik+Pj6KWq1W2rRpo/fZrSjaGbpcXFwMHicjI0P55JNPlAYNGiiOjo6Kq6urUrNmTWX06NF6+SstLU154403FF9fX8XR0VFp2bKlsmfPnhyfq4ZmfFMU7azV3bp1Uzw8PBS1Wq1UqVIlxwxlU6ZMUQIDAxUbGxu9Y+SWZ7KyspTg4GAFUKZOnWrw+pKSkpT//ve/So0aNRQHBwfFw8NDqVevnjJhwgQlLi4ul1dX0Z3XUI59fMazx+97amqqMmbMGKV+/fqKu7u74uTkpNSoUUOZNm2akpycrNvv9u3bynPPPaeUK1dOUalUyqP/Nb5165YyZswYJSAgQLGzs1NCQkKUKVOmKKmpqXqx3L59Wxk+fLhebt27d2+Ombuz/95u3LiR43oKmjNze4/mduy83ndCGJvkFMkplp5TCvpdytg5pbDvscL8LaWlpSmTJ09WgoODFScnJ6Vdu3bK0aNHDX7nmjNnjhIaGqrY2trqnfPxnKoo2plA33zzTSUkJESxt7dXAgIClJdfflm5c+eO3nYhISFK9+7dc1xXQb+fWhuVojzS/lQIIYQQZUZERATvvfceN27cKNGxsKzVtm3b6NChAz/99FOO2SZF2bZ8+XJeeOEF/vnnH8LCwswdjhAmITmleCSnCFH6SRdRIYQQQgghimjFihVcu3aNevXqYWNjw969e5k1axZt27aVyjUhhBCiDJEKNiGEEEIIIYrIzc2NlStXMn36dJKTkwkICGDYsGFMnz7d3KEJIYQQwoSki6gQQgghhBBCCCGEEMWQ/9RGQgghhBBCCCGEEEKIXEkFmxBCCCGEEEIIIYQQxWDWCraIiAhUKpXe4u/vr1uvKAoREREEBgbi5ORE+/btiYyMNGPEQgghhBBCCCGEEELoM/skB3Xq1OGvv/7SPbe1tdU9/vjjj5k9ezaLFi2ievXqTJ8+nfDwcM6ePYubm1uBjq/RaIiJicHNzQ2VSmX0+IUQoqxRFIV79+4RGBiIjY00hJY8I4QQxiV5JifJNUIIYVwlkWvMXsFmZ2en12otm6IozJkzh6lTp9K7d28AFi9ejJ+fH8uXL2f06NEFOn5MTAzBwcFGjVkIIQRER0cTFBRk7jDMTvKMEEKUDMkzD0muEUKIkmHMXGP2Crbz588TGBiIWq2mRYsWzJgxg8qVKxMVFUVcXBydO3fWbatWq2nXrh27d+/OtYItLS2NtLQ03fPsSVKjo6Nxd3cv2YsRQogyIDExkeDg4AK3JLZ22a+D5BkhhDAOyTM5Sa4RQgjjKolcY9YKthYtWrBkyRKqV6/O9evXmT59OmFhYURGRhIXFweAn5+f3j5+fn5cvnw512POnDmT9957L0e5u7u7JCMhhDAi6aKilf06SJ4RQgjjkjzzkOQaIYQoGcbMNWYd1KBbt2706dOHevXq0alTJ9avXw9ou4Jme/xiFUXJ8wWYMmUKCQkJuiU6OrpkghdCCCGEEEKUKTt27KBnz54EBgaiUqn49ddf89x+zZo1hIeH4+Pjg7u7O61atWLjxo2mCVYIIYRJWdSooS4uLtSrV4/z58/rxmXLbsmWLT4+Pkertkep1WrdLzvyC48QQgghhBDCWJKTk2nQoAFffvllgbbfsWMH4eHh/PHHHxw6dIgOHTrQs2dPjhw5UsKRCiGEMDWzj8H2qLS0NE6fPk2bNm0IDQ3F39+fzZs306hRIwDS09PZvn07H330kZkjFUIIIYQQQpQ13bp1o1u3bgXefs6cOXrPZ8yYwf/+9z/WrVun+44jhBDCOpi1gm3SpEn07NmTihUrEh8fz/Tp00lMTGTo0KGoVCrGjx/PjBkzqFatGtWqVWPGjBk4OzszcOBAc4YthDCzrKwsMjIyzB2G1bK3t8fW1tbcYQghhNlInil5Dg4O2NhYVGcak9BoNNy7dw8vLy9zhyKEMCONRkN6erq5w7Bq5vhOY9YKtqtXrzJgwABu3ryJj48PLVu2ZO/evYSEhAAwefJkUlJSGDt2LHfu3KFFixZs2rRJZhQSooxSFIW4uDju3r1r7lCsXrly5fD395cBpoUQZYrkGdOxsbEhNDQUBwcHc4diUp9++inJycn069cvz+3S0tJIS0vTPU9MTCzp0IQQJpKenk5UVBQajcbcoVg9U3+nMWsF28qVK/Ncr1KpiIiIICIiwjQBCSEsWvaXHl9fX5ydnaXypwQoisL9+/eJj48HICAgwMwRCSGE6UieMQ2NRkNMTAyxsbFUrFixzLzOK1asICIigv/973/4+vrmue3MmTN57733TBSZKGkajUJCSgYeTvbY2JSN97swTFEUYmNjsbW1JTg4uEy25DUFc32nsagx2IQQIjdZWVm6Lz3ly5c3dzhWzcnJCdBOKuPr6yvdRYUQZYLkGdPy8fEhJiaGzMxM7O3tzR1OiVu1ahUjRozgp59+olOnTvluP2XKFCZOnKh7npiYSHBwcEmGKIzsXmoGH/55hi1n4om/l0aWRiHU24VXOlSlV8NA7GylYqUsyszM5P79+wQGBuLs7GzucKyaOb7TSAWbMJosjYKtgV9kcisXojCyx8KRRGQa2a9zRkaGVLAJ8YDkOesmeca0sruGZmVlWX0F24oVK3jxxRdZsWIF3bt3L9A+arUatVpdwpGJknLo8h0mrDrKldv39cqjbiYz6adjfLHlPPNeaEydQA8zRSjMJSsrC6DMdY83F1N/p5EKNmE0tjYqXl95hAvxSbqyqr6uzO0vMyQJ4ykr3UjMTV5nIXKSPFc2yOefaZTW1zkpKYkLFy7onkdFRXH06FG8vLyoWLEiU6ZM4dq1ayxZsgTQVq4NGTKEuXPn0rJlS+Li4gBtywoPD6lcsUa/HYthwqqjZGkUKpRz4v961aF2gAdODras3H+F+Tv+5fKt+wxZsJ9Vo1tR1dfV3CELMyitn4GljalfZ2mXKozqQnwSkTGJuuXRLyFCCCFEaSd5Toiy7eDBgzRq1IhGjbQV6xMnTqRRo0a8++67AMTGxnLlyhXd9t9++y2ZmZm88sorBAQE6JbXX3/dLPGLknU27h5v/nycLI1CzwaB/Dm+DU/W9MPfwxEPJ3tGt6vClkntqVvBnVvJ6Qz6fh/Rj7VyE0KUXlLBJoQQpcCwYcPo1auXucOwKF9//TX169fH3d0dd3d3WrVqxZ9//qlbrygKERERBAYG4uTkRPv27YmMjNQ7RlpaGq+99hre3t64uLjw9NNPc/XqVVNfihBCmJ3kmYJp3749iqLkWBYtWgTAokWL2LZtm277bdu25bm9sB5JaZm8vOwQKRlZtKnmzZznG+LumLP7s4eTPUtebEE1X1fiElMZvGAfyWmZZohYCNMqC3lGKtiERcrSKIUqF2WbKd8XRTnXo8mkffv2jB8/3rhBlVFBQUF8+OGHHDx4kIMHD/Lkk0/yzDPP6CrRPv74Y2bPns2XX37JgQMH8Pf3Jzw8nHv37umOMX78eNauXcvKlSvZtWsXSUlJ9OjRQzc+hhBCgOn//1HY80meEcK8FEVhypoT/HsjGX93R+Y83zDPsTm9XBxYNrIFgR6OXLp1n082nTVhtEIUnuSZgpEx2IRFknFuRGEYer+UhNL8HoyIiODSpUtW9Yt5z5499Z5/8MEHfP311+zdu5fatWszZ84cpk6dSu/evQFYvHgxfn5+LF++nNGjR5OQkMCCBQv48ccfdTO6LV26lODgYP766y+6dOli8msSQlgmU+UZKL25xhrzjBAFte3cDdYdi8HORsVXLzSivGv+E1T4ujsys099hv6wn0W7L9GzQSCNK3qaIFohSqfSkGekgk1YrOxxboQoiNLwfhk2bBjbt29n+/btzJ07F9AOjhwcHMxLL73Eli1biIuLo2LFiowdOzbX8VmWLFnChAkTiImJ0ZthrE+fPri4uOgGVi5LsrKy+Omnn0hOTqZVq1ZERUURFxdH586ddduo1WratWvH7t27GT16NIcOHSIjI0Nvm8DAQOrWrcvu3btzrWBLS0sjLS1N9zwx0bLfd0II45A8U7bzjBC50WgUPt6gbYE2vHUlmoR4FXjfdtV96N24AmsOX+PNn4/z+7gnUNvJ7O3CckmeyZt0ERVCCBOZO3curVq1YtSoUcTGxhIbG0twcDAajYagoCBWr17NqVOnePfdd3n77bdZvXq1weP07duXrKwsfvvtN13ZzZs3+f333xk+fLipLscinDhxAldXV9RqNWPGjGHt2rXUrl1bN0ubn5+f3vZ+fn66dXFxcTg4OODp6ZnrNobMnDkTDw8P3RIcHGzkqxJCiKKRPCOE6f12LIbTsYm4qe0Y275qofd/p3ttyrs4cD4+ifnb/y2BCIUlUxSF++mZZlkUpfDDH0ieyZu0YBNCCBPx8PDAwcEBZ2dn/P39deW2tra89957uuehoaHs3r2b1atX069fvxzHcXJyYuDAgSxcuJC+ffsCsGzZMoKCgmjfvn2JX4clqVGjBkePHuXu3bv88ssvDB06lO3bt+vWPz41t6Io+U7Xnd82U6ZMYeLEibrniYmJUskmhLAIkmeEMK30TA2fbta2XhvTvgqeLg6FPoaniwPv9qzN6yuPMn/HvwxqGVKk44jSKSUji9rvbjTLuU+93wVnh8JVCUmeyZu0YBNCCAvwzTff0LRpU3x8fHB1deW7777jypUruW4/atQoNm3axLVr1wBYuHAhw4YN01UM7dy5E1dXV90yY8YMli1blqOstHNwcKBq1ao0bdqUmTNn0qBBA+bOnatL+I+3RIuPj9e1avP39yc9PZ07d+7kuo0harVaN3Np9iJKH5lMR5Q1kmeEML7l+y4TfTsFHzc1w1tXKvJxetYPpFaAO/fSMpm/U1qxidJJ8oy0YBNCCLNbvXo1EyZM4NNPP6VVq1a4ubkxa9Ys9u3bl+s+jRo1okGDBixZsoQuXbpw4sQJ1q1bp1vftGlTjh49qnv++eefc+3aNT766CNdmZdXwccIKS0URSEtLY3Q0FD8/f3ZvHkzjRppBwtPT09n+/btutegSZMm2Nvbs3nzZt0va7GxsZw8eZKPP/7YbNcgTEMm0xFlieQZIYwvM0vD/B3ayrBxHasVuiXQo2xsVLwRXp2RSw6y6J9LvNg6FB+3/CdKEKWfk70tp943z8RaTvbGG+9P8oyWVLAJIYQJOTg4kJWVpVe2c+dOwsLCGDt2rK7s4sWL+R5r5MiRfPbZZ1y7do1OnTrpdVN0cnKiatWH44B4eXmRmJioV1bavf3223Tr1o3g4GDu3bvHypUr2bZtGxs2bEClUjF+/HhmzJhBtWrVqFatGjNmzMDZ2ZmBAwcC2ibuI0aM4I033qB8+fJ4eXkxadIk6tWrp5tVVFi30jBovRCFJXlGCNP463Q8MQmpeLk40LdJULGP17GWLw2Cy3Es+i5fb7vIuz1rGyFKYelUKlWxKmfNQfJM7qSLqChRPq7qPLvbSFccUdZUqlSJffv2cenSJW7evIlGo6Fq1aocPHiQjRs3cu7cOd555x0OHDiQ77FeeOEFrl27xnfffceLL75ogugty/Xr1xk8eDA1atSgY8eO7Nu3jw0bNhAeHg7A5MmTGT9+PGPHjqVp06Zcu3aNTZs24ebmpjvGZ599Rq9evejXrx+tW7fG2dmZdevWYWsrM3gJIUonyTNCmMbi3ZcAGNA8GEcjtARSqVRM6lwdgKX7LhOXkFrsYwpREiTP5K50VZWKUsfdyc5gNxyQrjjCuKr6upaKc0yaNImhQ4dSu3ZtUlJSiIqKYsyYMRw9epTnn38elUrFgAEDGDt2LH/++Weex3J3d6dPnz6sX7+eXr16FTu20mbBggV5rlepVERERBAREZHrNo6OjnzxxRd88cUXRo5OCGFtTJFnjHEeyTNClLxz1++x599b2NqoeKFFiNGO+0RVb5pV8uTApTss3B3FlG61jHZsIYxF8kzuVEpR5mYtRRITE/Hw8CAhIUEGojaB7p/v1Otu83SDAD4f0DhHOUCdQHfWj2tT4GPlt72wbqmpqURFRREaGoqjo6PeuiyNgq1N3jNDGospz1UQ4eHh1KpVi88//9yox83r9ZbPVX3yepReRckzkpusl6XkGXOcLy+SZyyDvCaWZeraEyzbd4Vudf35elCToh/o1kU4ugwSY6B8FfCuwa7kIAb9Eoub2o7dU57EzdHeeIELs8vrs6+sKqk8A6bPNdKCTQhR6pnyS4ilfOG5ffs2mzZtYsuWLXz55ZfmDkcIIayaqT/7LSHXSJ4RwrCElAzWHNbOejikVaWiHeT077B3Hlz+J8eq1iobItyf5/3E7qw6EM3INpWLEa0Qlssa84xUsAkhRCnUuHFj7ty5w0cffUSNGjXMHY4QQggrI3lGCMP+d/QaKRlZ1PBzo2XlQs5gqNHAlvdh12fa5yobqNoJgprB7X8h/hSq2GMMS19BTYejzNz1BsPCKmFnK0OnC+tjjXlGKtiEEKIUunTpkrlDEEIIYcUkzwhhWHbrtX7NglGpCtHaNCMF1o6BU79qn7d8BVq9Ah4V9Lc7tgrl9wm0zDjNwtTx7PzHhw5t2xsldiEsiTXmGakKF0IIIYQQQggh8nHxRhJHo+9ia6Pi6QaBBd8xPRkWP62tXLOxh17fQNcZOSvXABo8j2r0DuJdquOlSqL6tpchNcFo1yCEKDlSwSaEEEIIUUBVfFyoE+iuW6r4uJg7JCGEECby6xFt67W21bzxcVMXbCeNRtty7ep+cCwHQ36FhgPy3se7KnZD/0eMUp4KmhjurhgF1j03oRBWQbqICrPxcVVb1CxZQgghyrZ885Imi88HNDZYjo1tyQYnhBDCrDQaRdc99NnGQQXfcccsOP2btuXawNVQsUWBdvPyDWR2pem8eulVyl3eCLu/gNbjihK6EMJEpIJNmI27kx22NipeX3mEC/FJuvL2NXz4T5eaZoxMCCFEWZRbXgLo1zSIoWGh8MtIuHnu4Qrv6tDnexNHKoQQwtQOXLrNtbspuKnt6Fzbr2A7nfoNts3QPu7xWYEr17K1e7Ir788fwnT7hSh/RaCq2BKCmxcyciGEqUgFmzC7C/FJRMYk6p5LdxshhBDm9HheAriemKp9cPMcxB4zQ1RCCCHMae2D7qHd6vnjaF+AVss3z2u7hgK0eBkaDy70ORtX9OS/Pr359dZZetnuhj8nw8gtYCMjPQlhieQvUwghhBBCCCGEyEVaZhbrT8QC8GyjAnQPzcrUVq5lJEOlNtB5epHOq1KpGNQqhOkZg0nGCWKOwImfinQsIUTJkwo2UWpkj41jSG7leTHmsYQoacOGDaNXr17mDkOIMuHxiQzqBLrj5+5o7rCEKFGSZ4TI3c5zN7mXmomfu5oWoV7577B7Llw7CGoPePYbsC16x7FeDSuQqi7PlxnPaAv+fg/S7xf5eEKYS1nIM9JFVJQauY2NU9XXlbn9GxX6eMY8ljAzUw4wXoRzDRs2jLt37/Lrr7/Svn17GjZsyJw5c0omPiFEkXk62+c+kYEo20w9kUUhzyd5xnR27NjBrFmzOHToELGxsaxduzbfL4zbt29n4sSJREZGEhgYyOTJkxkzZoxpAhZGkd16rVvdAGzym6At7iRsnal93O0j8CjEhAgGuKjt6N24Aj/s6coIp614J16DPV9Bu/8U67hCFIbkmYKRCjZR6hgaG8cSjiXMyMY258DjJUEGMxfCqrmo7XL/PKnaCTq+a57AhPmZKs+A5BoLl5ycTIMGDRg+fDh9+vTJd/uoqCieeuopRo0axdKlS/nnn38YO3YsPj4+BdpfmF9aZhZ/nboOQI/6AXlvnJkOv44BTQbU6A4N+hslhkEtQ1iy5zLvpfTjC/svYNdn2jHd3PyNcnwhhHFYTBfRmTNnolKpGD9+vK5MURQiIiIIDAzEycmJ9u3bExkZab4ghRCWK3vg8ZJcivnFatiwYWzfvp25c+eiUqlQqVRcunSJrKwsRowYQWhoKE5OTtSoUYO5c+fmepwlS5ZQvnx50tLS9Mr79OnDkCFDihWjEALDnyd3r5g7KmFupsgzxcw1kmdKXrdu3Zg+fTq9e/cu0PbffPMNFStWZM6cOdSqVYuRI0fy4osv8sknn5RwpMJYdp67yb20TPzdHWlc0TPvjfd8AXEnwMkLes4BVT6t3Qqoup8bzUO9WJfVkhi3etqx3XbIe0iYnuSZvFlEBduBAweYP38+9evX1yv/+OOPmT17Nl9++SUHDhzA39+f8PBw7t27Z6ZIhRCi6ObOnUurVq0YNWoUsbGxxMbGEhwcjEajISgoiNWrV3Pq1Cneffdd3n77bVavXm3wOH379iUrK4vffvtNV3bz5k1+//13hg8fbqrLEUIIYWEkz1iePXv20LlzZ72yLl26cPDgQTIyMswUlSgMXffQev55dw+9cxm2z9I+7vohuPoaNY7BLUMAFe/ff9Dy8ciPkHTDqOcQZqAokJ5snkUp/NjjkmfyZvYuoklJSbzwwgt89913TJ/+cHYVRVGYM2cOU6dO1f1CtHjxYvz8/Fi+fDmjR482V8hCCFEkHh4eODg44OzsjL//wyb9tra2vPfee7rnoaGh7N69m9WrV9OvX78cx3FycmLgwIEsXLiQvn37ArBs2TKCgoJo3759iV+HEEIIyyR5xvLExcXh5+enV+bn50dmZiY3b94kIMBwl8O0tDS9lh2JiTKkiTk82j20e718uodueAsyU7SzhtbP+XdVXF3q+OPtqmZDUjXuBNTH885x2P8tPPlfo59LmFDGfZgRaJ5zvx0DDi6F2kXyTN7M3oLtlVdeoXv37nTq1EmvPCoqiri4OL1ffNRqNe3atWP37t2mDlMIIUrUN998Q9OmTfHx8cHV1ZXvvvuOK1dy75I2atQoNm3axLVr1wBYuHAhw4YNQ6VSsWzZMlxdXXXLzp07TXUZQlgcmRlaCC3JM+ajeqyboPKg1cjj5Y+aOXMmHh4euiU4OLhEYxSGFbh76Nk/4ewfYGMH3T81WtfQRznY2dC/WTCg4gd6aQv3z4c06d0lLIPkGTO3YFu5ciWHDx/mwIEDOdbFxcUBGPzF5/Lly7keU37tEUKUNqtXr2bChAl8+umntGrVCjc3N2bNmsW+ffty3adRo0Y0aNCAJUuW0KVLF06cOMG6desAePrpp2nRooVu2woVKpT4NQhhqQzNGN2+hg//6VLTOCdw9c19xkdTzzwpRC4kz5iPv7+/7ntNtvj4eOzs7Chfvnyu+02ZMoWJEyfqnicmJkolmxn8UZDuoen34c/J2setXgWfGiUWz4AWFZm37QJfxlbnNf8qONy9CIcWQdhrJXZOUcLsnbUtycx1biORPKNltgq26OhoXn/9dTZt2oSjo2Ou2xn6xSe/X3sebZoohBCWxMHBgaysLL2ynTt3EhYWxtixY3VlFy9ezPdYI0eO5LPPPuPatWt06tRJ9x9vNzc33NzcjBu4EKXY4zNGV/EpXHeIPDmWMzzDpMwEKcxE8oxladWqle4LY7ZNmzbRtGlT7O3tc91PrVajVqtLOjyRh4wsDX+fiQegW908uofu/lw7EY57ELSbXKIxVSjnRIcavvx9Jp5Nnv3pcfcD2PMVNH8J7OT9UiqpVIXupmlukmdyZ7YuoocOHSI+Pp4mTZpgZ2eHnZ0d27dv5/PPP8fOzk7Xcs3QLz6Pt2p71JQpU0hISNAt0dHRJXodQghRGJUqVWLfvn1cunSJmzdvotFoqFq1KgcPHmTjxo2cO3eOd955x2DL3se98MILXLt2je+++44XX3zRBNELIXL1+AyTxZx1WIiikjxTspKSkjh69ChHjx4FtMPaHD16VNcNasqUKXoz4I0ZM4bLly8zceJETp8+zQ8//MCCBQuYNGmSOcIXhbA/6jYJKRmUd3GgSUgu3UMTY+GfBzMldplukoqS/s0rAjD9cl0Ut0C4FwvHV5X4eYXIJnkmd2ZrwdaxY0dOnDihVzZ8+HBq1qzJm2++SeXKlfH392fz5s00atQIgPT0dLZv385HH32U63Hl1x4hyijv6qXiHJMmTWLo0KHUrl2blJQUoqKiGDNmDEePHuX5559HpVIxYMAAxo4dy59//pnnsdzd3enTpw/r16+nV69exY6ttJk5cyZr1qzhzJkzODk5ERYWxkcffUSNGg+7ZgwbNozFixfr7deiRQv27t2re56WlsakSZNYsWIFKSkpdOzYkXnz5hEUFGSyaxFClAKmyDNGOI/kmZJ18OBBOnTooHue3Y1z6NChLFq0iNjYWL0xh0JDQ/njjz+YMGECX331FYGBgXz++ef06dPH5LGLwtkYqW3o0amWH7a5dQ/dMl07SH1wS6jdyyRxdajhg6+bmrh7aZyuM4jaJz6Gvd9Ao8ElMvabEI+TPJM7s1Wwubm5UbduXb0yFxcXypcvrysfP348M2bMoFq1alSrVo0ZM2bg7OzMwIEDzRGyEMJSabJM1xWrCGMqLVq0SPe4evXq7NmzJ8c2CxcuZOHChXplM2fONHiMR8XGxvLCCy+UyR8Wtm/fziuvvEKzZs3IzMxk6tSpdO7cmVOnTuHi8vAX5K5du+q9tg4ODnrHGT9+POvWrWPlypWUL1+eN954gx49enDo0CFsbWX8LCEEps0z2ecrRK6RPGM67du3101SYIih17Fdu3YcPny4BKMSxqYoCpsitbOHdqmbS++p2ONwdJn2cZcPTFa5ZWdrQ9+mQXy19SJzb7fgWzsniI+Ey7uhUmuTxCDKHskzBWPWSQ7yM3nyZFJSUhg7dix37tyhRYsWbNq0qVT2xRVClCBTDiJuIQOW3759m02bNrFlyxa+/PJLc4djFhs2bNB7vnDhQnx9fTl06BBt27bVlavVar1pxB+VkJDAggUL+PHHH3WzWS9dupTg4GD++usvunTpUnIXIKybTH5gXUx9vyzg/SF5RpRlx68mEJeYiouDLWFVvHNuoCiwaSqgQN0+ENTUpPE937QiX229yMaLaSQ16Y1r5DI48J1UsIlSxRrzjEVVsG3btk3vuUqlIiIigoiICLPEI4QQlqpx48bcuXMnR5fIsiwhIQEALy8vvfJt27bh6+tLuXLlaNeuHR988AG+vr6AdjzQjIwMOnfurNs+MDCQunXrsnv3boMVbDJbtSgQmfxAlHKSZ0RZlt09tH0NXxztDVR4n98EUTvAVg0dp5k4OqhY3pknqnqz68JN1th1YwjL4PQ6uBcHboZ/VBTC0lhjnrGoCjYhhBAFc+nSJXOHYFEURWHixIk88cQTesMPdOvWjb59+xISEkJUVBTvvPMOTz75JIcOHUKtVhMXF4eDgwOenvqDF/v5+eWYZCebzFYtCiV78gMhShnJM6Is23RK2z20cx0D3UM1Gvj7/7SPW4wGzxATRvZQ/+bB7Lpwk69OOzE4uAWq6H1waBG0f8ss8QhRWNaYZ8w2i6gQQghhLK+++irHjx9nxYoVeuXPP/883bt3p27duvTs2ZM///yTc+fOsX79+jyPpygKqlzGUpHZqoUQQgjrdfFGEhfik7C3VdGhpm/ODU7/BtdPgIMbPDHB9AE+EF7bDy8XB64npnGywvPawoMLISvDbDEJUdZJBZso9Xxc1WRpDA82m1u5EMJ6vPbaa/z2229s3bo135k/AwICCAkJ4fz58wD4+/uTnp7OnTt39LaLj4/Hz8/woMZqtRp3d3e9RQghhBDWIbt7aKsq3rg72uuv1GTBtgeDtrcaC85emIvazpY+jSsA8GVcLXDxhaQ4OPO72WISoqyTCjZR6rk72WFro+L1lUfo/vlO3fL6yiO5T6ktSi2NRmPuEMqE0vA6K4rCq6++ypo1a9iyZQuhoaH57nPr1i2io6MJCAgAoEmTJtjb27N582bdNrGxsZw8eZKwsLASi10IYblKw+efNchrJk4hzEk3e6ih7qEn18CNM+DoAS3HmjiynJ5vVhGAzWfvkFR3kLZw/3dmjEgUlHwGmoapc7qMwSasxoX4JCJjZLBxa+Xg4ICNjQ0xMTH4+Pjg4OCQaxc+UXSKopCens6NGzewsbHBwcHB3CHl6pVXXmH58uX873//w83NTTdmmoeHB05OTiQlJREREUGfPn0ICAjg0qVLvP3223h7e/Pss8/qth0xYgRvvPEG5cuXx8vLi0mTJlGvXj3drKJCiLJB8ozpKIrCjRs3UKlU2Nvb57+DECYSl5DK0ei7qFQQXuuxCraszIet18JeA6dyJo/vcVV9XWlWyZMDl+7wE50YrpoLl/+B65HgV8fc4QkD7O3tUalU3LhxAx8fH8kzJcRc32mkgk0IUSrY2NgQGhpKbGwsMTEx5g7H6jk7O1OxYkVsbCy3ofPXX38NQPv27fXKFy5cyLBhw7C1teXEiRMsWbKEu3fvEhAQQIcOHVi1ahVubm667T/77DPs7Ozo168fKSkpdOzYkUWLFmFra2DWMCGE1ZI8Y1oqlYqgoCD5rBUWZfMp7Y91jYLL4evuqL/yxGq4fRGcvKDFGDNEZ1j/ZhU5cOkOP5xIY1jN7qhO/wYHvocen5k7NGGAra0tQUFBXL161SoH+bc0pv5OIxVsQohSw8HBgYoVK5KZmUlWVpa5w7Fatra22NnZWfwvavk1rXdycmLjxo35HsfR0ZEvvviCL774wlihCSFKKckzpmNvby+Va8LiZM8e2qWOv/4KjQZ2ztY+bj0O1G5YiqfqBRCxLpLo2ymcaNWX+qd/g2OroFOEtiursDiurq5Uq1aNjAyZkKIkmeM7jVSwCSFKlezuJNKlRAghREmQPCNE2ZRwP4M9F28B0PnxCrZzf8Kt86D2gKYjzBBd7pwcbHm2UQWW7LnMt5cr8JVPTe04ccdWQovR5g5P5MLW1lZ+ZLBCltv3RwghhBCiBFXxcaFOoLtu8Xu8O5AQQogyY8vZ62RqFKr7uRLq7aK/8p+52n+bvQiOljd7eP8Hkx1sOn2dpPrDtIUHvgcZSF8Ik5IWbEIIIYQoUzyd7UGTxecDGps7FCGEEBbi4eyhj7Veu7IXoveBrQO0eNkMkeWvdqA7DYI8OHY1gZ8yWjPcwQ1unoOo7VC5vbnDE6LMkBZsQgghhChTXNR2YGMLv4yEb9s+XP5+39yhCSGEMIPUjCy2nb0BQOfaj1WwZbdeazAA3B6bWdSC9G+ubcX245HbKA36awv3f2fGiIQoe6SCTQghhBBl081zEHvs4XL3irkjEkIIYQY7z98kJSOLCuWcqFvhkS6gN87C2T8AFYS9Zrb4CqJng0CcHWz590YyJwL7aQvP/gEJV80bmBBliFSwCSGEEEIIIYQoszZFxgEQXttPf8bB3Q9mGK/ZHbyrmSGygnNV2/F0g0AAFp1zgEptQNHAwYVmjkyIskMq2IQQQgghhBBClEmZWRr+Oq0df61znUe6gN6/DSd+0j4OG2eGyArv+WbBAKw/EUtyg+HawsOLITPdjFEJUXZIBZsQQgghhBBCiDLpwKU73LmfgaezPc0reT1ccWQpZKaCf30Ibm6+AAuhYXA5avq7kZap4Zfk+uAWAMk34PRv5g5NiDJBKtiEEEIIIYQQQpRJm05pu4d2rOWHne2Dr8eaLDjwvfZx81HwaLdRC6ZSqej/oBXb8oOxKI2HaldkX4sQokRJBZsQQgghhBBCiDJHURQ2RT7oHlr7ke6hF/6Cu5fBsRzUfc48wRXRs42CUNvZcCbuHqcCeoONHVzZA3EnzR2aEFZPKtiEEEIIIYQQQpQ5kTGJXLubgpO9LW2r+zxcsf877b+NBoGDs3mCKyIPZ3ueqhcAwNJTaVCzh3aFtGITosRJBZsQQgghSj9NVq7lPq5q08YihBCiVNj4YPbQttW9cbS31Rbe/lfbgg2g6Ytmiqx4sruJ/nY0hpRGD67h+GpITTBjVEJYPztzByCEEEIIUWw2tvDLSLh57mGZd3Xo8z3uTvLfHSGEEDn9eVJbwdatbsDDwgMLAAWqdoLyVcwTWDE1D/Wiso8L/95I5n+3K9HfpxbcOA3HVkKL0eYOTwirVegWbFFRUSURhxBCiDJC8ogoMTfPQeyxh8uDyrYgTyfqBLrrFj93RzMHKoQo7ebNm0doaCiOjo40adKEnTt35rn9smXLaNCgAc7OzgQEBDB8+HBu3bplomiFIRfi73EhPgl7WxVP1vLVFmamw9Hl2sfNRpkvuGJ6dLKDFQevQrMR2hUHvgdFMWNkQli3QlewVa1alQ4dOrB06VJSU1NLIiYhhBBWTPKIMBlXX9BkMblrLdaPa6NbhoaFmjsyIUQptmrVKsaPH8/UqVM5cuQIbdq0oVu3bly5csXg9rt27WLIkCGMGDGCyMhIfvrpJw4cOMDIkSNNHLl41J8ntK3Xnqjqjbujvbbw3J+QchvcAqBauBmjK74+jYOwt1VxLPoup327gYOr9oenqB3mDk0Iq1XoCrZjx47RqFEj3njjDfz9/Rk9ejT79+8vidiEEEJYIckjwmQcyz3sOvpt24fL3++bOzIhRCk2e/ZsRowYwciRI6lVqxZz5swhODiYr7/+2uD2e/fupVKlSowbN47Q0FCeeOIJRo8ezcGDB00cuXiUwe6hR5Zq/20wQJs/SrHyrmq61PEHYNnRO9Cgv3bFge/MGJUQ1q3QFWx169Zl9uzZXLt2jYULFxIXF8cTTzxBnTp1mD17Njdu3CiJOIUQQlgJySPC5B7vOnrXcCsTIYTIT3p6OocOHaJz58565Z07d2b37t0G9wkLC+Pq1av88ccfKIrC9evX+fnnn+nevXuu50lLSyMxMVFvEcZz5dZ9TsUmYmujIry2n7YwMebh5AaNBpkvOCMa2LwiAL8eiSGl4XBt4Zk/IOGaGaMSwnoVeRZROzs7nn32WVavXs1HH33ExYsXmTRpEkFBQQwZMoTY2FhjximEEMLKSB4RQghR2ty8eZOsrCz8/Pz0yv38/IiLizO4T1hYGMuWLeP555/HwcEBf39/ypUrxxdffJHreWbOnImHh4duCQ4ONup1lHV/ntT+H6NlZS88XRy0hcdWgKKBimGldnKDx7WsXJ5K5Z1JSstkXYwHhDwBShYcWmTu0ISwSkWuYDt48CBjx44lICCA2bNnM2nSJC5evMiWLVu4du0azzzzjDHjFEIIYWUkjwghhCitVCqV3nNFUXKUZTt16hTjxo3j3Xff5dChQ2zYsIGoqCjGjBmT6/GnTJlCQkKCbomOjjZq/GVddvfQrtndQxUFjizTPm70gpmiMj4bGxX9H7RiW77/ysPJDg4v1k7oIIQwqkJXsM2ePZt69eoRFhZGTEwMS5Ys4fLly0yfPp3Q0FBat27Nt99+y+HDh0siXmFCWRrDM8zkVi6EEAVhrDwyc+ZMmjVrhpubG76+vvTq1YuzZ8/qbaMoChEREQQGBuLk5ET79u2JjIzU2yYtLY3XXnsNb29vXFxcePrpp7l69arRr1sIIUTp5+3tja2tbY7WavHx8TlatWWbOXMmrVu35j//+Q/169enS5cuzJs3jx9++CHX1tpqtRp3d3e9RRhHbEIKR6PvolJBl+zuoVf2wu2LYO8CtXuZNT5je66JdrKDo9F3OVWuHbj6QdJ1OLPO3KEJYXUKXcH29ddfM3DgQK5cucKvv/5Kjx49sLHRP0zFihVZsGCB0YIU5mFro+L1lUfo/vlO3fL6yiPY2hj+dU4IIQrCWHlk+/btvPLKK+zdu5fNmzeTmZlJ586dSU5O1m3z8ccfM3v2bL788ksOHDiAv78/4eHh3Lt3T7fN+PHjWbt2LStXrmTXrl0kJSXRo0cPsrKyjHvhQuRHk8d7Lq91QgiTcXBwoEmTJmzevFmvfPPmzYSFhRnc5/79+znynK2tdgB9RZEfrk1tw4PWa00qeuLr7qgtzJ7coO6zoHY1U2Qlw9tVTefa2skOVh6KhSbDtCsOyPd1IYzNrrA7nD9/Pt9tHBwcGDp0aJECEpblQnwSkTEyqKoQwniMlUc2bNig93zhwoX4+vpy6NAh2rZti6IozJkzh6lTp9K7d28AFi9ejJ+fH8uXL2f06NEkJCSwYMECfvzxRzp16gTA0qVLCQ4O5q+//qJLly5FvEpRErI0inX/yJM94+nNc/rl3tWhz/fmiUkIkcPEiRMZPHgwTZs2pVWrVsyfP58rV67ounxOmTKFa9eusWTJEgB69uzJqFGj+Prrr+nSpQuxsbGMHz+e5s2bExgYaM5LKZM26LqHaiudSEuCyLXax40GmymqkjWwRUXWn4hl7eFrTBk3GKcdn8Dlf+B6JPjVMXd4QliNQrdgW7hwIT/99FOO8p9++onFixcX6lhff/019evX1zV7btWqFX/++adufUG69gghhChdjJlHHpWQkACAl5cXAFFRUcTFxenN9KZWq2nXrp1uprdDhw6RkZGht01gYCB169bNdTY4YT6GWlZ3/3wni3dHmTs043l8xtPYYzkr3IQQhbZt2zajHev5559nzpw5vP/++zRs2JAdO3bwxx9/EBISAkBsbCxXrjycrXjYsGG61tR169alb9++1KhRgzVr1hgtJlEwN5PSOHDpNvBIBdupXyEjGcpXheAW5guuBLWqXJ6Q8s7cS8vk9yig5oMZbKUVmxBGVegKtg8//BBvb+8c5b6+vsyYMaNQxwoKCuLDDz/k4MGDHDx4kCeffJJnnnlGV4lWkK49QgghShdj5pFsiqIwceJEnnjiCerWrQugGx8nr5ne4uLicHBwwNPTM9dtHpeWlkZiYqLeIkwnu2X1o8v1xFRzhyWEsHBdu3alSpUqTJ8+3SgTBowdO5ZLly6RlpamazmdbdGiRTkq9F577TUiIyO5f/8+MTExLF26lAoVKhQ7DlE4myKvo1GgfpAHQZ7O2sLs7qENX4BcJqoo7WxsVPRv9shkB81HaVccXwWp8v8YIYyl0BVsly9fJjQ0NEd5SEiI3i81BdGzZ0+eeuopqlevTvXq1fnggw9wdXVl7969Obr21K1bl8WLF3P//n2WL19e2LCFEEJYCGPmkWyvvvoqx48fZ8WKFTnWFWamt4JsM3PmTDw8PHRLcHBwkWIWQghhOjExMbz++uusWbOG0NBQunTpwurVq0lPl5kUy5I/T2onldC1Xrt5Aa7sAZUNNBhgxshK3nNNgrCzUXHkyl1OqxuAdw1IT4JjK80dmhBWo9AVbL6+vhw/fjxH+bFjxyhfvnyRA8nKymLlypUkJyfTqlWrAnXtEUIIUfoYO4+89tpr/Pbbb2zdupWgoCBdub+/9j/Pec305u/vT3p6Onfu3Ml1m8dNmTKFhIQE3WKMlhBCCCFKlpeXF+PGjePw4cMcPHiQGjVq8MorrxAQEMC4ceM4duyYuUMUJSzhfgZ7Lt4CoFvdAG3h0WXaf6t2AvcAM0VmGj5uajrX0f7fZuWBaGg2UrviwPcgk20IYRSFrmDr378/48aNY+vWrWRlZZGVlcWWLVt4/fXX6d+/f6EDOHHiBK6urqjVasaMGcPatWupXbt2gbr2GCJdd4QQwrIZK48oisKrr77KmjVr2LJlS45WcaGhofj7++vN9Jaens727dt1M701adIEe3t7vW1iY2M5efJkrrPBqdVq3dih2YsQQojSo2HDhrz11lu88sorJCcn88MPP9CkSRPatGkj4z1bsc2nr5OpUajp70aotwtkZcKxBy3fGw0yb3AmMqC5tpvomiPXSKnVF+xd4OZZuLTTzJEJYR0KXcE2ffp0WrRoQceOHXFycsLJyYnOnTvz5JNPFmnsnBo1anD06FH27t3Lyy+/zNChQzl16pRufWG79kjXHSGEsGzGyiOvvPIKS5cuZfny5bi5uREXF0dcXBwpKSmANn+MHz+eGTNmsHbtWk6ePMmwYcNwdnZm4MCBAHh4eDBixAjeeOMN/v77b44cOcKgQYOoV6+eblZRIYQQ1iEjI4Off/6Zp556ipCQEDZu3MiXX37J9evXiYqKIjg4mL59+5o7TFFC/jjxWPfQi1vgXiw4l4fq3cwYmem0ruJNsJcT91IzWX8+GRo8r11xQGaqFsIY7Aq7g4ODA6tWreL//u//OHbsGE5OTtSrV083a05Rjle1alUAmjZtyoEDB5g7dy5vvvkmoO3aExDwsLluXt12QNt1Z+LEibrniYmJUskmhBAWxFh55Ouvvwagffv2euULFy5k2LBhAEyePJmUlBTGjh3LnTt3aNGiBZs2bcLNzU23/WeffYadnR39+vUjJSWFjh07smjRImxtbYt1nUIIISzHa6+9phunc9CgQXz88ce6SXEAXFxc+PDDD6lUqZKZIhQl6U5yOjvO3QCgR/3s7qEPJjeo/zzYOZgpMtPKnuxg1sazrNh/hed6j4SDP8Dp3yExBtwDzR2iEKVaoSvYsmVPTGBsiqKQlpam17WnUaNGwMOuPR999FGu+6vVatRqtdHjEkIIYVzFzSNKAcYLUalUREREEBERkes2jo6OfPHFF3zxxRdFjkUIIYRlO3XqFF988QV9+vTBwcFwZUpgYCBbt241cWTCFP48GUemRqFWgDtVfd0g+Rac+UO7suEL5g3OxPo2DeKzzec4dPkOZ5V61KgYBld2w6HF0GGKucMTolQrdAVbVlYWixYt4u+//yY+Ph6NRqO3fsuWLQU+1ttvv023bt0IDg7m3r17rFy5km3btrFhwwa9rj3VqlWjWrVqzJgxQ69rjxBCiNLHmHlEiFLH1Rc0WWAjLSSFMKVp06YRFhaGnZ3+15/MzEx2795N27ZtsbOzo127dmaKUJSk345dA+DpBg9aaJ1YDZoMCGgI/nVz39EK+bo50qmWHxsi41ix/woRzUY8qGBbBG0nga29uUMUotQqdAXb66+/zqJFi+jevTt169bNczy0/Fy/fp3BgwcTGxuLh4cH9evXZ8OGDYSHhwMF69ojhBCidDFmHhGi1HEsp61c+2Uk3Dz3sLxqJ+j4rtnCEsLadejQgdjYWHx9ffXKExIS6NChA1lZWWaKTJS0uIRU9kXdBqBngwDtjJlHHnQPLSOTGzxuQIuKbIiMY83hq7zVuTuOLr6QFAdnfoc6z5o7PCFKrUJXsK1cuZLVq1fz1FNPFfvkCxYsyHN9Qbr2CCGEKF2MmUeEKLVunoPYYw+fext/2A0hxEO5TZR269YtXFxczBCRMJXfj8egKNAkxJMgT2eIOQrXT4KtGuo9Z+7wzKJNVW8qlHPi2t0U1p28Sd8mQ2HHLNj/vVSwCVEMRZrkIHtSAiGEEKKwJI8IIYQwld69ewPaH+6HDRumN1ZzVlYWx48fJywszFzhCRNYdywGeKR7aHbrtVo9wMnTTFGZl42NioEttJMdLN17mb6Dh8PO2XB5F1w/BX61zR2iEKWSTWF3eOONN5g7d26BBpcWQgghHid5RAghhKl4eHjg4eGBoii4ubnpnnt4eODv789LL73E0qVLzR2mKCGXbiZz7GoCNip4ql4AZKRqx1+DMts9NFv/ZsE42Npw7GoCRxNdoOaDngUHvjdvYEKUYoVuwbZr1y62bt3Kn3/+SZ06dbC31x8Ecc2aNUYLTgghhPWRPCKEEMJUFi5cCEClSpWYNGmSdActY9YcvgpA66re+Lip4eQvkJoAHsEQWrYntCjvqqZH/QDWHLnGkj2XaNj8JTi9Do6thE7TwNHD3CEKUeoUuoKtXLlyPPus9MsWQghRNJJHhBBCmNq0adPMHYIwMY1G4ZfD2tlDn2sSpC3M7h7aYIDM5gwMbhXCmiPX+P14LFO7daC8Ty24cRqOLoeWL5s7PCFKnUJXsGX/CiSEEEIUheQRIYQQptC4cWP+/vtvPD09adSoUZ6zVh8+fNiEkQlT2PPvLa7dTcHN0Y4udfzhbjRc3Kpd2XCgeYOzEA2Dy1E/yIPjVxNYdegqY5uPgvUTYf930Hw02BR6RCkhyrRCV7ABZGZmsm3bNi5evMjAgQNxc3MjJiYGd3d3XF1djR2jEEIIKyN5RAghREl75plndJMa9OrVy7zBCJP76WA0AD0bBOJobwtHfgQUCG0LXqHmDc5CqFQqBrcM4T8/H2fZ3iuMHt8P278i4PZF+HcLVO1k7hCFKFUKXcF2+fJlunbtypUrV0hLSyM8PBw3Nzc+/vhjUlNT+eabb0oiTmEhfFzVZGkUbG1y/wVQCCHyInlECCGEKTzaLVS6iJYtiakZbIiMA6BvkyDIynzYPbTxUDNGZnl6Nghkxh+nuXY3hb8vJtO54Quw72vYN18q2IQopEK3+Xz99ddp2rQpd+7cwcnJSVf+7LPP8vfffxs1OGF53J3ssLVR8frKI3T/fKdumbXxjLlDE0KUEpJHhBBCmFp0dDRXr17VPd+/fz/jx49n/vz5ZoxKlJT1x2NJzdBQ1deVhsHl4MJfkHgNnLygVk9zh2dRHO1t6dcsGIAf916GZiO1K85vgtv/mjEyIUqfQlew7dq1i//+9784ODjolYeEhHDt2jWjBSYs24X4JCJjEnVL9O375g5JCFFKSB4RxVHFx4U6ge56i5+7o7nDEkJYuIEDB7J1q3b8rbi4ODp16sT+/ft5++23ef/9980cnTC27O6h/8/efYdHUX0NHP9uem+kQxJCLwGk9ybSQRCULkVAEBvtRRCR4A9BQRAb2AnSVQRFFIhK6J0gTXoglIQAIQkJpM/7x5KFTTYhGzbZzeZ8nmce2Jm7M2d2kjmZu7c837CCeuy9I8vUG54aBFa2RozMNA1pGoRKBTvP3eKC4vug5ZoCB78zdmhClCp6dxHNzs4mKysrz/qrV6/i7OxskKCEEEKYL8kjosiys/h0YANjRyGEKIVOnDhBkyZNAPjxxx+pU6cOu3fvZuvWrYwdO5Z3333XyBEKQzl5PZEj0QlYWajoU788JF2Hs5vVGxsMNW5wJirAw4EONbz56784lu+9TGiTl9Wt/iKXQ/vpYONg7BCFKBX0bsHWsWNHFi1apHmtUqlITk5m5syZdOvWzZCxCSGEMEOSR0SRWVjCulHwVRvt5W9pfSKEKFhGRoZmwoO//vqLZ599FoAaNWoQExNjzNCEgS3fexmALiG+eLvYQeRKULIhsAV4VTdydKZraPOKAKw7fJWUgHbgXhFSE+H4j8YMS4hSRe8Kto8//pjt27dTq1YtUlNTGTRoEBUrVuTatWt8+OGHxRGjEEIIMyJ5RDyRW2ch5l/tJSHa2FEJIUxc7dq1+fLLL9m5cyfh4eF06dIFgOvXr1OuXDkjRycMJeFeOhuOqoebGNaiImRnw5Ef1BsbyuQGBWlVxZNgT0fupmWy/t9YaDxaveHAN6Aoxg1OiFJC7wo2f39/jh49yuTJkxkzZgz169fngw8+IDIyEm9v7+KIUQghhBmRPCKEEKKkffjhh3z11Ve0a9eOgQMHUq9ePQB+++03TddRfSxevJjg4GDs7Oxo2LAhO3fuLLB8Wloa06dPJygoCFtbWypXrsz3339fpHMR+fvp0FVSM7Kp6edCoyB3uPA3JEaDnSvU6mXs8EyahYWKF5sFAfDD3ksoTw0GK3u4cQKi9xo5OiFKB73HYAOwt7fnpZde4qWXXjJ0PEIIIcoAySNC6MHJG7Kz1F1kc8tvvRBCS7t27bh16xZJSUm4u7tr1r/88ss4OOg3vtTatWsZP348ixcvpmXLlnz11Vd07dqVU6dOERgYqPM9/fr148aNG3z33XdUqVKFuLg4MjMzn+ichLbsbEU9CyYwtHmQenKDAw9miX1qMFjbF/BuAdC3YQXmbznD2RvJ7I/NplndfuoJIg58DUEtjB2eECZP7wq2H374ocDtQ4fKwJFCCCHyJ3lECD3ZuT0cf+7W2YfrPatB32+NFpYQpY2lpaVW5RpAxYoV9d7PwoULGTlyJKNGjQJg0aJFbNmyhSVLljB37tw85Tdv3sz27du5ePEiHh4eRT6uKFjE2Tii4+/hYmdFr6f8If4inAtXb2w8yrjBlRKu9tY816A8q/ZH88PeSzTr8LK6gu2/jerJIlz8jR2iECZN7wq2N998U+t1RkYG9+7dw8bGBgcHB3kwEkIIUSDJI0IUUc74c0IIvd24cYPJkyfz999/ExcXh5JrTClds1vrkp6ezuHDh5k6darW+k6dOrFnzx6d7/ntt99o1KgR8+bNY/ny5Tg6OvLss8/yv//9D3t73a2q0tLSSEtL07xOSkoqVHxl2VfbLwLQr1EADjZWcPA7QIEqz0C5ysYNrhQZ2jyIVfuj2XLyBrE9nsY3qCVc3g0Hv4UOMtuuEAXRu4Ltzp07edadO3eOV155hf/7v/8zSFBCCCHMl+QRIYQQJW348OFER0czY8YM/Pz81N0Hi+DWrVtkZWXh4+Ojtd7Hx4fY2Fid77l48SK7du3Czs6O9evXc+vWLcaNG0d8fHy+47DNnTuXWbNmFSnGsujw5Xj2R8VjbaliZOtgSL8HkcvVG5u8bNzgSpkavi40qejBgUvxrNp/mYlNx6or2A59D60ng41+XaqFKEv0nuRAl6pVq/LBBx/kaZUghBBCFEZR88iOHTvo2bMn/v7+qFQqNmzYoLV9+PDhqFQqraVZs2ZaZdLS0nj99dfx9PTUtCq4evXqk56SeAJZ2TJbmRDCsHbt2sXKlSt55ZVX6N27N7169dJa9JW7gk5RlHwr7bKzs1GpVKxcuZImTZrQrVs3Fi5cSFhYGPfv39f5nmnTppGYmKhZrly5oneMZcnibRcA6FO/An6u9nD8J0hNBPeK6hZsQi9DW6gnO1h14ArpVbqCWxDcvwPH1hg5MiFMm0Eq2EA9psH169cNtTshhBBlTFHySEpKCvXq1ePzzz/Pt0yXLl2IiYnRLH/88YfW9vHjx7N+/XrWrFnDrl27SE5OpkePHoXuLiQMz9JCxZtrIun+6U7NsmxPlLHDEkKUYgEBAXm6hRaFp6cnlpaWeVqrxcXF5WnVlsPPz4/y5cvj6uqqWVezZk0URcn3Cx1bW1tcXFy0FqHbfzFJ/H06DgsVjG1XGRQFDnyj3th4lEwEUwSda/vi7WzLreQ0/jwVB83GqTfsXQzZ2cYNTggTpncX0d9++03rtaIoxMTE8Pnnn9OyZUuDBSaEEMI8GTKPdO3ala5duxZYxtbWFl9fX53bEhMT+e6771i+fDnPPKP+hnvFihUEBATw119/0blzZ73iEYZzPi6Zk9cfjjl0IynViNEIIUq7RYsWMXXqVL766qsnmmDAxsaGhg0bEh4eznPPPadZHx4enm9LuJYtW/LTTz+RnJyMk5MTAGfPnsXCwoIKFSoUORahtiRC3Xqtax0/gj0d4fJeuHEcrOzUs4cKvVlbWjCoaSCL/jrH8r2X6fXSYNj2Ptw+B+fDoZr8fSSELnpXsPXu3VvrtUqlwsvLi6effpoFCxYYKi4hhBBmqqTzSEREBN7e3ri5udG2bVvef/99vL29ATh8+DAZGRl06tRJU97f35+QkBD27Nmjs4JNBp4WQojSp3///ty7d4/KlSvj4OCAtbW11vb4+PhC72vixIm8+OKLNGrUiObNm/P1118THR3N2LFjAXX3zmvXrmlmzR40aBD/+9//GDFiBLNmzeLWrVv83//9Hy+99FK+kxyIwjkfl8zvx9St38e1ezCRwcEHrdfqvAAOHkaKrPQb1CSQz/85z6HLdzh1W6FWw2Gw5zPY+4VUsAmRD70r2LKlSagQQognUJJ5pGvXrrzwwgsEBQURFRXFjBkzePrppzl8+DC2trbExsZiY2ODu7u71vsKGqxaBp4WQojSZ9GiRQbbV//+/bl9+zbvvfceMTExhISE8McffxAUpB63KiYmhujoaE15JycnwsPDef3112nUqBHlypWjX79+zJ4922AxlVXzt5wmW4FnavpQ298V7sbCqV/VG5uMNm5wpZy3ix2dQ3zZdCyG5fsuMffpMeouolHbIfY4+NYxdohCmBy9K9iEMGdeTrZkZStYWuQdpFbf9UII4+vfv7/m/yEhITRq1IigoCA2bdpEnz598n1fQYNVT5s2jYkTJ2peJyUlERAQYLighRBCGNywYcMMur9x48Yxbtw4ndvCwsLyrKtRowbh4eEGjaGsO3z5DltO3sBCBW91qf5gZRhkZ0JAM/CrZ9T4zMHQZkFsOhbDhsjrTO1aE9daveDkL+qWbH2+NnZ4QpgcvSvYHn2oeJyFCxfqu3shjMrF3kozuPb5uGTN+nbVvfi/zjXyrK/i7cQnA+obI1QhSi1j5hE/Pz+CgoI4d+4cAL6+vqSnp3Pnzh2tVmxxcXG0aNFC5z5sbW2xtbU1aFxCCCGK34ULF1i6dCkXLlzgk08+wdvbm82bNxMQEEDt2rWNHZ7Qg6IofPjnaQBeaBhAVR9nyEyHQ9+rC0jrNYNoEuxBdR9nzty4y8+HrzKy5RvqCrbjP8PT74BboLFDFMKk6F3BFhkZyZEjR8jMzKR6dfU3BWfPnsXS0pIGDRpoyuX3zb8QpUHuwbUreznqXC+E0J8x88jt27e5cuUKfn5+ADRs2BBra2vCw8Pp168foO7ac+LECebNm2fw4wtRUqR1tRDatm/fTteuXWnZsiU7duzQjMd57Ngxvv32W37++Wdjhyj08Pd/cRy4FI+tlQXjO1ZVrzy9EZJvgJMP1HzWuAGaCZVKxYvNg3hnwwlW7LvMiBZtsajUDi5GwJ7PoZv8rSTEo/SuYOvZsyfOzs4sW7ZM823/nTt3GDFiBK1bt2bSpEkGD1IIIYT5MGQeSU5O5vz585rXUVFRHD16FA8PDzw8PAgNDaVv3774+flx6dIl3n77bTw9PTUzv7m6ujJy5EgmTZpEuXLl8PDwYPLkydSpU0czq6goRtlZYGGpc72Xk7QSLKz5W04Tceam5rW0rhYir6lTpzJ79mwmTpyIs7OzZn379u355JNPjBiZ0FdWtsKHm9Wt10a0DMbP9cFEEQceTG7QcDhY2RgnODP0XP3yfPjnaaJupbDr/C3atJqgrmA78gO0nQKOnsYOUQiToXcF24IFC9i6datWVxp3d3dmz55Np06dpIJNCCFEgQyZRw4dOkT79u01r3O6nw4bNowlS5Zw/PhxfvjhBxISEvDz86N9+/asXbtW6+Hq448/xsrKin79+nH//n06dOhAWFgYlpY6Kn6EYVlYwrpRcOvsw3We1aDvt7jYyzCxhXUl/p60rhbiMY4fP86qVavyrPfy8uL27dtGiEgU1bojVzkXl4yrvTWv5MwcGnscoveChRU0HGHcAM2Mo60VfRtWIGzPJX7Ye5k2Q9uCf324Hgn7v4Knpxs7RCFMht5/vSYlJXHjxo084xTExcVx9+5dgwUmhBDCPBkyj7Rr1w5FUfLdvmXLlsfuw87Ojs8++4zPPvtMr2MLA7l1FmL+NXYUQggz5+bmRkxMDMHBwVrrIyMjKV++vJGiEvpKzcji43D1lzKvta+Cq721esO+L9X/1uwJLn5Gis58DWkWRNieS/x9+gZX7twnoOV4+GkYHPgaWr4Jtk7GDlEIk2Ch7xuee+45RowYwc8//8zVq1e5evUqP//8MyNHjixwRjYhhBACJI8IYWgV3O2p7e+iWXLGDRVCPDRo0CDeeustYmNjUalUZGdns3v3biZPnszQoUONHZ4opLA9l4hJTMXf1Y4XmwepVybHwfEf1f9vpntmV/Fkqng70bJKORQFVu6PVldkelSG1AT1zK1CCKAIFWxffvkl3bt3Z8iQIQQFBREUFMTgwYPp2rUrixcv1mtfc+fOpXHjxjg7O+Pt7U3v3r05c+aMVhlFUQgNDcXf3x97e3vatWvHyZMn9Q1bCCGEiTBkHhGiTHPyhuwspnSpyaY3WmuWTwc2UI9vJ4TQeP/99wkMDKR8+fIkJydTq1YtWrduTYsWLXjnnXeMHZ4ohIR76Szeph53dWKn6thZPxjK4eB3kJUO5RtBQBMjRmjehjavCMDag9GkZqFuuQaw51PIuG+0uIQwJXpXsDk4OLB48WJu376tmQkuPj6exYsX4+io3zem27dv59VXX2Xfvn2Eh4eTmZlJp06dSElJ0ZSZN28eCxcu5PPPP+fgwYP4+vrSsWNH6Y4qSrWsbN1d2vJbL4Q5MWQeEaJMs3N7OI7dV20eLutG6Z48QogyzNrampUrV3Lu3Dl+/PFHVqxYwZkzZ1i+fLmMuVlKLIm4QFJqJjV8nXmu/oNuvRmpcPBb9f+bS+u14tShhjf+rnbcuZfBpmMxUG8guAaoZ2498oOxwxPCJBR5BOGYmBhiYmJo06YN9vb2KIqCSqXfdPCbN2/Wer106VK8vb05fPgwbdq0QVEUFi1axPTp0zXdhpYtW4aPjw+rVq1izJgxRQ1fCKOytFDx5ppIzscla9bJrG+irDFEHhHmK6fbYw4fFzsjRmPiZBw7IXTKmfgmP/v27dP8f+HChcUdjngC1xLus3TPJQDe6lIDS4sHfy8c/wnu3QKXClCzl/ECLAOsLC0Y1DSQj7aeZeX+y/RtWAFaTYBNE2HXx9BgGFhLrhZlm94VbLdv36Zfv35s27YNlUrFuXPnqFSpEqNGjcLNzY0FCxYUOZjExEQAPDw8AIiKiiI2NpZOnTppytja2tK2bVv27NkjFWyiVDsflyyzvokyqTjziDADj3R7nNLF2MEIIUqzyMhIrdeHDx8mKyuL6tWrA3D27FksLS1p2LChMcITevg4/Czpmdk0DfagXXUv9UpFgX1L1P9v+jJYyuzTxa1f4wAW/XWOI9EJnLqeRK36Q2DnAki6BpHLocloY4cohFHp3UV0woQJWFtbEx0djYODg2Z9//7987RI04eiKEycOJFWrVoREhICQGxsLAA+Pj5aZX18fDTbcktLSyMpKUlrESWnspej1kDLFdztjR2SEMLEFFceEWYiv26Pf79n7MiEEKXMtm3bNEvPnj1p164dV69e5ciRIxw5coQrV67Qvn17unfvbuxQRQFOxyax7shVAKZ2rfGwtfvFCIg7CdaO6tZToth5O9vROcQXgJX7L4OVrboVG6hbsWWmGTE6IYxP72r+rVu3smXLFipUqKC1vmrVqly+fLnIgbz22mscO3aMXbt25dmWu8tQQd2I5s6dy6xZs4ochygadwdryM5SD6ycW3YWXk62JR+UEMIkFVceEWYmd7dHz2rGi0UIUeotWLCArVu34u7urlnn7u7O7Nmz6dSpE5MmTTJidKIg8zefQVGgWx1f6gc+vH7sezAxUv3BYO9mlNjKosFNA9l0LIYNkdeY1q0mTvVffNiK7ehKaPSSsUMUwmj0bsGWkpKi1eIgx61bt7C1LVolyuuvv85vv/3Gtm3btB64fH3VteO5W6vFxcXladWWY9q0aSQmJmqWK1euFCkmoR9HW6sCB1p2sZcm20IIteLII0IIIURBkpKSuHHjRp71cXFxMnmaCTsSfYe/T8dhaaFicqfqDzfcPAvntgIqaDrWaPGVRc0rlaOSlyMp6VlsiLymHnet5Xj1xh0fqSeeEKKM0ruCrU2bNvzww8NZQlQqFdnZ2cyfP5/27dvrtS9FUXjttdf45Zdf+OeffwgODtbaHhwcjK+vL+Hh4Zp16enpbN++nRYtWujcp62tLS4uLlqLKEE5LQ5ylltnjR2REMLEGDKPCCGEEIXx3HPPMWLECH7++WeuXr3K1atX+fnnnxk5cqRmMjVhej4OVz9L9KlfnkpeTg837H8w9lr1rlCushEiK7tUKhWDmwYBsGLfZRRFgYbDwaW8uhXboe+NG6AQRqR3s6L58+fTrl07Dh06RHp6OlOmTOHkyZPEx8eze/duvfb16quvsmrVKn799VecnZ01LdVcXV2xt7dHpVIxfvx45syZQ9WqValatSpz5szBwcGBQYMG6Ru6EEIIE2DIPCKEEEIUxpdffsnkyZMZMmQIGRkZAFhZWTFy5Ejmz59v5OiELocvx7Pz3C2sLFS8/nTVhxvuxcPR1er/NxtnnODKuOcbVGDe5tOcjr3Lkeg7NAzygLZvwcY31N1FGwwFW6fH70gIM6N3C7ZatWpx7NgxmjRpQseOHUlJSaFPnz5ERkZSubJ+3x4sWbKExMRE2rVrh5+fn2ZZu3atpsyUKVMYP34848aNo1GjRly7do2tW7fi7Oysb+hCCCFMgCHziBBChwczseqU33ohzJyDgwOLFy/m9u3bREZGcuTIEeLj41m8eDGOjo7GDk/o8HH4OQCeb1iBwHKPDC1xOAwy74NvHajYyjjBlXGuDtb0rOcPwMp90eqVTw0Cj8pw79bDFoZClDF6tWDLyMigU6dOfPXVVwaZSEBRlMeWUalUhIaGEhoa+sTHE0IIYVyGziNCCB0enYn10aEaPKtB32+NFpYQpsDR0ZG6desaOwzxGAcvxbPrvLr12qvtqzzckJUBB75R/7/ZOMhn4jtR/IY0C+Lnw1f5/XgMM3rUwt3RBtq/DetGwu7PoNFIcPAwdphClCi9WrBZW1tz4sSJfGfwFEIIIQoieUSIEiTjogohSqnF284D8EKjAAI8Hmm9dnID3L0Ojt4Q0tc4wQkA6lVwpba/C+mZ2fx8+Kp6Ze0+4BMCaYmw51PjBiiEEejdRXTo0KF89913xRGLEAbl5WRLVvbjW0kKIUqW5BHzld89V+7FQgghCuvCzWS2nbmJSgUvt6n0cIOiwO5P1P9vMhqsZOZxY1KpVAxppp7sYOX+y2RnK2BhAU+/oy6w70u4m3fmXiHMmd6THKSnp/Ptt98SHh5Oo0aN8oxZsHDhQoMFJ8STcLG3wtJCxZtrIjkfl6y1rV11L/6vcw0jRSZE2SZ5xHzpuufm3G9zr+/XqALDWgTr2o0QQogybOnuKAA61PAm2PORvxHOhcON42DjBI1HGSk68ahn6/kzZ9N/XLp9jz0XbtOqqidU6wIVGsPVg7DzI+gmk4iIsqNQFWzHjh0jJCQECwsLTpw4QYMGDQA4e1a7q4F0+RGm6HxcMievJ2mtq+wlg9kKUZIkj5Qdue+5Offb3OtvJKWWeGxCCCFMW8K9dNYdvgbAS61yfQmz68EXcA2Hy9heJsLR1ornGpTnh72XWbHvsrqCTaWCDu/Csp5waCk0fw3cg4wdqhAlolAVbPXr1ycmJgZvb28uX77MwYMHKVeuXHHHJoQQwkxIHhFCCGFOFi9ezPz584mJiaF27dosWrSI1q1bP/Z9u3fvpm3btoSEhHD06NHiD7SUWXPwCvczsqjh60zzSo/8nXB5L0TvBUsbdYWNMBmDmwbxw97LhP93gxtJqfi42EFwG6jUDi5GwPYPofdiY4cpRIko1Bhsbm5uREWpm+peunSJ7OzsYg1KlCwZG8c0FDRmnFwjUdpJHhFCCGEu1q5dy/jx45k+fTqRkZG0bt2arl27Eh0dXeD7EhMTGTp0KB06dCihSEuXjKxslu25BMDIVsHardpzWq89NQhc/Eo+OJGv6r7ONK7oTla2wpoDVx5uePpd9b//roabZ4wTnBAlrFAt2Pr27Uvbtm3x8/NDpVLRqFEjLC0tdZa9ePGiQQMUxa+gMXNEyclvzLgq3k58MqC+ESMT4slJHhFCCGEuFi5cyMiRIxk1Sj0O2KJFi9iyZQtLlixh7ty5+b5vzJgxDBo0CEtLSzZs2FBC0ZYem0/EEpOYiqeTDT3r+T/cEHMMzm0FlQW0fNN4AYp8DWkWxMFLd1hzMJpX21fGytICKjSEGj3g9O/wz2zov9zYYQpR7ApVwfb111/Tp08fzp8/zxtvvMHo0aNxdnYu7thECcpvzBxR8nSNGSdEaVdceWTHjh3Mnz+fw4cPExMTw/r16+ndu7dmu6IozJo1i6+//po7d+7QtGlTvvjiC2rXrq0pk5aWxuTJk1m9ejX379+nQ4cOLF68mAoVKjxxfEIIIcxLeno6hw8fZurUqVrrO3XqxJ49e/J939KlS7lw4QIrVqxg9uzZxR1mqfTdLnVL9yHNgrCzfuRLuJ0L1P/Wfg48Kul4pzC2LiG+eDjaEJOYyj+n4+hU21e9of10OL0J/vsNrh5WV7oJYcYKPYtoly5dADh8+DBvvvmmVLAJg8ldmVfB3b5I64UQpq048khKSgr16tVjxIgR9O3bN8/2efPmsXDhQsLCwqhWrRqzZ8+mY8eOnDlzRnP88ePHs3HjRtasWUO5cuWYNGkSPXr04PDhw/m2shNCCFE23bp1i6ysLHx8fLTW+/j4EBsbq/M9586dY+rUqezcuRMrq8I9fqWlpZGWlqZ5nZRk3l++Hom+w9ErCdhYWjC46SMD4l8/Cqc2ACpoPclI0YnHsbWy5IVGFfhq+0VW7o9+WMHmUwvqDYR/V0H4uzD8d/UkCEKYqUJXsOVYunRpccQhyiB3B2vIzuLTgQ3ybizCei8nW8MH+YSyshUsLSSJCPEoQ+aRrl270rVrV53bFEVh0aJFTJ8+nT59+gCwbNkyfHx8WLVqFWPGjCExMZHvvvuO5cuX88wzzwCwYsUKAgIC+Ouvv+jcubPBYhVCCGE+cs96rSiKzpmws7KyGDRoELNmzaJatWqF3v/cuXOZNWvWE8dZWuS0Xnv2KX+8nB/5m/6f/6n/rfMC+NTW8U5hKgY1CeSr7RfZce4m0bfvEVjOQb2h/dtwYh1c3qXu6ltN/rYS5kvvCjYhDMXR1gosLGHdKLh19uGGKs+op3Yu7HrPatD3W1zsTe/HWca3E8J4oqKiiI2NpVOnTpp1tra2tG3blj179jBmzBgOHz5MRkaGVhl/f39CQkLYs2ePVLAJIYTQ4unpiaWlZZ7WanFxcXlatQHcvXuXQ4cOERkZyWuvqWe/zM7ORlEUrKys2Lp1K08//XSe902bNo2JEydqXiclJREQEGDgszEN1xLus/mE+vN8qWXwww2XdsH5v8DCCtpPM1J0orCCyjnSppoXO87eZNWBaKZ2ffC84xYATcfAnk/hr1D1M52F9BAQ5sn0aiRE2XPrLMT8+/C1ZzX91ps4Gd9OCOPIefjR1Y3n8uXLmjI2Nja4u7vnKZNfV5+y1m1HCCHEQzY2NjRs2JDw8HCee+45zfrw8HB69eqVp7yLiwvHjx/XWrd48WL++ecffv75Z4KDg/O8B9RfCNnaml7vjOLww95LZGUrNK9Ujlr+LuqVigJ/PWjB12CYjL1WSgxpGsiOszf58dAVJnSsiq3Vg4q01hPhyA8Qd0o9q2j9IcYNVIhiYmHsAIQQQojiVNhuPIUtM3fuXFxdXTWLubYoEGbIyRuys3Rvy2+9ECKPiRMn8u233/L999/z33//MWHCBKKjoxk7diygbn02dOhQACwsLAgJCdFavL29sbOzIyQkBEfHsv3Fa0paJqv3RwMwstUjlY1nN8PVA2BlD22nGCk6oa+na3jj52pHfEq6plUiAPbuD8fQ2zYHMu4bJ0AhiplUsAkhhDBLvr7qAXYL6sbj6+tLeno6d+7cybdMbtOmTSMxMVGzXLlypRiiF6IY2Lk9HJrhqzYPl3WjpLuOEHro378/ixYt4r333uOpp55ix44d/PHHHwQFqQfnj4mJITo62shRlg6/HLlKUmomFcs58HQNb/XKzHQIn6n+f9Mx4OxrvACFXqwsLRjQOBCAlfty/Q40eRlcAyDpGuz/0gjRCVH8pIJNCCGEWQoODsbX15fw8HDNuvT0dLZv306LFi0AaNiwIdbW1lplYmJiOHHihKZMbra2tri4uGgtQpQqOUMt5CyPjmsqhCiUcePGcenSJdLS0jh8+DBt2rTRbAsLCyMiIiLf94aGhnL06NHiD9LEZWcrfL/7EgAjWgZjkTMx2N7P4dYZcPCEVuONFp8omv6NA7C0UHHgUjxnb9x9uMHaDtpPV/9/58dwL944AQpRjKSCTQghRKmVnJzM0aNHNQ8qUVFRHD16lOjoaFQqFePHj2fOnDmsX7+eEydOMHz4cBwcHBg0aBAArq6ujBw5kkmTJvH3338TGRnJkCFDqFOnjmZWUSGEEEIYXsTZOKJupeBsZ8XzDSuoV965BNvnqf/f+X1110JRqvi62tGxproXwMp9l7U31u0HPiGQlgg7FxghOiGKl1SwCSGEKLUOHTpE/fr1qV+/PqAeF6d+/fq8++67AEyZMoXx48czbtw4GjVqxLVr19i6dSvOzs6afXz88cf07t2bfv360bJlSxwcHNi4cSOWltJlTgghhCgu3+2KAmBA4wAcba3UExv8MQUy70PF1lC3v5EjFEU1uJm6m+gvR66Rkpb5cIOFJTzzYPKKA1/Dncs63i1E6SUVbGVEVrZi7BCEEMLg2rVrh6IoeZawsDBAPcFBaGgoMTExpKamsn37dkJCQrT2YWdnx2effcbt27e5d+8eGzdulIkLhBBCiGJ0OjaJ3edvY6GCYS0qPlj5O5zbAhbW0H0hPGZCImG6Wlb2pGI5B+6mZbLx3+vaG6t0gOA2kJUO2943ToBCFBMrYwcgSoalhYo310RyPi5Za3276l78X+caRopKCCFEWVHZS3umPB8XOyNFIoQQwtiW7roEQJcQXyq4O0DKbfjj/9QbW74JXtWMF5x4YhYWKgY1DWTOH6dZsf8y/RsHPJydXaWCju/B1+3g2I/QbBz4P2XMcIUwGKlgK0POxyVz8nqS1rrcDzxCCCGEIbk7WEN2Fp8ObGDsUER+nLwhOyv/mUQL2iaEEHq6lZzG+qPXABjZKljdNXTDK3A3BjyrQZvJRo5QGMLzDQP4aOtZTlxL4tjVROoFuD3c6F8f6rwAx3+Cre/AsI3SYlGYBalgE2ajgrs9tf1dtF4XVe6KxyfZlxBClGWOtlbqypl1o7Rnq6zyDHR413iBiYfs3HRfI1A/7Pb91ihhCSHM06r90aRnZlOvgisNAt1h3xJ111BLW3h+KVjL393mwMPRhu51/FgfeY0V+y5rV7CB+m+AU7/BpZ1w5k+o0c0ocQphSFLBJkq/B9+8T+lSkyldcm3LzsLLybbQuyqwpYWe+xJCCPGIW2ch5t+Hrz2l+4/JyX2NhBDCwNIys/hhr3pg+5daBaOKOQrhD75s6fw++Ibk/2ZR6gxpFsj6yGtsPHadd7rXwtXB+uFGt0Bo/irsWgjhM6BqR7C0zn9nQpQCUsEmSr/8vnl/8K27i33hf8zzbWlRhH0JIYQQQgghHvr93xhuJafh62JHt8o28P0IyM6AGj2g8ShjhycMrEGgOzV8nTkde5efDl9hVOtK2gVaTYDI5XD7PBz6HpqOMU6gQhiIzCIqzEfON+85S+5uLsbalxBCCCGEEGWcoih8vzsKgBFNfbBeOwjuRIFrIDz7mYzBZYZUKhVDm1cEYOnuS2RkZWsXsHOBdtPU/4/4AO7fKdkAhTAwqWATJSJnfLRHF5lBTgghhBBCiLJh9/nbnLyehIM1jIidA1cPqHuiDPkZHDyMHZ4oJn0alMfTyYZrCff543hM3gINhoFXTbgfDxEflnyAQhiQ9HcTxaug8dHMgJeTLVnZCpYW8o2bEEIIIYQQ+Vmy/Tyg8L3vBmzObQJLGxi4GryqGzs0UYzsrC0Z3qIiH209y5fbL/JsPX9Uj7ZWtLSCLnNheW848DU0HAbeNY0WrxBPQirYRPEqaGYyM5hBzsXeCksLFW+uieR8XLLWtnbVvfi/zjWMFJkQQgghhBCm4djVBHafv81oqz9pdvMn9crnvoSgFsYNTJSIIc2CWBxxgf9ikth57hZtqnlpF6jcXj0O3+nf4c+3YOiv0mVYlErSRVSUjNxjmsX8CwnRxo7KYM7HJXPyepLWciX+nrHDEkIIIYQQwui+3H6Bbhb7mG61Qr2i4/8gpK9xgxIlxs3BhgGNAwH4ascF3YU6zQZLW4jaDv9tLMHohDAcqWATZk/X+G8V3O2NHZYQQpilyl6OMt6mEEIIjYs3k7l5MoKPrZeoVzR5GVq8btygRIkb2ToYSwsVu8/f5ki0jskMPIIf/lxsnQ4Z90s2QCEMwKhdRHfs2MH8+fM5fPgwMTExrF+/nt69e2u2K4rCrFmz+Prrr7lz5w5Nmzbliy++oHbt2sYL2sTJeGCPeNz4b9lZeDnZlnhYQghhtrKz+HRgA2NHIYQQwoT8vOUfvrFegK0qQ90NsMsH0v2vDCrvZk+f+uX56fBVPg4/y/KRTfMWaj0Rjq5S93TauQCefqfkAxXiCRi1gi0lJYV69eoxYsQI+vbN20R43rx5LFy4kLCwMKpVq8bs2bPp2LEjZ86cwdnZ2QgRmz5d44GV2bHAChr/zbMa9P0WF3sZhlAIIQxG1z3XDMbbFEIIUTSXLl1k4LmJuKlSSPaqj1Ofb9S5QpRJb3Soyoaj19h57hb7L96maaVy2gVsHKHrB/DjUNi1CEKeB+8y+BwrSi2j1i507dqVrl276tymKAqLFi1i+vTp9OnTB4Bly5bh4+PDqlWrGDNmTEmGWqrkjAeWo7KXoxGjMQE5478JIYQofrnvuZ7VjBeLEEII40lPQbW6PwGqm8RZ+eM9/GewcTB2VMKIAjwc6NcogJX7o1mw9SxrxzTTnlEUoOazUK0LnN0Mv4+H4X+AhYxsJUoHk/1JjYqKIjY2lk6dOmnW2dra0rZtW/bs2ZPv+9LS0khKStJahBBCCKGn7Cz91gshhBA5sjJJWj6EoLSz3FacSXp+DTh6GjsqYQJee7oKNlYWHLgUz67zt/IWUKmg23ywdoDovXB0RckHKUQRmWwFW2xsLAA+Pj5a6318fDTbdJk7dy6urq6aJSAgoFjjFEIIIcxSTnfPr9o8XP5+T/f6nG1CCCEEwJa3cbnyD6mKNcsqfkCVGvWMHZEwEX6u9gxuqp5R9MPNp8nKVvIWcguE9tPV/986A5LjSjBCIYrOZCvYcuRuMqooSt5mpI+YNm0aiYmJmuXKlSvFHaIQQghhnnK6e+YsCdG61z+6TQghRNl28Fs48BUAEzNfo0/P54wckDA1r7avgrOtFSeuJfHjoXye15uOBd+6kJoAv08ARUdFnBAmxmQr2Hx9fQHytFaLi4vL06rtUba2tri4uGgtQgghhBBCCCGK2YVtKH9MAWBeRn+8mjxPRc8yPh60yMPTyZbxHdVjtM7bfJqEe+l5C1laQe/FYGENp39Xzy4qhIkz2Qq24OBgfH19CQ8P16xLT09n+/bttGjRwoiRlS2VvRyp7e+iWSq42xs7JKOq4G6v8/PI/TnJZyWEEEIIIcqUW+fgp2GolCzWZbXiR7sXmNipurGjEiZqaPMgqvk4cedeBgu2ntVdyLcOtH9b/f8/34I7l0suQCGKwKiziCYnJ3P+/HnN66ioKI4ePYqHhweBgYGMHz+eOXPmULVqVapWrcqcOXNwcHBg0KBBRoy6bHB3sIbsLD4d2CDvxuwsvJxsSz4oY3LyhuwspnSpyZQuubbl9zk92Pakn5WXky1Z2QqWFnm7Rue3XgghhBBCFJ/Fixczf/58YmJiqF27NosWLaJ169Y6y/7yyy8sWbKEo0ePkpaWRu3atQkNDaVz584lHHUxuhcPq/pBaiJHlGpMyxjNvD61cLW3NnZkwkRZW1oQ+mxtBn2zn5X7L9OvUQB1KrjmLdjyTTi7Ba7sgw3jYNhGmVVUmCyjVrAdOnSI9u3ba15PnDgRgGHDhhEWFsaUKVO4f/8+48aN486dOzRt2pStW7fi7OxsrJDLDEdbq4cDWd965BsFz2rQ91tc7I36o1Py7Nx0fx5VnoEO7+ZdDwb7rFzsrbC0UPHmmkjOxyU/PLS3E58MqP9E+xbC3IWGhjJr1iytdY9OlqMoCrNmzeLrr7/W5JkvvviC2rVrGyNcIYQQpcDatWsZP348ixcvpmXLlnz11Vd07dqVU6dOERgYmKf8jh076NixI3PmzMHNzY2lS5fSs2dP9u/fT/36ZvC3XGY6/DgU4i9y09KX0SkTaFjJl15P+Rs7MmHiWlT2pEddP34/FsOEH4/y++utsLO21C5kYQnPLYElreDyLti1ENpMNk7AQjyGUWtJ2rVrh1LAYIUqlYrQ0FBCQ0NLLiihLWcga6GW+/PwrKZ7fTE4H5fMyetJxXoMIcxR7dq1+euvvzSvLS0f/uE2b948Fi5cSFhYGNWqVWP27Nl07NiRM2fOyJc5QgghdFq4cCEjR45k1KhRACxatIgtW7awZMkS5s6dm6f8okWLtF7PmTOHX3/9lY0bN5b+CjZFgT8mwaWdpFs6MvjeBO5auvO/3rULnJhOiBzv9Qphf1Q85+OS+eDP04Q+q+NLTo9K0G0e/Poq/DMb/J9SN3QQwsRI20pRpuUeU83Hxc7YIQkhDMzKygpfX1/N4uXlBahbry1atIjp06fTp08fQkJCWLZsGffu3WPVKhlIVwghRF7p6ekcPnyYTp06aa3v1KkTe/bsKdQ+srOzuXv3Lh4eHvmWSUtLIykpSWsxSfsWw5EfUFQWvJr2GmeVAN7uVoMq3vIllSgcD0cb5j9fF4CwPZfYfvam7oL1h0CDYYACP4+EO5dKLEYhCksq2ETZ9MiYapveaK1ZhrUINnZkQggDO3fuHP7+/gQHBzNgwAAuXrwIqMf9jI2N1XpIsrW1pW3btoV+SBJCCFG23Lp1i6ysLHx8fLTWPzr8wOMsWLCAlJQU+vXrl2+ZuXPn4urqqlkCAgKeKO5icXYLbJkOwGLrEYRn1uOZmj4Ma1HRuHGJUqdddW+GNQ8CYNKP/3It4b7ugt3mQ/mGkJoAa4ZA+r2SC1KIQpAKNlE2PTqm2ldtHi5/v2fsyIQQBtS0aVN++OEHtmzZwjfffENsbCwtWrTg9u3bmgchfR+SSk2rAiEM4cEXUjrlt16IMiB390dFUQrVJXL16tWEhoaydu1avL298y03bdo0EhMTNcuVK1eeOGaDunESfn4JUNju3J35SU/j52rH/OfrStdQUSTTutWkhq8zt5LTGBl2kLupGXkLWdlCvx/AwRNuHIdfRkNWZskHK0Q+pIJNlG05Y6flLAnRxo5ICGFAXbt2pW/fvtSpU4dnnnmGTZs2AbBs2TJNGX0fkkpFqwIhDCW/L6TWjVKvF6KM8fT0xNLSMs8XMXFxcXm+sMlt7dq1jBw5kh9//JFnnil4/ChbW1tcXFy0FpORfBNWDYD0ZC44NmDkzf7YWFny2cD6uDvaGDs6UUrZWVvy3fDGeDrZcjr2Lq+vjiQzKztvQdcK0G8ZWNrA6d/ht9chW0c5IYxAKtiEEEKUGY6OjtSpU4dz587h6+sLoPdDksm3KhCiOOT+Qir3zNlClBE2NjY0bNiQ8PBwrfXh4eG0aNEi3/etXr2a4cOHs2rVKrp3717cYRaftLuw6gVIjOaOXSB9bo8lW2XFpwPq06hi/mPKCVEY5d3s+W5YI+ysLYg4c5Mp647prmSr2AqeXwoqS/h3FWx5Wz3hhhBGJhVsQgghyoy0tDT+++8//Pz8CA4OxtfXV+shKT09ne3btxf4kGTSrQqEKCnSdVSUYRMnTuTbb7/l+++/57///mPChAlER0czduxYQP1FzNChQzXlV69ezdChQ1mwYAHNmjUjNjaW2NhYEhMTjXUKRZOZBmuHwPVI7lm50SfxTRJx4r1eIXQJ8TV2dMJM1AtwY1H/+lhaqPjlyDXeWBNJeqaOSraaPaDXF+r/718Cf82USjZhdFbGDkAIIYQoLpMnT6Znz54EBgYSFxfH7NmzSUpKYtiwYahUKsaPH8+cOXOoWrUqVatWZc6cOTg4ODBo0CBjhy6EaXu06+ijrdk8q0Hfb40WlhAloX///ty+fZv33nuPmJgYQkJC+OOPPwgKUg/SHhMTQ3T0w2FHvvrqKzIzM3n11Vd59dVXNeuHDRtGWFhYSYdfNNlZsH4sXIwgTWXHgJRJRCl+TOtagyHNgowdnTAzXUJ8WTy4Aa+viuSP47HcTz/EZ4Ma4GSbq/riqYGQlgR/ToHdn8DdG/DsZ2AlXZWFcUgFmxBCCLN19epVBg4cyK1bt/Dy8qJZs2bs27dP8xA0ZcoU7t+/z7hx47hz5w5NmzZl69atODs7GzlyIUqJnK6jQpQx48aNY9y4cTq35a40i4iIKP6AilN2Fvw+Hk7+QgZWjEybwClVFT7uV5fn6lcwdnTCTHWu7cs3wxrx8g+H2HbmJr2/2M2XQxpSxdtJu2DTMWDtABvfhGNrIDkW+i0HO+lhIEqeVLAJACp7OWq99nGxK7B8BXd7avs/vGk9rnxZlvuzquBuX6T95L5GuV8LIfJas2ZNgdtVKhWhoaGEhoaWTEBCCCFEaZKVgfLLy6hO/kKWomJixliO2dRn6eAGtK7qZezohJlrW82LVaObMW7lYc7HJdPr813M7VuXnnX9tCekavAiOPvCj8PgYgR82wGe/x586xgtdlE2SQVbKZWVrWBp8eRTYLs7WEN2Fp8ObFC4NzwYc2VKl5pM6fLEhzdvBX1W2Vl4OdkWajcFXqPsrHxnccvvZ8RQPzsF7cdQxxBClIAC7iNCCCHKsIz7JK8YgtPlv0hXLBmf8Sq3grrxZ/+nKO9WtC+MhdBXwyB3Nr7eitdXRbI/Kp43Vkey6dh1/tc7BG/nRxp5VO0IIzbB6oHq1tXfdIBOs6HJaChgdnghDEkq2EopSwsVb66J5HxcsmZdu+pe/F/nGnrtx9HWSvcYKlWegQ7v5n1DfmOu5Fe+LHvM+DQu9oX79cv3Gj1mnBtdPyNVvJ34ZEB9fc+k0Ps39DGEECVA7ulCCCFyib9+kXsrX6RCyglSFWtey55Ig079GNOmsnyJKkqct7MdK0c15dN/zrN423m2nLzBvovxTOpUjUFNArGyfDB3o399GLsbfh0HZzfDn/8H57ZC94/AvaJRz0GUDVLBVoqdj0vm5PUkzesn6jKYewwVz2qGLV+WGWp8miLsJ/fPiKEV9/6FEPorUutVuacLIYQAEu9n8NevK3j6vxlUUN0lSXFgid/7vPvCAALLORg7PFGGWVlaMLFjNbrU9uWtdcc4fi2Rd389yfK9l5nevSZtq3mpu406loOBa2D/VxA+A86HwxfNoO3/QfPXZQIEUaykgs0M5a5oK+qYX0IIIUqf4m69KkSBHgyPoLPbsXRHFsJkpaRlsnLHCex2z2Mom0AF5yyrcqf717zVoJBDyQhRAmr5u7B+XAtWH4hmYfhZzsUlM3zpQRoFuTP+mWq0rFJOXdHWbCxUbg+bJsGlnfD3exC5EjrMgFq9pduoKBZSwWbqCvgjNfcYXo8bq6uwY36Jsqm4x2wTQpSc3K1LvZxs5XdZlIzHDI8ghDAtqRlZrNx7kevbvmVs9iq8VOrccbnyEKoMWIDKWiYyE6bHytKCF5tX5Nl65fnsn3Ms33eZQ5fvMOS7/TSp6MH4jlVpUdkTvKrDsI1w7EfYOh3iL8BPw9VdSTu8C5XaS0WbMCipYDN1eozh9bixugo75pcoXeZvOU3EmZta64oyHp+0ehHCfAWVs8eSbEBaD4kSYqjhEYQQxSIjK5vfdx4gZucPdM74h8oWMaCCu07BOPScR1D1TsYOUYjHcnWw5p0etXi5TSUWR1xg1YFoDlyKZ9A3+2kS7MGr7avQpqonqnr9oUY32PM57P0crkfC8uegfENoPRmqdQELC2OfjjADUuNSGuj7R6r8UVumXIm/l2cctKKOxydjqglhnvSe0EYIQyuo6yhI91EhSkjm/SSObvkB1bE19Mo6gYVKAQtIt3LG8ulpODd9GSytjR2mEHrxdrEj9NnajG1bmcUR51lz4AoHouI5EHWAWn4ujG1XmW4hvli1nwaNR8HOBXB4KVw7DGsGgldNdZfSOv3ARsYaFEUnFWxlSAV3e2r7u2it83GRZt+mJnfl2OOuka7rKuPuCWEmDD2WlUxmIIwlv66jIN1HhShu2Vmkn4/gSsT3+F8PpxFp6vUqiHFvhGfLYdiE9AY7lwJ3I4Sp83W1471eIbzSrjLf7IhizcFoTsUk8cbqSD7ycGB0m0q80LACdl0/gNYTYd8SOPgt3PwPNr4Jf4VCg2HQcBh4VDL26YhSSCrYyoIH3xpP6VKTKV2MHYzIT4Fj6OnyuOuqY9w9Lydbvcb1K4qCxnqScd6E0JOMZSXMjbSyF6LkxJ0m9fBKMiPX4JQeR+UHqy/jR0zF56jX/WX8vIKNGqIQxcHP1Z53e9bi9aer8MPey4TtiSI6/h4zNpzgk7/OMrxFRV5sVhHXZ2ZCyzchcgUc+AoSomH3IvVSsbW6sq1Gd2nVJgpNKtjKgoK+NZbuQSZD7y5chWgNkHvcPRf74h+nz8XeSud4bjnjwsk4b0LoqQgVEvq2hBXCqGTmUSEM534Cyr9ruH9oBQ63jpNz909QHPnHqjW2DQfzdIduBNnKY6Awf+6ONrz5TFVeblOJHw9d4esdF7mWcJ+Ptp5lScQFBjUNZGSrSvi2eA2avQJn/lR3HT3/t3rm0Us7wdpRXclW53kIbgsy8YcogNxZyxJdD2nSPcj06NuFqyitAUqgBUHu8dxyHvhlnDchipk+LWGFMAUy86gQTy72OKl7vsLyxE9YZ6fiAGQolmzLfop9zp146un+9KwfhLWlDOQuyh57G0uGtajIoKaBbDoWw5KIC5y5cZdvdkYRtucSz9Uvz8ttKlOlZg+o2QMSrqhbtf27GhIuw/Ef1Yu1g3rm0WqdoGoncPE39qkJEyMVbKVY7rG3pIVC6WIO10/XZAqPG/8t93uKOiGDEGXW4waLl8kMRGmlz5c/0uJNCMhM597xDdzbuQTP+COa1mr/ZQfws9KB+9V7061pHWZUKYdKJUNxCGFtaUHv+uXp9ZQ/EWdusiTiAgcuxfPjoav8dPgqnWr5MLZtZeoHBkD7adBuKlw9BCd+hlO/wt0YOLNJvQD41oGqnaFye6jQGKyefLgdUbpJBVtpJGOqlW7mcv0KaiWjYzy3AseYK8KDkpKdhUrHNhnPTZi9wnT7l8kMhLmTFm+iDEu6Ec2Vv76g/MUfccuK17RW25LdmF0ez1G7WRfeqFceVweZDVQIXVQqFe1reNO+hjeHL8ezJOIif/13gy0n1UvTYA/Gtq1M22peWAQ0hoDG0OUDiD0GZ7fC2c3qGUhjj6uXnR+BlZ26kq1ia6jYCio0kgq3Mkgq2Eqj/B6upIVC6WAu10/P8d8eO8ZcYdc/OIaq77fM33KaiDM3H75FxnMTZYl0+xfm7nGtNWXCBFEGHf74BVpnH6C2KhuAOMWNzbZduF93KO0a1aWHr7ORIxSidGkY5MG3wzw4d+MuX+24yIbIa+yPimd/VDyVvRwZ2aoSfRqUx87aEvzqqZe2/wfJN+H8X3A+HKJ2Qkrcw3HbQF3hFtDkYYVb+YZS4VYGSAVbaSYtFEo3c7h+hhj/Lee8C7v+EVfi78l4bsIsSMtLIXQwly+khDCghql7sbJVccyyNlerDKZq2wEM9S9n7LCEKPWq+jjz0Qv1mNixGt/timLtwStcuJnC2+uPM3/LaQY3DWJo8yC8c4b1cfKCpwaqF0WBW+ceVLDtUi8pcRC1Q70AWNnrqHCzMd4Ji2IhFWxCCI3c48I9yfho5jDGnBAlRdfMu/0aVWBYi2AjRiWEiSjsF1IyG6koA076PEuFLm9St0Zj6ho7GCHMkL+bPTN61GL8M1VZe/AKYXsucfXOfT7fdp4vt1+gQ01v+jUKoG01L6xyJg1RqcCrmnppPPJBhdvZXBVuNyFqu3qBhxVuwa3VlW7+DaTCzQxIBZsQZYi7Qz437QLGhctvrLN8GXGMOS8n23wfovQds62gFkXS2kgUB0VRjB2CEKWbzEYqyoDaLy3GxcXl8QWFEE/E2c6aUa0rMbxFRcJP3eC7XVEcunxHM06bh6MNnWv70CXEj6bBHuoupDlUKvCqrl4aj1JXuN08o13hdu9W3gq3wKYPWri1Bv/6UuFWCkkFmxBliKNtPhVlBTyU6BrrrMCWNUbs0uNin884b0UYs01Xi6LHvUeIIito0hAhhH5yt3h73Fhu0rpNCCFEPqwsLehax4+udfw4E3uXnw5dYX3kNW6npLP6wBVWH7iCjZUFjSu60zS4HHUruFKnvCvlHp3wTaUC7xrqpcnoBxVupx9Utj2odLt3Gy5GqBdQj+HmVQN8Q8C7FrgHg1ugerGTSnZTJRVsQoiH8hnvLPdYZzeSUvXfV0mOMVfI83ic83HJMsabKBkyzpQQxaegmXcDmkGXubrfJxVvQgghHlHd15l3etRiatcaHIiK548TMfx1Ko7YpFR2n7/N7vO3NWXdHKwJ9HAgwMOBAHcHAj0c8Ha2xc3BGjcHG9wcKuHasDrWTUZDdjbcOqOeLCGnwu1+PMQcVS+5WTuAoxc4+ai/RHLyBkfvh/938nmw3Rtsij7kj9CfVLAJYcbMfRy03OdXwd3eiNEI8YTMYeITIUxZfjPv6tuttCjjvEllnRBCmA0rSwtaVPGkRRVP/tdL4cLNFPZcuMWRy3c4di2RizdTSLiXQcK9RI5dTSxwX062VrjaW+PmYI2HYz08HBvjUWMKwZZxBGVewj/tAh73LuJ47xo2d69gkXoHMu5BwmX18jg2To9UxnmBsx+4+INL+QeLv3qRGU4NolRUsC1evJj58+cTExND7dq1WbRoEa1btzZ2WHorylhPQhSJEcdBKxEGOj8vJ1uj/v6VxDhvct8pPHPJNUKIItBnVuyCWpzqaiUnY8CZJX1zxvbt25k4cSInT57E39+fKVOmMHbs2BKMWAhRHFQqFVW8naji7cTQ5hUBSEnL5Mqde0Tfvkd0/D2u3rlPdPw9bienkXA/gzsp6SSlZgKQnJZJclom1xLu69i774OlpWaNm2U61RzvEeyQQpBNMuWt7+KjSqScKhHXrDs4ZsRjm3YLy3s3UWWmQnqyerkTVfCJOHo9rHhz9gNHT3Ao92DxeOT/5cBaGjXkx+Qr2NauXcv48eNZvHgxLVu25KuvvqJr166cOnWKwMBAY4enF11jOsl4TqJYGHEctBJhoPNzsbfS+XvZrroX/9e5hgED1q0kxnmT+07hmFOuEUIYwOPGbcuvxak+FXUgs56WUvrmjKioKLp168bo0aNZsWIFu3fvZty4cXh5edG3b18jnIEQojg52lpRw9eFGr75j5WWla2QdD+DhPsZJNxLJ+FeBvEp6dy5l87tlHTupKQTn7PcS+d2cjqJ9zNIyLLhQJINB5LcHhOFQnn7THVlnH0KAdbJ+FvfxZs7eGbfwiX9BvapN7BOiVVXxKXcVC+FyWHWDmDvoR4LztY516Jr3YP1Nk7qLqs5/1rZqsenMyMmX8G2cOFCRo4cyahRowBYtGgRW7ZsYcmSJcydm8+YGSZMxnQSJcrcu5wZ6Pxy/15W9iq5sQpK4p4g953HM7dcI4R4Qob8oqqgyjpdx5Bx4Uyevjnjyy+/JDAwkEWLFgFQs2ZNDh06xEcffSQVbEKUUZYWKtwdbXB3tAEK9+yRlpnFreR0bt5NIy4plZvJacQlpWn9e/PB+owsuHbfmmv3XdmGawF7VfCxSqGa3V2CrBOoYBWPjyqBcqq7uCl3cVaScMpKxCEzAbuMBCyVTHUX1Yx78KSPFypLTWWbYuOo/tda/X/F2pFsawcUayeyrR3IfvA628qRLCt7slWWKCpLFCxQVBYoWIBKhWJhiYLqwTpLUKnI1nptgaJSkaWoSLyb/PgY9WTSFWzp6ekcPnyYqVOnaq3v1KkTe/bs0fmetLQ00tLSNK8TE9V9npOSTOPhslkFewIcFc3r8u72j4/NoSK4ZT58be0NSUlPvt6Q+5Jjm+f5OVSEpCRqeVqRXtVZszrIWaX+uS0tn20+51HL04qkpKQ8v5f5rYdC/s7qwRjHeNL957xXUZTHlCwd9M01xZZnTOl3X45dts5PPtv833MvHe4/sj4lVf9jOFeD5BTYtQiSrj1c71cf6g/Ke4xMK93lvapDwxGGG//NhCvrTDnPFOX5ZO/evXTq1ElrXefOnfnuu+/IyMjA2to6z3tM/ZlGCGEczhbg7GpBJVcHwEFnGUVRSLiXwe2UNG7eTedWcio376ZxKzmdW8lp3Lqbzq2UNG7eTeVuahYxaRbEpLgCrkBQAUdXcOQ+bqpk3EjBSXUfJ1JxUt3DiVQcuY+jKhVn1X1cVKk4qVJx4D5O3MeR+9iTigOp2Klycl4mpCYACYU+fxWGq8SyS1PnGIPmGsWEXbt2TQGU3bt3a61///33lWrVqul8z8yZMxVAFllkkUWWYl6uXLlSEqmg2OmbayTPyCKLLLKUzGKKeaYozydVq1ZV3n//fa11u3fvVgDl+vXrOt8juUYWWWSRpWSWCxcuGCZBKIpi0i3Ycqhy9ctVFCXPuhzTpk1j4sSJmtfZ2dnEx8dTrly5fN9TkKSkJAICArhy5QouLvn3oS4NzOlcQM7H1Mn5mK4nPRdFUbh79y7+/v7FEJ3xFDbXSJ4pmDmdjzmdC8j5mDo5n4dKQ57R5/kkv/K61ufInWsSEhIICgoiOjoaV1fXooZt0sztd0AXOUfzIOdoHhITEwkMDMTDw8Ng+zTpCjZPT08sLS2JjY3VWh8XF4ePj4/O99ja2mJrqz3FrJub2xPH4uLiYjY/WOZ0LiDnY+rkfEzXk5yLOf1xr2+ukTxTOOZ0PuZ0LiDnY+rkfNRMNc8U5fnE19dXZ3krKyvKlSun8z26cg2oPxdz+vnQxdx+B3SRczQPco7mwcLCwnD7MtieioGNjQ0NGzYkPDxca314eDgtWrQwUlRCCCHMieQaIYQQhVWUnNG8efM85bdu3UqjRo10jr8mhBCidDLpFmwAEydO5MUXX6RRo0Y0b96cr7/+mujoaMaOHWvs0IQQQpgJyTVCCCEK63E5Y9q0aVy7do0ffvgBgLFjx/L5558zceJERo8ezd69e/nuu+9YvXq1MU9DCCGEgZl8BVv//v25ffs27733HjExMYSEhPDHH38QFBRUIse3tbVl5syZOptolzbmdC4g52Pq5HxMlzmdi6EYM9eY2/Uwp/Mxp3MBOR9TJ+dTejwuZ8TExBAdHa0pHxwczB9//MGECRP44osv8Pf359NPP6Vv376FPqY5f5455BzNg5yjeZBzLBqVopjg/NdCCCGEEEIIIYQQQpQSJj0GmxBCCCGEEEIIIYQQpk4q2IQQQgghhBBCCCGEeAJSwSaEEEIIIYQQQgghxBOQCjYhhBBCCCGEEEIIIZ6AVLDl8v7779OiRQscHBxwc3Mr1HsURSE0NBR/f3/s7e1p164dJ0+eLN5AC+nOnTu8+OKLuLq64urqyosvvkhCQkKB7xk+fDgqlUpradasWckEnMvixYsJDg7Gzs6Ohg0bsnPnzgLLb9++nYYNG2JnZ0elSpX48ssvSyjSwtHnfCIiIvJcB5VKxenTp0swYt127NhBz5498ff3R6VSsWHDhse+x5Svjb7nY8rXZu7cuTRu3BhnZ2e8vb3p3bs3Z86ceez7TPn6mBvJM5JnipO55Bkwr1xjTnkGJNeUBHPLFbqU9vyhi7nlFF3MKc/oYk65Jz/mlpNyM2aOkgq2XNLT03nhhRd45ZVXCv2eefPmsXDhQj7//HMOHjyIr68vHTt25O7du8UYaeEMGjSIo0ePsnnzZjZv3szRo0d58cUXH/u+Ll26EBMTo1n++OOPEohW29q1axk/fjzTp08nMjKS1q1b07VrV61pzx8VFRVFt27daN26NZGRkbz99tu88cYbrFu3roQj103f88lx5swZrWtRtWrVEoo4fykpKdSrV4/PP/+8UOVN/droez45TPHabN++nVdffZV9+/YRHh5OZmYmnTp1IiUlJd/3mPr1MTeSZ9QkzxieOeUZMK9cY055BiTXlARzyxW6lOb8oYu55RRdzC3P6GJOuSc/5paTcjNqjlKETkuXLlVcXV0fWy47O1vx9fVVPvjgA8261NRUxdXVVfnyyy+LMcLHO3XqlAIo+/bt06zbu3evAiinT5/O933Dhg1TevXqVQIRFqxJkybK2LFjtdbVqFFDmTp1qs7yU6ZMUWrUqKG1bsyYMUqzZs2KLUZ96Hs+27ZtUwDlzp07JRBd0QHK+vXrCyxj6tfmUYU5n9JybRRFUeLi4hRA2b59e75lStP1MSeSZ3qVQIQFkzxTeu5l5pRrzC3PKIrkmuJkDrlCl9KeP3Qxt5yiiznnGV3MKffkxxxzUm4lmaOkBdsTioqKIjY2lk6dOmnW2dra0rZtW/bs2WPEyGDv3r24urrStGlTzbpmzZrh6ur62NgiIiLw9vamWrVqjB49mri4uOIOV0t6ejqHDx/W+lwBOnXqlG/se/fuzVO+c+fOHDp0iIyMjGKLtTCKcj456tevj5+fHx06dGDbtm3FGWaxMeVr8yRKw7VJTEwEwMPDI98y5np9zIXkmeIheeah0nAvKwxTvj5FVVqujeQa4zPlXKFLac4fuphbTtFF8oxupe06PonSeh1LMkdJBdsTio2NBcDHx0drvY+Pj2abscTGxuLt7Z1nvbe3d4Gxde3alZUrV/LPP/+wYMECDh48yNNPP01aWlpxhqvl1q1bZGVl6fW5xsbG6iyfmZnJrVu3ii3WwijK+fj5+fH111+zbt06fvnlF6pXr06HDh3YsWNHSYRsUKZ8bYqitFwbRVGYOHEirVq1IiQkJN9y5nZ9zI3kmeIheab03MsKy5Svj75K07WRXGMaTDlX6FKa84cu5pZTdJE8o1tpu45FUZqvY0nnKKsiR1qKhIaGMmvWrALLHDx4kEaNGhX5GCqVSuu1oih51hlKYc9HV1yFia1///6a/4eEhNCoUSOCgoLYtGkTffr0KWLURaPv56qrvK71xqLP+VSvXp3q1atrXjdv3pwrV67w0Ucf0aZNm2KNsziY+rXRR2m5Nq+99hrHjh1j165djy1rTtfHGCTPaJM8YzxlOc+A6V+fwipN10ZyTeGZW67QpSzlD13MLafoUtbzjC6l8TrqozRfx5LOUWWigu21115jwIABBZapWLFikfbt6+sLqGs8/fz8NOvj4uLy1IAaSmHP59ixY9y4cSPPtps3b+oVm5+fH0FBQZw7d07vWIvK09MTS0vLPN+GFPS5+vr66ixvZWVFuXLlii3WwijK+ejSrFkzVqxYYejwip0pXxtDMbVr8/rrr/Pbb7+xY8cOKlSoUGDZsnB9ipvkGW2SZ0peWc8zYNrXxxBM8dpIrtGPueUKXcpC/tDF3HKKLpJndCtt19FQSsN1NEaOKhMVbJ6ennh6ehbLvoODg/H19SU8PJz69esD6v7p27dv58MPPyyWYxb2fJo3b05iYiIHDhygSZMmAOzfv5/ExERatGhR6OPdvn2bK1euaCXr4mZjY0PDhg0JDw/nueee06wPDw+nV69eOt/TvHlzNm7cqLVu69atNGrUCGtr62KN93GKcj66REZGluh1MBRTvjaGYirXRlEUXn/9ddavX09ERATBwcGPfU9ZuD7FTfKM5Blj/66U9TwDpn19DMGUro3kmqIxt1yhS1nIH7qYW07RRfKMbqXtOhqKKV9Ho+YovaZEKAMuX76sREZGKrNmzVKcnJyUyMhIJTIyUrl7966mTPXq1ZVffvlF8/qDDz5QXF1dlV9++UU5fvy4MnDgQMXPz09JSkoyxilo6dKli1K3bl1l7969yt69e5U6deooPXr00Crz6PncvXtXmTRpkrJnzx4lKipK2bZtm9K8eXOlfPnyJX4+a9asUaytrZXvvvtOOXXqlDJ+/HjF0dFRuXTpkqIoijJ16lTlxRdf1JS/ePGi4uDgoEyYMEE5deqU8t133ynW1tbKzz//XKJx50ff8/n444+V9evXK2fPnlVOnDihTJ06VQGUdevWGesUNO7evav53QCUhQsXKpGRkcrly5cVRSl910bf8zHla/PKK68orq6uSkREhBITE6NZ7t27pylT2q6PuZE8I3mmuJhTnlEU88o15pRnFEVyTUkwt1yhS2nOH7qYW07RxdzyjC7mlHvyY245KTdj5iipYMtl2LBhCpBn2bZtm6YMoCxdulTzOjs7W5k5c6bi6+ur2NraKm3atFGOHz9e8sHrcPv2bWXw4MGKs7Oz4uzsrAwePDjP9LqPns+9e/eUTp06KV5eXoq1tbUSGBioDBs2TImOji754BVF+eKLL5SgoCDFxsZGadCggdbUusOGDVPatm2reb106VIFUKpXr67Y2NgoFStWVJYsWWKEqPOnz/l8+OGHSuXKlRU7OzvF3d1dadWqlbJp0yad+23btq3We/UFKDNnzix0+ZypmnMvw4YN03kuiqIoERERSv369U3y2uh7Pvpcm5Km6zxy37NK2/UxN5Jn7ilVqlRRXFxciiXPREVF5fn8CqLPfVlRTPN3JSgoSHO/+uKLLxQfHx8FUKpWrapXnqlbt64yaNCgPNdPUZ48zxSFPvfmnOv+1ltv6XV9Vq5cqXz88cfFeyKKeeUZRZFcUxLMLVfoYqjnlClTpijr168vlhjLek5RlIf3r5yfvcKe4+7du5VnnnlGqVixYp57mTFySkEejedJnnMsLS0Vd3d3va6jrp+xmTNnKoBy8+bNJzyzh06ePKnMnDlTUzltTjkpN2PmKKlgE2Yjp4Lt4MGDxg6lxJV0BVuOgwcP6vVHhxBCKIqiODo6av3xbkipqanK3r17lbi4uGLZvynK/TCUmJio7N27V0lMTNRrP/Pnz1cAJSoqKs+2kydPKidPnnzCSPXXtm1bpXbt2o8tV9Tr3r17dyUoKKiI0QkhTIHkFMMy55ySn9zPUiWZU3Qdqzgq2H766ac8lfQ5zp8/rxw5csRgxyrLysQYbEKUtHv37uHg4GDsMIQQoszIysoiMzMTW1tbmjVrZrD93r9/Hzs7u2KZCay4coWLi4tBPwOAWrVqGXR/hmbo615S5O8FIUyT5JSHJKcUj+L6GSuKypUrG/X45sTC2AEIURi7du2iQ4cOODs74+DgQIsWLdi0aZPOsnfu3GHEiBF4eHjg6OhIz549uXjxolaZyMhIevTogbe3N7a2tvj7+9O9e3euXr2qKaMoCosXL+app57C3t4ed3d3nn/++Tz7ateuHSEhIezYsYMWLVrg4ODASy+9RO/evQkKCiI7OztPjE2bNqVBgwZ6H0tRFObNm0dQUBB2dnY0aNCAP//8s9CfY1JSEqNHj6ZcuXI4OTnRpUsXzp49m6fc+fPnGTFiBFWrVsXBwYHy5cvTs2dPjh8/rikTERFB48aNARgxYgQqlQqVSkVoaCgAhw4dYsCAAVSsWBF7e3sqVqzIwIEDuXz5cqHjFUIUr9DQUFQqFZGRkfTp0wcXFxdcXV0ZMmQIN2/e1CqbnZ3NvHnzqFGjBra2tnh7ezN06FCt+yY8/v6qUqlISUlh2bJlmvtGu3btNO+PjY1lzJgxVKhQARsbG4KDg5k1axaZmZmaMpcuXUKlUjFv3jxmz55NcHAwtra2bNu2TbMtLCxMK67C5JGwsDBUKhVbt27lpZdewsvLCwcHB9LS0nR+fhEREahUKlasWMHEiRPx9fXF3t6etm3bEhkZqVV2+PDhODk5cfz4cTp16oSzszMdOnQA1AORz549W/PZenl5MWLEiDzXICMjgylTpuDr64uDgwOtWrXiwIED+cYVERGhtX7//v307NmTcuXKYWdnR+XKlRk/fjyg/ln4v//7P0A9WHrOtcnZR7t27TTXKSMjA29vb1588cU8x05ISMDe3p6JEydq1iUlJTF58mSCg4OxsbGhfPnyjB8/npSUFJ2fqy4HDx6kdevWODg4UKlSJT744AOt/Krrut+8eZOXX36ZgIAAzefasmVL/vrrL805bdq0icuXL2vO99GH3vj4eMaNG0f58uWxsbGhUqVKTJ8+Pc/PQ0JCAiNHjsTDwwMnJye6d+/OxYsXtXJizmesUqk4cuQIzz//PO7u7pqHmsLmzJyf0X/++UeTz11cXBg6dCgpKSnExsbSr18/3Nzc8PPzY/LkyWRkZBT6cxbiSUhOkZxi6jmlsM9Shs4pRfkZA7hy5cpjf5dy55ocFStWZPjw4YD6Z/GFF14AoH379prYco45fPjwPDMYp6amMm3aNK3P+dVXXyUhISHPcXr06MHmzZtp0KAB9vb21KhRg++//z6fq2DepAWbMHnbt2+nY8eO1K1bl++++w5bW1sWL15Mz549Wb16Nf3799cqP3LkSDp27MiqVau4cuUK77zzDu3atePYsWO4ubmRkpJCx44dCQ4O5osvvsDHx4fY2Fi2bdvG3bt3NfsZM2YMYWFhvPHGG3z44YfEx8fz3nvv0aJFC/7991+t6ahjYmIYMmQIU6ZMYc6cOVhYWJCQkECvXr34559/eOaZZzRlT58+zYEDB/j000/1PtasWbOYNWsWI0eO5Pnnn+fKlSuMHj2arKwsqlevXuDnqCgKvXv3Zs+ePbz77rs0btyY3bt307Vr1zxlr1+/Trly5fjggw/w8vIiPj6eZcuW0bRpUyIjI6levToNGjRg6dKljBgxgnfeeYfu3bsDaKZAvnTpEtWrV2fAgAF4eHgQExPDkiVLaNy4MadOnSq2WbSEEPp77rnn6NevH2PHjuXkyZPMmDGDU6dOsX//fs3MSa+88gpff/01r732Gj169ODSpUvMmDGDiIgIjhw5gqenZ6Hur3v37uXpp5+mffv2zJgxA1B/Ow7qB6EmTZpgYWHBu+++S+XKldm7dy+zZ8/m0qVLLF26VCvuTz/9lGrVqvHRRx/h4uJC1apVdZ6fvnnkpZdeonv37ixfvpyUlJTHzh719ttv06BBA7799lsSExMJDQ2lXbt2REZGUqlSJU259PR0nn32WcaMGcPUqVPJzMwkOzubXr16sXPnTqZMmUKLFi24fPkyM2fOpF27dhw6dAh7e3sARo8ezQ8//MDkyZPp2LEjJ06coE+fPlq5Kz9btmyhZ8+e1KxZk4ULFxIYGMilS5fYunUrAKNGjSI+Pp7PPvuMX375RTMzmK5WBtbW1gwZMoQvv/ySL774QnP9AFavXk1qaiojRowA1C0q2rZty9WrV3n77bepW7cuJ0+e5N133+X48eP89ddfj23JERsby+DBg5k0aRIzZ85k/fr1TJs2DX9/f4YOHZrv+1588UWOHDnC+++/T7Vq1UhISODIkSPcvn0bgMWLF/Pyyy9z4cIF1q9fr/Xe1NRU2rdvz4ULF5g1axZ169Zl586dzJ07l6NHj2oepLOzs+nZsyeHDh0iNDSUBg0asHfvXrp06ZJvXH369GHAgAGMHTtW80Cob84cNWoUffr0Yc2aNURGRvL222+TmZnJmTNn6NOnDy+//DJ//fUXH374If7+/loPp0IUN8kpklNMNac8ybPUk+SUHIX9GctRmN+lwujevTtz5szh7bff5osvvtA09Miv5VrOc+Pff//NtGnTaN26NceOHWPmzJns3buXvXv3Ymtrqyn/77//MmnSJKZOnYqPjw/ffvstI0eOpEqVKrRp06bQcZoFY/ZPFaIwmjVrpnh7e2vNmpSZmamEhIQoFSpUULKzsxVFeTgG23PPPaf1/t27dyuAMnv2bEVRFOXQoUMKoGzYsCHfY+7du1cBlAULFmitv3LlimJvb69MmTJFs65t27YKoPz9999aZTMyMhQfHx9l0KBBWuunTJmi2NjYKLdu3dLrWHfu3FHs7OzyPb/HjcH2559/KoDyySefaK1///33HzsGW2ZmppKenq5UrVpVmTBhgma9PmOwZWZmKsnJyYqjo2OeGIQQxpEzxsejv9eKoh74HVBWrFihKIqi/PfffwqgjBs3Tqvc/v37FUB5++23FUUp3P1VUfIfL2fMmDGKk5OTZharHB999JECaMZryRkQuHLlykp6erpWWV2DBeubR4YOHVpg/DlyBglu0KCBZh+KoiiXLl1SrK2tlVGjRmnW5QxY/v3332vtY/Xq1Tpn4sq5vy5evFhRlIfXIL9rVdCA1IqiKJUrV1YqV66s3L9/P9/zKWi8nNzj0xw7dkwBlK+//lqrXJMmTZSGDRtqXs+dO1exsLDIMz7qzz//rADKH3/8kW88OccFlP3792utr1WrltK5c2fNa13X3cnJSRk/fnyB+89vvJwvv/xSAZQff/xRa/2HH36oAMrWrVsVRVGUTZs2KUCegZDnzp2bJ7fm/L69++67BcakKPnnzJyf0ddff12rfO/evRVQzwT3qKeeekpp0KDBY48nhCFITpGc8ihTyyn6PEsZOqfo+zNW2N8lRcl/LO3cY+kVNAbbsGHDtOLevHmzAijz5s3TKrd27do81ykoKEixs7PT+j27f/++4uHhoYwZMybPscyddBEVJi0lJYX9+/fz/PPP4+TkpFlvaWnJiy++yNWrVzlz5ozWewYPHqz1ukWLFgQFBbFt2zYAqlSpgru7O2+99RZffvklp06dynPc33//HZVKxZAhQ8jMzNQsvr6+1KtXL08TaXd3d55++mmtdVZWVgwZMoRffvmFxMREQN3Xfvny5fTq1Yty5crpday9e/eSmpqa7/k9Ts75537/oEGD8pTNzMxkzpw51KpVCxsbG6ysrLCxseHcuXP8999/jz0WQHJyMm+99RZVqlTBysoKKysrnJycSElJKfQ+hBAlI/d9oV+/flhZWWnuGzn/5nQ1yNGkSRNq1qzJ33//DRTu/lqQ33//nfbt2+Pv7691P8xpabt9+3at8s8+++xjv8EtSh7p27evXnEPGjRI6xvzoKAgWrRoofncCtr377//jpubGz179tQ656eeegpfX19NDsjvHp5zrQpy9uxZLly4wMiRI7Gzs9Pr3PJTp04dGjZsqNUC5L///uPAgQO89NJLWucXEhLCU089pXV+nTt31tnlSBdfX1+aNGmita5u3bqPHXKgSZMmhIWFMXv2bPbt26dXV8l//vkHR0dHnn/+ea31Ob8DOT/zOT+T/fr10yo3cODAfPet6+dL35zZo0cPrdc1a9YE0LQmf3S9DM0gSprkFMkp+iqJnPKkz1JPklNyFOZn7FGP+10qLv/88w+Q93f0hRdewNHRUfM7muOpp54iMDBQ89rOzo5q1aqVyfwjFWzCpN25cwdFUTTNih/l7+8PoGmWm8PX1zdPWV9fX005V1dXtm/fzlNPPcXbb79N7dq18ff3Z+bMmZob5Y0bN1AUBR8fH6ytrbWWffv2cevWLa3964oP1E3CU1NTWbNmDaBuTh0TE6Np5qzPsXLiz+/8Huf27dtYWVlpKvYKeu/EiROZMWMGvXv3ZuPGjezfv5+DBw9Sr1497t+//9hjgfqPg88//5xRo0axZcsWDhw4wMGDB/Hy8ir0PoQQJSP3fSDnXpFz38n5N797sT7314LcuHGDjRs35rkX1q5dG6DQ995HFSWPFGa/j3pc3snh4OCg1fUF1OeckJCAjY1NnvOOjY19bA7QdV/PLWe8lpwu/Iby0ksvsXfvXk6fPg3A0qVLsbW11apcunHjBseOHctzbs7OziiKkuea6qLr/GxtbR+bS9auXcuwYcP49ttvad68OR4eHgwdOpTY2NjHHvP27dv4+vrm6Wrk7e2NlZWV1u+GlZUVHh4eWuUeHUYiN10/X/rmzNzHs7GxyXd9ampqAWcqhOFJTpGcUhTFnVOe9FnqSXJKjif9Wcj9u1RccnKbl5eX1nqVSqXzZ7GoedocyRhswqS5u7tjYWFBTExMnm3Xr18HyDMuia6bXGxsLFWqVNG8rlOnDmvWrEFRFI4dO0ZYWBjvvfce9vb2TJ06FU9PT1QqFTt37tTqX54j97r8+vrXqlWLJk2asHTpUsaMGcPSpUvx9/enU6dOmjKFPVbOjSu/88s9MGVu5cqVIzMzk9u3b2vdBHXtb8WKFQwdOpQ5c+Zorb916xZubm4FHgcgMTGR33//nZkzZzJ16lTN+rS0NOLj4x/7fiFEyYqNjaV8+fKa17nvFTn/xsTE5PmD+vr161r34cfdXwvi6elJ3bp1ef/993Vuz3l4yVGYWdiKkkf0nd0tv/ty7j84de3X09OTcuXKsXnzZp37dnZ2BrRzgK5rVZCcP5BzDx7+pAYOHMjEiRMJCwvj/fffZ/ny5fTu3Rt3d3dNGU9PT+zt7fMd7Lg4x+P09PRk0aJFLFq0iOjoaH777TemTp1KXFxcvp93jnLlyrF//34URdG6bnFxcWRmZmrizsmt8fHxWpVbBT1w5f45kJwpzI3kFMkpRVHcOeVJn6WeJKfkKMrPQkG/S6B+VtQ1ccaTVMLl5LabN29qVbIpikJsbKxmojuRl7RgEybN0dGRpk2b8ssvv2jVgGdnZ7NixQoqVKhAtWrVtN6zcuVKrdd79uzh8uXLWjMK5VCpVNSrV4+PP/4YNzc3jhw5Aqi7XiiKwrVr12jUqFGepU6dOoU+hxEjRrB//3527drFxo0bGTZsGJaWlprthT1Ws2bNsLOzy/f8Hqd9+/Y6P59Vq1bp/FxyV/Zt2rSJa9euaa3LKZP72wmVSoWiKHn28e2335KVlfXYWIUQJSv3feHHH38kMzNTc9/M6QK/YsUKrXIHDx7kv//+08xc9qj87q+Q/7eaPXr04MSJE1SuXFnn/TD3w1BhFCWP6Gv16tUoiqJ5ffnyZfbs2aMz7+TWo0cPbt++TVZWls5zzhl0OWdf+V2rglSrVo3KlSvz/fff5zt7HeR/T8+Pu7s7vXv35ocffuD3338nNjZWqytPzvlduHCBcuXK6Ty/xz3QGEpgYCCvvfYaHTt2LNTPYocOHUhOTmbDhg1a63/44QfNdoC2bdsC6pYNj8ppuV4YkjOFuZGcIjkFTC+nPOmz1KP0zSlF9bjfJVDP4nns2DGtcv/88w/Jycla6/S5Hjm/g7l/R9etW0dKSorO31GhJi3YhMmbO3cuHTt2pH379kyePBkbGxsWL17MiRMnWL16dZ5vAg4dOsSoUaN44YUXuHLlCtOnT6d8+fKMGzcOUPfdX7x4Mb1796ZSpUooisIvv/xCQkICHTt2BKBly5a8/PLLjBgxgkOHDtGmTRscHR2JiYlh165d1KlTh1deeaVQ8ed8GzNw4EDS0tLy9GUv7LHc3d2ZPHkys2fP1jq/0NDQQjVr7tSpE23atGHKlCmkpKTQqFEjdu/ezfLly/OU7dGjB2FhYdSoUYO6dety+PBh5s+fn+dbxsqVK2Nvb8/KlSupWbMmTk5O+Pv74+/vT5s2bZg/fz6enp5UrFiR7du389133xWqBZwQomT98ssvWFlZ0bFjR80sVfXq1dOMK1W9enVefvllPvvsMywsLOjatatmxreAgAAmTJgAFO7+CuoWCREREWzcuBE/Pz+cnZ2pXr067733HuHh4bRo0YI33niD6tWrk5qayqVLl/jjjz/48ssvi9QlRd88oq+4uDiee+45Ro8eTWJiIjNnzsTOzo5p06Y99r0DBgxg5cqVdOvWjTfffJMmTZpgbW3N1atX2bZtG7169eK5556jZs2aDBkyhEWLFmFtbc0zzzzDiRMnNDORPc4XX3xBz549adasGRMmTCAwMJDo6Gi2bNmi+QM+5wudTz75hGHDhmFtbU316tU1LR50eemll1i7di2vvfYaFSpU0Jo1G2D8+PGsW7eONm3aMGHCBOrWrUt2djbR0dFs3bqVSZMm0bRp08fGr6/ExETat2/PoEGDqFGjBs7Ozhw8eJDNmzfTp08fTbk6derwyy+/sGTJEho2bIiFhQWNGjVi6NChfPHFFwwbNoxLly5Rp04ddu3axZw5c+jWrZvmPLt06ULLli2ZNGkSSUlJNGzYkL1792oq4iwsHv9dtouLi+RMYVYkp0hOAdPLKU/yLExxPHMAAInESURBVPWkOaWoHve7BOrZTWfMmMG7775L27ZtOXXqFJ9//jmurq5a+woJCQHg66+/xtnZGTs7O4KDg3V27+zYsSOdO3fmrbfeIikpiZYtW2pmEa1fvz4vvvhikc/J7JXolApCFNHOnTuVp59+WnF0dFTs7e2VZs2aKRs3btQqkzNTz9atW5UXX3xRcXNzU+zt7ZVu3bop586d05Q7ffq0MnDgQKVy5cqKvb294urqqjRp0kQJCwvLc9zvv/9eadq0qea4lStXVoYOHaocOnRIU6Zt27ZK7dq1C4x/0KBBCqC0bNky3zKFOVZ2drYyd+5cJSAgQLGxsVHq1q2rbNy4Mc9MPPlJSEhQXnrpJcXNzU1xcHBQOnbsqJw+fTrP7DN37txRRo4cqXh7eysODg5Kq1atlJ07d+o8zurVq5UaNWoo1tbWWvu5evWq0rdvX8Xd3V1xdnZWunTpopw4cSLPjDZCCOPJmaXq8OHDSs+ePRUnJyfF2dlZGThwoHLjxg2tsllZWcqHH36oVKtWTbG2tlY8PT2VIUOGKFeuXNGUKez99ejRo0rLli0VBweHPDN33bx5U3njjTeU4OBgxdraWvHw8FAaNmyoTJ8+XUlOTlYU5eGMW/Pnz89zTrpm41IU/fJI7tnJ8pMzs9ry5cuVN954Q/Hy8lJsbW2V1q1ba927FUU9Q5ejo6PO/WRkZCgfffSRUq9ePcXOzk5xcnJSatSooYwZM0Yrf6WlpSmTJk1SvL29FTs7O6VZs2bK3r1789xXdc34pijqWau7du2quLq6Kra2tkrlypXzzFA2bdo0xd/fX7GwsNDaR355JisrSwkICFAAZfr06TrPLzk5WXnnnXeU6tWrKzY2Noqrq6tSp04dZcKECUpsbGw+n66iOa6uHJt7xrPc1z01NVUZO3asUrduXcXFxUWxt7dXqlevrsycOVNJSUnRvC8+Pl55/vnnFTc3N0WlUimP/ml8+/ZtZezYsYqfn59iZWWlBAUFKdOmTVNSU1O1YomPj1dGjBihlVv37duXZ+bunN+3mzdv5jmfwubM/H5G89t3QT93Qhia5BTJKaaeUwr7LGXonKLvz5g+v0tpaWnKlClTlICAAMXe3l5p27atcvToUZ3PXIsWLVKCg4MVS0tLrWPmzqmKop4J9K233lKCgoIUa2trxc/PT3nllVeUO3fuaJULCgpSunfvnue8Cvt8am5UivJI+1MhhBBClBmhoaHMmjWLmzdvFutYWOYqIiKC9u3b89NPP+WZbVKUbatWrWLw4MHs3r2bFi1aGDscIUqE5JQnIzlFiNJPuogKIYQQQghRRKtXr+batWvUqVMHCwsL9u3bx/z582nTpo1UrgkhhBBliFSwCSGEEEIIUUTOzs6sWbOG2bNnk5KSgp+fH8OHD2f27NnGDk0IIYQQJUi6iAohhBBCCCGEEEII8QQeP7WREEIIIYQQQgghhBAiX1LBJoQQQgghhBBCCCHEE5AKNiGEEEIIIUSZt2PHDnr27Im/vz8qlYoNGzYUWD4iIgKVSpVnOX36tFa5devWUatWLWxtbalVqxbr168vxrMQQghhLGY/yUF2djbXr1/H2dkZlUpl7HCEEKLUUxSFu3fv4u/vj4WFfE8jeUYIIQzLWHkmJSWFevXqMWLECPr27Vvo9505cwYXFxfNay8vL83/9+7dS//+/fnf//7Hc889x/r16+nXrx+7du2iadOmhT6G5BohhDCs4sg1Zj/JwdWrVwkICDB2GEIIYXauXLlChQoVjB2G0UmeEUKI4mHMPKNSqVi/fj29e/fOt0xERATt27fnzp07uLm56SzTv39/kpKS+PPPPzXrunTpgru7O6tXry50PJJrhBCieBgy15h9CzZnZ2dA/aE9+s2SEEKIoklKSiIgIEBzfy3rJM8IIYRhlbY8U79+fVJTU6lVqxbvvPMO7du312zbu3cvEyZM0CrfuXNnFi1aVOA+09LSSEtL07zOaRMhuUYIIQyjOHKN2Vew5TShdnFxkWQkhBAGJF1U1CTPCCFE8TD1POPn58fXX39Nw4YNSUtLY/ny5XTo0IGIiAjatGkDQGxsLD4+Plrv8/HxITY2tsB9z507l1mzZuVZL7lGCCEMy5C5xuwr2IQQQgghhBDC0KpXr0716tU1r5s3b86VK1f46KOPNBVskPfhTVGUxz7QTZs2jYkTJ2pe57S0EEIIYbpkdGohhBBCCCGEMIBmzZpx7tw5zWtfX988rdXi4uLytGrLzdbWVtNaTVqtCSFE6SAVbEIIIYQQQghhAJGRkfj5+WleN2/enPDwcK0yW7dupUWLFiUdmhBCiGImXUSFECYlKyuLjIwMY4dRpllbW2NpaWnsMIQQolhkZ2eTnp5u7DDKPBsbGywsTOu7/uTkZM6fP695HRUVxdGjR/Hw8CAwMJBp06Zx7do1fvjhBwAWLVpExYoVqV27Nunp6axYsYJ169axbt06zT7efPNN2rRpw4cffkivXr349ddf+euvv9i1a1eJn58QouTIM43xGeOZRirYhBAmQVEUYmNjSUhIMHYoAnBzc8PX19fkB5gWQgh9pKenExUVRXZ2trFDKfMsLCwIDg7GxsbG2KFoHDp0SGsG0Jwx0IYNG0ZYWBgxMTFER0drtqenpzN58mSuXbuGvb09tWvXZtOmTXTr1k1TpkWLFqxZs4Z33nmHGTNmULlyZdauXUvTpk1L7sSEECVGnmlMS0k/06iUnDmfzVRSUhKurq4kJibK2AVCmLCYmBgSEhLw9vbGwcFBKnaMRFEU7t27R1xcHG5ublrdXHLIfVWbfB5ClA6KohAdHU1GRgb+/v4m13qqLMnOzub69etYW1sTGBiYJ+fLfTUv+UyEKB3kmcY0GOuZRlqwCSGMLisrS5OIypUrZ+xwyjx7e3tAPQizt7e3dBcVQpiFzMxM7t27h7+/Pw4ODsYOp8zz8vLi+vXrZGZmYm1tbexwhCgyRVGIOHuTBVvPcCEuhY61fBjcNJAmwR5SuVLGyDONaTHGM41UsInil50FFvn8MBe0TZQZOeMTyAOP6ci5FhkZGVLBJsxSVraCpUXeB5/81ovSLysrC8CkuiSWZTnXISsrSyrYRKl1KzmNV1ceYX9UvGbdb/9e57d/r/NMTW++HNIQK0tpLVtWyDON6SnpZxqpYBPFz8IS1o2CW2e113tWg77fGicmYZLkWz7TIddCmDtLCxVvronkfFyyZl0Vbyc+GVDfiFGJkiD3N9Mg10GUdoqiMPmnf9kfFY+NlQXDmgfxTE0fNhy9xroj1/jrvzjmbz3DtK41jR2qKGFyfzMdJX0tpIJNlIxbZyHmX2NHIYQQQmicj0vm5PUkY4chhBCiFFqx7zIRZ25ia2XBr6+1pIavegynppXK0bKKJ6+tiuSr7RepU96VHnX9jRytEKIkSHtVIYQoBUJDQ3nqqaeMHYYQQggzJXlGiMK7cDOZ9//4D4CpXWtoKtdy9Kjrz5g2lQD4v5+OcT7ubonHKISpKQt5RirYhBAmLSu7ZCc6Lsrx4uLiGDNmDIGBgdja2uLr60vnzp3Zu3evweKaPHkyf//9t8H2J4QQQk3yjJrkGSEKJ6draGpGNq2qeDKseUWd5f6vc3VaVinH/YwsPvjzTMkGKYSeJM8YhnQRFUKYNF3jJBWXoo6/1LdvXzIyMli2bBmVKlXixo0b/P3338THxz/+zYXk5OSEk5PTE+2jYsWKhIWF0a5dO8MEJYQQZkDyjJrkGSEKZ8+F20RGJ2BvbclHL9TDIp+JcawsLXivVwgdF27nr/9ucPRKAk8FuJVssEIUkuQZw5AKNiGEyTPlcZISEhLYtWsXERERtG3bFoCgoCCaNGmiKaNSqVi8eDG//fYbERER+Pr6Mm/ePF544QVNmbfeeov169dz9epVfH19GTx4MO+++65mZrXQ0FA2bNjA0aNHARg+fDgJCQm0atWKBQsWkJ6ezoABA1i0aJHMxiaEEHqSPCN5RojC+nrHRQD6NaqAr6tdgWUreznRu355fjlyjYXhZ/nhpSYFlhfCGCTPGI50ERVCiCeQ803Mhg0bSEtLy7fcjBkz6Nu3L//++y9Dhgxh4MCB/Pfff5rtzs7OhIWFcerUKT755BO++eYbPv744wKPvW3bNi5cuMC2bdtYtmwZYWFhhIWFGerUhBBCmADJM0KYjtOxSWw/exMLFYxsValQ73mzQ1WsLFTsOHuTg5cM1xpIlA6KonAvPbPEF0Up/HAEkmcMR1qwCSHEE7CysiIsLIzRo0fz5Zdf0qBBA9q2bcuAAQOoW7euptwLL7zAqFGjAPjf//5HeHg4n332GYsXLwbgnXfe0ZStWLEikyZNYu3atUyZMiXfY7u7u/P5559jaWlJjRo16N69O3///TejR48uprMVQghR0iTPCGE6vtkRBUDXED8CyzkU6j1B5Rx5oVEFVh+4woKtZ1jzcvPiDFGYmPsZWdR6d0uJH/fUe51xsClcdY/kGcORFmwif9lZ+q03ptIUqzA7ffv25fr16/z222907tyZiIgIGjRooPXtS/Pm2n9MNW/eXOsbn59//plWrVrh6+uLk5MTM2bMIDo6usDj1q5dG0tLS81rPz8/4uLiNK/Hjh2r+UbKycmJ6OhounbtmmedEEII0yZ5Rgjji01M5bd/rwEwqnWwXu997emqWFuq2HcxnhPXEosjPCGeiOQZw5AWbCJ/FpawbhTcOvtwnWc16Put8WLKT2mKVZglOzs7OnbsSMeOHXn33XcZNWoUM2fOZPjw4fm+R6VSD4q7b98+BgwYwKxZs+jcuTOurq6sWbOGBQsWFHjM3GMTqFQqsrOzNa/fe+89Jk+erHndrl07PvzwQ5o2bapZ5+/vr89pCiGEMBLJM0IY16r9l8nIUmhS0YP6ge56vbe8mz2davuy6VgMK/dHM7dPnWKKUpgae2tLTr3X2SjH1ZfkmScnFWyiYLfOQsy/xo6icEpTrMLs1apViw0bNmhe79u3j6FDh2q9rl9fPZPc7t27CQoKYvr06Zrtly9ffuIYvL298fb21ry2srKifPnyVKlS5Yn3LYQQwrgkzwhRcrKzFX6JVLdeG9I8qEj7GNI0iE3HYvj16DXe7lYDZ7vSOYi70I9KpSp0V01TI3lGf6XzSgshhIm4ffs2L7zwAi+99BJ169bF2dmZQ4cOMW/ePHr16qUp99NPP9GoUSNatWrFypUrOXDgAN999x0AVapUITo6mjVr1tC4cWM2bdrE+vXrjXVKQgghTIjkGSGM79DlO1y9cx8nWys61fIp0j6aVfKgspcjF26msOHodV5sVrSKOiEMTfKM4ZhMBdvcuXN5++23efPNN1m0aBGgnnFj1qxZfP3119y5c4emTZvyxRdfULt2beMGK4QoUVW8nUz2OE5OTjRt2pSPP/6YCxcukJGRQUBAAKNHj+btt9/WlJs1axZr1qxh3Lhx+Pr6snLlSmrVqgVAr169mDBhAq+99hppaWl0796dGTNmEBoaaqhTE0IIUQDJM0KIgqyPvApA1xBf7IrQ9Q7ULZkGNw3ivd9PsXLfZYY0DdR0rxPCmCTPGI5K0Wf+1mJy8OBB+vXrh4uLC+3bt9dUsH344Ye8//77hIWFUa1aNWbPns2OHTs4c+YMzs7Ohdp3UlISrq6uJCYm4uLiUoxnYaa+aqPd7dKvHozZ8eT7eZJ9FfYYht6/KDapqalERUURHByMnZ2d1rasbAVLi5L746M4jqdSqVi/fj29e/c26H6LU0HXRO6r2uTzMG0F/U53/3QnJ68naV7X9ndh0xutSyo0UcLyu69JnjEOyTP6kc/EeFIzsmj8/l/cTc1k1eimtKjsWeR9Jd7LoOncv0jNyGbdK81pGORhwEiFsRV0XyvtSmOegZLPNUafRTQ5OZnBgwfzzTff4O7+cLBIRVFYtGgR06dPp0+fPoSEhLBs2TLu3bvHqlWrjBixEKIkleRDjzGOJ4QoXpYWKt5cE0n3T3dqlvlbThs7LGFCJM8IIQryz+k47qZm4u9qR7Pgck+0L1cHa3rWVQ/IvvrAFUOEJ4QwIUavYHv11Vfp3r07zzzzjNb6qKgoYmNj6dSpk2adra0tbdu2Zc+ePfnuLy0tjaSkJK1FCCGEEGXX+bhkTl5P0ixX4u8ZOyQhhBClxC9H1JMb9KpfHgsDVJD3axwAwOYTsaRmZD3x/oQQpsOoY7CtWbOGI0eOcPDgwTzbYmNjAfDx0R5E0sfHp8DZKObOncusWbMMG6gQQjwBE+iJL4QQwoxJnhGieCTcSyfiTBwAz9Uvb5B9Ngx0p7ybPdcS7vPXfzfo8aBFmxCmTPJM4RitBduVK1d48803WbFiRYH9k3MP/KgoSoGDQU6bNo3ExETNcuWKNL0VQgghhBBCCKGf8FM3yMxWqOHrTDWfwo0B/jgWFip611dXqm2IvGaQfQohTIPRKtgOHz5MXFwcDRs2xMrKCisrK7Zv386nn36KlZWVpuVaTku2HHFxcXlatT3K1tYWFxcXrUUIIYQQQgghhNDHnyfUz6Ld6vgZdL+9n1K3hos4c5P4lHSD7lsIYTxGq2Dr0KEDx48f5+jRo5qlUaNGDB48mKNHj1KpUiV8fX0JDw/XvCc9PZ3t27fTokULY4UthBBCCCGEEMLMJaVmsPPcTQC61fE16L6r+jgTUt6FzGyFTceuG3TfQgjjMVoFm7OzMyEhIVqLo6Mj5cqVIyQkBJVKxfjx45kzZw7r16/nxIkTDB8+HAcHBwYNGmSssIUQQgghhBBmaMeOHfTs2RN/f39UKhUbNmwosPwvv/xCx44d8fLywsXFhebNm7NlyxatMmFhYahUqjxLampqMZ6JMIR//osjI0uhqrcTVbwN0z30UTmt2DYclQo2IcyF0WcRLciUKVMYP34848aNo1GjRly7do2tW7fi7Gz4G5wwgGyZBUcIIYQQQpROKSkp1KtXj88//7xQ5Xfs2EHHjh35448/OHz4MO3bt6dnz55ERkZqlXNxcSEmJkZrKWgMamEa/jgeA0DXEMO2XsvxbD1/LFRw+PIdom/L7NZCmAOjziKaW0REhNZrlUpFaGgooaGhRolH6MnCEtaNgltnH66r8gx0eNd4MQkhhBBCCFEIXbt2pWvXroUuv2jRIq3Xc+bM4ddff2Xjxo3Ur19fs16lUuHrWzyVNKJ4JKdlEnFW3T20q4HHX8vh7WJH88rl2H3+Nn+eiGFM28rFchwhRMkx6RZsohS6dRZi/n24JEQbOyIhzEJoaChPPfWUscMQQghhpiTPPLns7Gzu3r2Lh4eH1vrk5GSCgoKoUKECPXr0yNPCTZe0tDSSkpK0FlFytp2OIz0zm2BPR2r4Fl/vqa4h6sq7nNZyQpizspBnpIJNCGHaSrrrcRGOFxcXx5gxYwgMDMTW1hZfX186d+7M3r17DRbW5MmT+fvvvw22PyGEEA9IngEkzxjCggULSElJoV+/fpp1NWrUICwsjN9++43Vq1djZ2dHy5YtOXfuXIH7mjt3Lq6urpolICCguMMXj/jzhLrCq0uILyqVqtiO07m2LxYq+PdqIlfvSDdRYTySZwzDpLqICiFEHrq6HhcXz2rQ91u939a3b18yMjJYtmwZlSpV4saNG/z999/Ex8cbLDQnJyecnJwMtj8hRF5eTrZkZStYWuh+mCpomyjFJM8Akmee1OrVqwkNDeXXX3/F29tbs75Zs2Y0a9ZM87ply5Y0aNCAzz77jE8//TTf/U2bNo2JEydqXiclJUklWwm5l57JttPq7qHdi6l7aA4vZ1uaBHuw72I8fx6PZXSbSsV6PCHyI3nGMKSCTQhh+nK6HpughIQEdu3aRUREBG3btgUgKCiIJk2aaMqoVCoWL17Mb7/9RkREBL6+vsybN48XXnhBU+att95i/fr1XL16FV9fXwYPHsy7776LtbU1oG5SvWHDBo4ePQrA8OHDSUhIoFWrVixYsID09HQGDBjAokWLNO8RQujHxd4KSwsVb66J5Hxcsta2Kt5OfDKgfj7vFKWe5BnJM09g7dq1jBw5kp9++olnnnmmwLIWFhY0btz4sS3YbG1tsbW1NWSYopAiztzkfkYWAR721PZ3Kfbjdavjx76L8Ww6HiMVbMIoJM8YjnQRFUKIJ5DzTcyGDRtIS0vLt9yMGTPo27cv//77L0OGDGHgwIH8999/mu3Ozs6EhYVx6tQpPvnkE7755hs+/vjjAo+9bds2Lly4wLZt21i2bBlhYWGEhYUZ6tSEKLPOxyVz8nqS1pK7wk2IkiJ5xrStXr2a4cOHs2rVKrp37/7Y8oqicPToUfz8irdllCi6nPHQutXxK9buoTm61PZFpYKjVxK4lnC/2I8nSpiiQHpKyS+KUugQJc8YjrRgE0KIJ2BlZUVYWBijR4/myy+/pEGDBrRt25YBAwZQt25dTbkXXniBUaNGAfC///2P8PBwPvvsMxYvXgzAO++8oylbsWJFJk2axNq1a5kyZUq+x3Z3d+fzzz/H0tKSGjVq0L17d/7++29Gjx5dTGcrhBCipEmeKTnJycmcP39e8zoqKoqjR4/i4eFBYGAg06ZN49q1a/zwww+AunJt6NChfPLJJzRr1ozY2FgA7O3tcXV1BWDWrFk0a9aMqlWrkpSUxKeffsrRo0f54osvSv4ExWOlZmTxz+k4ALqFlEwlqLeLHY2DPDhwKZ4/j8cwqrW0YjMrGfdgjn/JH/ft62DjWKiikmcMR1qwCSHEE+rbty/Xr1/nt99+o3PnzkRERNCgQQOtb1+aN2+u9Z7mzZtrfePz888/06pVK3x9fXFycmLGjBlERxc8C2/t2rWxtLTUvPbz8yMuTv1H4Zw5czTfRjk5OT12X0IIIUyX5JmScejQIerXr0/9+uru4BMnTqR+/fq8++67AMTExGid51dffUVmZiavvvoqfn5+muXNN9/UlElISODll1+mZs2adOrUiWvXrrFjxw6trlfCdEScucm99CzKu9lTt4JriR23Wx1fADafiC2xYwrxKMkzhiEt2IQQwgDs7Ozo2LEjHTt25N1332XUqFHMnDmT4cOH5/uenG4H+/btY8CAAcyaNYvOnTvj6urKmjVrWLBgQYHHzD02gUqlIjs7G4CxY8dqzWLm72+Eb86EEEIYjOSZ4teuXTuUArpV5e62FBER8dh9fvzxx4/tIiVMx8PuocU7e2hunWr7ErrxFIej73ArOQ1PJxl/z2xYO6hbkxnjuHqSPPPkpIJNCCGKQa1atdiwYYPm9b59+xg6dKjW65xvyHfv3k1QUBDTp0/XbL98+fITHd/DwwMPD48n2ocQ4qGCZhiV2UWFMUieEcKwUjOy+Pu/G4B6/LWS5O9mT53yrhy/lsjf/92gf+PAEj2+KEYqVaG7apoayTP6ky6iQgjxBG7fvs3TTz/NihUrOHbsGFFRUfz000/MmzePXr16acr99NNPfP/995w9e5aZM2dy4MABXnvtNQCqVKlCdHQ0a9as4cKFC3z66aesX7/eWKdUaixZsoS6devi4uKCi4sLzZs3588//9RsVxSF0NBQ/P39sbe3p127dpw8eVJrH2lpabz++ut4enri6OjIs88+y9WrV0v6VEQp8OgMo90/3alZ3lwTKZVrolhJnhGiZOw4e5OU9Cz8Xe14KsCtxI/fsZYPAOGnbpT4sUXZJnnGcKQFmxDC9HlWM9njODk50bRpUz7++GMuXLhARkYGAQEBjB49mrfffltTbtasWaxZs4Zx48bh6+vLypUrqVWrFgC9evViwoQJvPbaa6SlpdG9e3dmzJhBaGiooc7MLFWoUIEPPviAKlWqALBs2TJ69epFZGQktWvXZt68eSxcuJCwsDCqVavG7Nmz6dixI2fOnMHZ2RmA8ePHs3HjRtasWUO5cuWYNGkSPXr04PDhw1rjQQiRI2eGUWFmJM8IUeb9+WD8s64lNHtobh1r+bAw/Cw7z93iXnomDjbyqC5KhuQZw1EpBQ00YAaSkpJwdXUlMTERFxcXY4dT+nzVBmL+ffjarx6M2VH48nVegL7f5l1fmH0Vd6zCZKSmphIVFUVwcDB2dnbaG7OzwKIEKzqK4XgqlYr169fTu3dvg+63OBV0TUz5vurh4cH8+fN56aWX8Pf3Z/z48bz11luAurWaj48PH374IWPGjCExMREvLy+WL19O//79Abh+/ToBAQH88ccfdO7cuVDHNOXPQ6h1/3SnVqXYs/X8+HRgg0KvL2hbbX8XNr3RuvhPQjyxfO9rkmeMorTmGWORz6R4pWVm0eh/f3E3LZN1rzSnYVDJd0tTFIU287dxJf4+Xw5pSJcQ3xKPQTyZAp9pSrnSmGeg5HONdBEVQpi2knzoMcbxhEFkZWWxZs0aUlJSaN68OVFRUcTGxtKpUydNGVtbW9q2bcuePXsAOHz4MBkZGVpl/P39CQkJ0ZTRJS0tjaSkJK1FCFGKSZ4Roszbde4Wd9My8XWxo36Au1FiUKlUdKyprlTbekpmExWiNJIKNiGEEKXW8ePHcXJywtbWlrFjx7J+/Xpq1apFbKz6D1MfHx+t8j4+PpptsbGx2NjY4O7unm8ZXebOnYurq6tmCQgIMPBZCSGEEKIkbXowe2iXEF8sjDiuZqfa6r9b/jkdR2ZWttHiEEIUjXTsFkKIYmbmPfGNqnr16hw9epSEhATWrVvHsGHD2L59u2Z77jFUFEV57Lgqjyszbdo0Jk6cqHmdlJQklWxCCKOSPCNE0aVnZmsmFuhet2RnD82tUZA7bg7WJNzL4OClOzSvXM6o8QiRQ/JM4UgLNmGasrP0Wy+EKJNsbGyoUqUKjRo1Yu7cudSrV49PPvkEX191F4vcLdHi4uI0rdp8fX1JT0/nzp07+ZbRxdbWVjNzac4ijC8rW/7wE0IIob/d529xNzUTb2dbGgYap3toDitLC56u7g3AtjNxRo1FCKE/qWATpsnCEtaNUk9ckLOsGyXjlgghCqQoCmlpaQQHB+Pr60t4eLhmW3p6Otu3b6dFixYANGzYEGtra60yMTExnDhxQlNGlB6WFireXBNJ9093apb5W04bOywhhBAm7o8H3UO7Grl7aI6na6or2P45LRVsQpQ20kVUmK5bZ/POPCrMWna2jDVhKkrDtXj77bfp2rUrAQEB3L17lzVr1hAREcHmzZtRqVSMHz+eOXPmULVqVapWrcqcOXNwcHBg0KBBALi6ujJy5EgmTZpEuXLl8PDwYPLkydSpU4dnnnnGyGcniuJ8XLLWDJ+VvRyNGI0wVdLNxTTIdRCm4H56Fn+eULd271bHuN1Dc7Su6oWlhYrzcclE375HYDkHY4ck9FQa/o4uK0r6WkgFmxDC6GxsbLCwsOD69et4eXlhY2Pz2HGyRPFQFIX09HRu3ryJhYUFNjY2xg4pXzdu3ODFF18kJiYGV1dX6taty+bNm+nYsSMAU6ZM4f79+4wbN447d+7QtGlTtm7dirOzs2YfH3/8MVZWVvTr14/79+/ToUMHwsLCsLSU1rJCmBtra2tUKhU3b97Ey8tL8owRKYrCzZs3UalUWFtbGzscUYZtPhlDclomgR4ONK7oYexwAHC1t6ZRkDv7o+L55/QNhrcMNnZIopDkmcZ0GOuZRirYhBBGZ2FhQXBwMDExMVy/ft3Y4QjAwcGBwMBALCxMdySB7777rsDtKpWK0NBQQkND8y1jZ2fHZ599xmeffWbg6IQQpsbS0pIKFSpw9epVLl26ZOxwyjyVSkWFChXkCw1hVD8dugrA8w0rmET30BwdanqrK9jO3JQKtlJEnmlMT0k/00gFmxDCJNjY2BAYGEhmZiZZWTKZhTFZWlpiZWUl37gJIcyOk5MTVatWJSMjw9ihlHnW1tZSuSaM6kr8PfZcuI1KBX0bVjB2OFqeruHNnD9Os+/CbVLSMnG0lcf20kKeaUyHMZ5p5DdVCGEycrqKSHcRIYQQxcXS0lIqdoQQ/HxY3XqtVRVPyrvZGzkabZW9nAj0cCA6/h67z9+iU21fY4ck9CDPNGWX6fb9EUIIIYQQQgghDCw7W9FUsD1vYq3XQF1B83QN9Wyi287IbKJClBZSwSaEEEIIIYQQoszYe/E21xLu42xnRWcTbR3WPqeC7fRNmXVXiFJCKtiEfpy8IVv6kv9/e/cdHlWZ/n/8PekJJKGkUwMEkCIGUJo0gSgoKqCwooiKBXEVRJaVdVWsiAUREZTfIqiIoCKWr6iE3oIKBBGQKpAACSGUFErq+f0xEAiZhEwyJZl8Xtd1LmbOPHPOfTiQO3PPU0REREREpHL6alMiALe3icDHs2IOGe8QWQtvDzeS08+zNyXT2eGISCloDjaxjk8NcHOHRQ9D6p5L+5v0hl4vOC0sERERERGRq0k/n8NP25MBGNy+npOjKZ6PpzsdGtVmzZ7jrNlznKah/s4OSUSuQgU2KZvUPZD0x6XnQU2dF4uIiIgNNQ6uVmRf3ZoVawJsEREpmx/+OEpWbj5NQ6tzbd1AZ4dTom5RQeYC295UHu7ayNnhiMhVqMAmIiIiAtT084T8PKbd09Zyg/w8gqt7OzYoERGxqa82mRc3uLtdPUwmk5OjKVn3psG8+uNf/Pr3Cc7n5FXY4awiYqYCm4iIiAhQzdvD8jQIYO6pPeh/BPjqVycRkcpq77EMtiaext3NxJ3Rdex/wjMn4NB6OLEXTh4Ar+oQWAdqNYLIbuBd8rDPJiHVCQvwITn9PL8dOEm3psH2j1lEyky/JYqIiIhc7sppEERExCV8tdnce+2m5iEE+9uxR/KpQxA3HbZ8BrnnLLdx94KGXaH13dBqIHgUjcdkMtGtaRBfbjrM2r3HVWATqeC0iqiIiIiIiFR5a9asoX///kRERGAymfj222+v+p7Vq1fTrl07fHx8aNSoER9++GGRNosWLaJFixZ4e3vTokULFi9ebIfo5Wpy8vL5ZssRAO5uV9c+JzEM+PUjeL8t/DbLXFwLbg7XDoHuz0KX0eaCWq3GkJcN+5fDtyPh3VawajKcO13kkBeLamv2pNonZhGxGfVgExERkSrpysUMQgN8nBSJiFQEZ86coU2bNjz44IMMGjToqu0PHDhAv379eOSRR5g3bx7r169n1KhRBAcHF7w/Li6OIUOG8MorrzBgwAAWL17M4MGDWbduHR06dLD3JcllVu8+TmpmFkHVvejZPMT2J8jNgh/HQvw88/PI7tD1GfNQUEtzvaXuhZ3fwu8fQ8ZRWPU6bPzAXITrMBK8zDnqxiZBmEyw+1gGyWnnCQtUrhKpqJzag23mzJlce+21BAQEEBAQQKdOnfjpp58KXjcMg4kTJxIREYGvry89evRgx44dToxYbKp6COTnOe/8xZ3bmTGJiIjdXb6YwY9PdS3YhneOtPpYwdW9ycs3LL5W3H4RqZj69u3Lq6++ysCBA0vV/sMPP6R+/fpMnTqVa665hocffpiHHnqIt99+u6DN1KlT6dOnDxMmTKB58+ZMmDCBXr16MXXqVDtdhRTny02JAAyIroOnu40/BudmwbxB5uKayQ1ufh3u/w4adbdcXAMIioJu/4Ix22DQbHNPt/NpsPxlmH49bP8GDIMafl5cW7cGAGv2Hrdt3CJiU07twVa3bl3eeOMNmjRpAsAnn3zCHXfcQXx8PC1btuTNN99kypQpzJ07l6ZNm/Lqq6/Sp08fdu/ejb9/yRNCSiXgU8PyZNJNekOvF+x/fkvnvjCJtYiIuK5iFzMoQ/4J8PXA3c3E6AXx7EvJvHSokOq8949oW4UsIhVQXFwcMTExhfbdfPPNzJ49m5ycHDw9PYmLi+Ppp58u0kYFNsdKzcxixa4UAO5uX8+2B8/Ph29HwcG14OUPgz+BJr1K/353T2h9F7QcAH9+DStfhdMJ8PWDsHku9H+P7lFB/JF4mrV7Uxls6/hFxGasLrAdOHCAyEjrv+G1pH///oWev/baa8ycOZONGzfSokULpk6dynPPPVfwLdInn3xCaGgo8+fP57HHHrNJDFIBXDmZdFBT551bROzOlnlEpFxsmH/2pWSy42i6DYISkcoiOTmZ0NDQQvtCQ0PJzc0lNTWV8PDwYtskJyeXeOysrCyysrIKnqen6+dLeXwbf4TcfIM2dQNpGmrjjhorX4XtX4ObB/xjHjTqUbbjuLlDmyHQ4nZY/x6sexcOrIYPb2Rg++eYRn3W7T1OXr6Bu1sxveJExKms7hvbpEkTevbsybx58zh//rzNAsnLy2PBggWcOXOGTp06ceDAAZKTkwt9K+Tt7U337t3ZsGGDzc4rIiKOZa88IiIi4mimK4b/GYZRZL+lNlfuu9KkSZMIDAws2OrVU6+lsjIMg682mVcPvcvWvb/+/BrWvmN+3H9a2Ytrl/P0hR7PwqiN0KALZGfScMMEZntPJedsGtuPpJX/HCJiF1YX2P744w+io6N55plnCAsL47HHHuO3334rcwB//vkn1atXx9vbm5EjR7J48WJatGhR8K2Otd/4ZGVlkZ6eXmgTEZGKw9Z5RERExBnCwsKKfC5JSUnBw8OD2rVrl9jmys84V5owYQJpaWkFW2Jiom2Dr0L+PJLG7mMZeHu4cXubCNsdOO2IeVEDgBvHQvS9tjs2QK1IGP5/EPMauHvRy/Q733i9yLZtW2x7HhGxGasLbK1atWLKlCkcOXKEOXPmkJyczI033kjLli2ZMmUKx49bN/Fis2bN2Lp1Kxs3buTxxx9n+PDh7Ny5s+B1a7/x0bc9ZVBZJvV39qIIImITts4jIiIiztCpUydiY2ML7Vu6dCnt27fH09OzxDadO3cu8dje3t4FC8Fd3KRsLvZeu7llGIG+nrY5aH4+fDfKvChBRFvo+R/bHPdKbm7Q+Z/w4M+c9Q6hqdsRBmwaBgkb7XM+ESmXMi+f4uHhwYABA/jyyy+ZPHky+/fvZ9y4cdStW5f777+fpKSkUh3Hy8uLJk2a0L59eyZNmkSbNm147733CAsLA7D6Gx9921MGFyd6/qjbpW35y86OqqjLF0Wo6LGKyFXZKo+IiIjYQmZmJlu3bmXr1q2Aec7QrVu3kpCQAJg/Z9x///0F7UeOHMmhQ4cYO3Ysf/31Fx9//DGzZ89m3LhxBW1Gjx7N0qVLmTx5Mrt27WLy5MksW7aMMWPGOPLSqqzzOXl8t/UIAHe3r2u7A//+P/h7FXj4wsBZ5oUK7KluO07dt5Qt+U2obmRifDYQDq6z7zlFxGplLrBt2rSJUaNGER4ezpQpUxg3bhz79+9nxYoVHDlyhDvuuKNMxzUMg6ysLCIjIwkLCyv0jU92djarV68u8RsffdtTRhcner64nU5wdkTFq0yxikix7JVHREREymLTpk1ER0cTHW1eAXjs2LFER0fzwgvm1YWTkpIKim0AkZGRLFmyhFWrVnHdddfxyiuvMG3aNAYNGlTQpnPnzixYsIA5c+Zw7bXXMnfuXBYuXEiHDh0ce3FV1NKdx0g/n0tEoA+dGwfZ5qBpR2DZRPPjPi9DUJRtjnsVdepF8h//11mT1xpTzhmYd5e5yCciFYbVq4hOmTKFOXPmsHv3bvr168enn35Kv379cHMz1+oiIyP56KOPaN68+VWP9Z///Ie+fftSr149MjIyWLBgAatWreLnn3/GZDIxZswYXn/9daKiooiKiuL111/Hz8+PoUOHWn+lIiJSIdgyj0jVopXTRMSeevToUbBIgSVz584tsq979+5s2VLynFh33XUXd911V3nDkzL4apN5NNNd7eraLn8s/S/knIF6HeD6h21zzFLq0LQOj8Q9w/c1P6JZehx8MRQe+gnC2zg0DhGxzOoC28yZM3nooYd48MEHC4ZxXql+/frMnj37qsc6duwYw4YNIykpicDAQK699lp+/vln+vTpA8D48eM5d+4co0aN4tSpU3To0IGlS5fi72/jpZVFRMRhbJlHpGpxdzMxekE8+1IyC+3v0SyYf93s3IJs4+BqJT4XERHHOnL6HOv2pQJwVzsbzct9YA3s+AZMbtDvbfMcaQ7UrWkwn8QdYlTOWJY3mgF/r4T5Q+Dh5RBYx6GxiEhRVhfY9u7de9U2Xl5eDB8+/KrtrvbhyWQyMXHiRCZOnFja8EREpIKzZR6RqmdfSiY7jhZeIdyZxayafp6Qn8e0e9oWfTE/zzx3qIiIONw3mw9jGNAhshb1a/uV/4B5ObBkvPlx+4cg/NryH9NKHRvVxtPdxP5TOSQMm0n9xQPg+F8wfzA89DN4qyOKiDNZXXKfM2cOX331VZH9X331FZ988olNghIREdelPCJXk5df/BCtiqaat4flBXgufgizRCtii9jUqlWrnB2CVDCGYfD1FvPqoYPb26j32qaPzcUs31rQ8znbHNNK1bw9iK5fE4A1Cdlw75dQPRSObYcfRkMJQ5xFxP6sLrC98cYbBAUVnSAyJCSE119/3SZBiYiI61Iekau5OBT01mlrC7a3ftnl7LBKduUCPOdOWi68LXpYvdpEbOyWW26hcePGvPrqqyQmJjo7HKkANh86xaETZ6nm5U7f1pano7DK+XRYPdn8+KbnwK9W+Y9ZRl2bmH+HWrc3FWrUhyHzwOQO2xfBlk+dFpeIlKHAdujQISIjI4vsb9CgQaFVdURERCxRHpHSuDgU9OKWePKss0MqmysLb6l7nB2RiMs5evQoo0eP5ptvviEyMpKbb76ZL7/8kuzsbGeHJk7y7dYjANzcKgw/L6tnRSpq/Xtw9gTUbgJtnTuFRdemwQBs2J9Kbl4+1LsBeplXuuWn8XBspxOjE6narC6whYSEsG3btiL7//jjD2rXrm2ToEScpnpI8UN3NKRHxCaUR0RExJZq1arFU089xZYtW9i0aRPNmjXjiSeeIDw8nKeeeoo//vjD2SGKA2Xn5vN/25IAGBBtg4n/05Mg7gPz414vgrtn+Y9ZDq3rBBLo60n6+Vy2HUkz7+z8FDTpDbnn4esHITfLqTGKVFVWF9j+8Y9/8NRTT7Fy5Ury8vLIy8tjxYoVjB49mn/84x/2iFHEcXxqaEiPiJ0pj4ijNQ6uRsuIgIItNMCnzMeqW9PXZscSEdu77rrrePbZZ3niiSc4c+YMH3/8Me3ataNr167s2LHD2eGJA6zZc5zTZ3MI9vemc+OiU1JYbdUkyD0HdW+Aa/qX/3jl5O5monNj8xeS6/aaV0nFzQ0GfATVQuD4Llj9phMjFKm6rO4v++qrr3Lo0CF69eqFh4f57fn5+dx///2aO0dcx8UhPSJic8oj4iglrvBprQs9nMffcg3jbyn/4UTEtnJycvjuu+/4+OOPiY2NpX379kyfPp177rmHkydP8u9//5u7776bnTs1fM7VLb4wPPT2NhG4u5nKd7AT+yF+nvlxn5fBVM7j2ciNUUH8tD2ZdXtTeapXlHlntSC49R34chise9dcDIy4zqlxilQ1VhfYvLy8WLhwIa+88gp//PEHvr6+tG7dmgYNGtgjPhERcTHKI+IohVb4vHzusya9L81XU1qX93Au77FExKaefPJJvvjiCwDuu+8+3nzzTVq1alXwerVq1XjjjTdo2LChkyIUR8k4n8OynccAGw0PXf0mGHkQFQMNOpX/eDbStYl5HrYtCafIzMqluveFj/UtbocWd8LOb+G7J+CRleDh5bQ4RaqaMs/42LRpU5o2bWrLWERs6+J8ahraKVIhKY+Iw1zZKzmoHP/ubHksEbGJnTt38v777zNo0CC8vCwXEyIiIli5cqWDIxNH+3l7Mlm5+QVTA5TL8T3w55fmxz0mlD84G6pf248Gtf04dOIsG/efoHeL0Esv9nsLDqyBY9sh7n3o+ozzAhWpYqwusOXl5TF37lyWL19OSkoK+fn5hV5fsWKFzYITKZfiehuAehyIOJHyiIiI2NKLL75I586dC6YduCg3N5cNGzbQrVs3PDw86N69u5MiFEf5/o+jANx5XR1M5R3OufoNMPKh2a1QxwZTDdjYjU2COHQigXX7UgsX2KqHwM2vw7cjYc3b0How1KjnvEBFqhCrC2yjR49m7ty53HrrrbRq1ar8P7hE7M3SfGrqcSDiNMojIiJiSz179iQpKYmQkJBC+9PS0ujZsyd5eVoJvio4dSabDftPAHBbm4jyHezYTtj+jflxz4rVe+2irlFBfP5rAmv3Hi/6Ypt/wJZPICEOlj4Hgz91fIAiVZDVBbYFCxbw5Zdf0q9fP3vEIyIiLk55REREbMkwDItf1pw4cYJq1ao5ISJxhti/jpGXb3BNeACRQeW876smAQa0uAPCWtskPlvr1DgINxPsP36GpLRzhAf6XnrRZIJ+b8NH3WDnd7B/BTS+yXnBilQRZVrkoEmTJvaIRUREqgDlERERsYWBAwcCYDKZeOCBB/D29i54LS8vj23bttG5c2dnhScO9tOfSQD0axVWvgMlbYO/vgdMFW7utcsF+npybd0abE08zdq9qQxuf8Uw0LBWcMOj8OtMWDIeRsWBu6dzghWpItysfcMzzzzDe++9h2EY9ohHRERcnPKIiIjYQmBgIIGBgRiGgb+/f8HzwMBAwsLCePTRR5k3b56zwxQHSDuXw7p9qQD0bR1evoOtmmT+s9UgCLmmnJHZV9eoIADW7k213KDnBPALghN7zUNGRcSurO7Btm7dOlauXMlPP/1Ey5Yt8fQsXAX/5ptvbBaciIi4HuURERGxhTlz5gDQsGFDxo0bp+GgVdiyncfIyTNoFupPk5DqZT/Qkc2wewmY3KDHs7YL0E66RgXz/op9rN+XSn6+gZvbFUOlfQLN17FkHKx6A64dAt7+zglWpAqwusBWo0YNBgwYYI9YRESkClAeERERW3rxxRedHYI42U/bzcND+7Yu5/DQlRd6r107BIKiyhmV/UXXr0E1L3dOnslmZ1I6reoEFm3U7gHYOBNO7of10+Cm5xwep0hVYXWB7eI3RSIiImWhPCIiIuXVtm1bli9fTs2aNYmOji5xReotW7Y4MDJxtIzzOazZYx4i2a88w0MTf4N9sWByh27/slF09uXp7kbHRrVZviuFdftSLRfY3D2h90T4chjETYf2D0FAOYfRiohFVhfYAHJzc1m1ahX79+9n6NCh+Pv7c/ToUQICAqhevRxdckVEpEpQHhERkfK44447ChY1uPPOO50bjDjV6j3Hyc7Lp1FwNaLKMzx05WvmP68bCrUb2yY4B7gxKshcYNubysjuxcR9TX+o1wESfzXPMXf7NMcGKVJFWF1gO3ToELfccgsJCQlkZWXRp08f/P39efPNNzl//jwffvihPeIUEREXYas8MmnSJL755ht27dqFr68vnTt3ZvLkyTRr1qygjWEYvPTSS8yaNYtTp07RoUMHPvjgA1q2bFnQJisri3HjxvHFF19w7tw5evXqxYwZM6hbt67Nr11ERGzj8mGhGiJata34KwWAPteEltiTsUQH18Pfq8DNs9L0Xrvo4kIHvx08yfmcPHw83Ys2MpmgzyvwcQzEfwYdH6/wCziIVEZWryI6evRo2rdvz6lTp/D19S3YP2DAAJYvX27T4ERExPXYKo+sXr2aJ554go0bNxIbG0tubi4xMTGcOXOmoM2bb77JlClTmD59Or///jthYWH06dOHjIyMgjZjxoxh8eLFLFiwgHXr1pGZmcltt91GXl6ebS5Y5HLVQyC/mH9bxe0XkRIlJiZy+PDhgue//fYbY8aMYdasWU6MShwhL99g5W5zge2m5iFlO4hhXOq91nYY1Gxgo+gco3FwdcICfMjOzee3AyeLb1i/g7knm5EPyyY6LD6RqqRMq4iuX78eLy+vQvsbNGjAkSNHbBaYiIi4JlvlkZ9//rnQ8zlz5hASEsLmzZvp1q0bhmEwdepUnnvuOQYOHAjAJ598QmhoKPPnz+exxx4jLS2N2bNn89lnn9G7d28A5s2bR7169Vi2bBk333xzOa9W5Ao+NcDNHRY9DKl7Lu0PagqD/ue0sEQqs6FDh/Loo48ybNgwkpOT6d27N61atWLevHkkJyfzwgsvODtEsZOtiac4dTaHAB8P2jWoWbaDHFgNh9aDuxd0fca2ATqAyWSia1QQX20+zLp9qXRrGlx8414TYfdPsOdnOLAWIrs6LE6RqsDqHmz5+fkWv9U/fPgw/v5a8leqoJJ6HKg3gkgR9sojaWlpANSqVQuAAwcOkJycTExMTEEbb29vunfvzoYNGwDYvHkzOTk5hdpERETQqlWrgjZXysrKIj09vdAmYrXUPZD0x6Xt8mKbiFhl+/bt3HDDDQB8+eWXtG7dmg0bNjB//nzmzp1r9fFmzJhBZGQkPj4+tGvXjrVr1xbb9oEHHsBkMhXZLp+KYO7cuRbbnD9/3urYpLDlF4aHdm8Wgoe71R9tzb3XVr1hftzuAQisnNND3HhhmOjavaklNwxqAu0eND+Ofd58/SJiM1b/FOrTpw9Tp04teG4ymcjMzOTFF1+kX79+toxNpHK42BPho26Ft0UPm18TkULskUcMw2Ds2LHceOONtGrVCoDk5GQAQkNDC7UNDQ0teC05ORkvLy9q1qxZbJsrTZo0icDAwIKtXr16ZYpZzEN75IKSho6CvrARKUFOTk7BggfLli3j9ttvB6B58+YkJSVZdayFCxcyZswYnnvuOeLj4+natSt9+/YlISHBYvv33nuPpKSkgi0xMZFatWpx9913F2oXEBBQqF1SUhI+Pj5luFq53Ipd5gJbr7IODz24DhLizL3XbnzahpE5Vpcm5gLbX0npHM/IKrlx93+DV3U4Gg9/fe+A6ESqDquHiL777rv07NmTFi1acP78eYYOHcrevXsJCgriiy++sEeMIhXfxZ4IInJV9sgj//znP9m2bRvr1q0r8tqVEx4bhnHVSZBLajNhwgTGjh1b8Dw9PV1FtjJydzMxekE8+1IyC/b1aBbMv25u7sSonKS4oaOg4aMiV9GyZUs+/PBDbr31VmJjY3nllVcAOHr0KLVr17bqWFOmTGHEiBE8/PDDAEydOpVffvmFmTNnMmnSpCLtL37ZctG3337LqVOnePDBBwu1M5lMhIWFWXtpUoIjp8+xKzkDNxN0L2lYZElWTzb/2fZ+CIiwXXAOFlTdmxbhAexMSmf9vlTujK5TfOPqwdDpCfO1r3gVmt+mTgEiNmJ1gS0iIoKtW7fyxRdfsGXLFvLz8xkxYgT33ntvocmqRURELLF1HnnyySf5/vvvWbNmTaGVPy9+kElOTiY8PLxgf0pKSkGvtrCwMLKzszl16lShXmwpKSl07tzZ4vm8vb0LekpI+e1LyWTH0UvDbBsHV3NiNBWAvrARsdrkyZMZMGAAb731FsOHD6dNmzYAfP/99wVDR0sjOzubzZs38+yzzxbaHxMTU+y0AVeaPXs2vXv3pkGDwhPlZ2Zm0qBBA/Ly8rjuuut45ZVXiI6OLnVsUtTF3mtt69ekZjWvq7S24NAGOLjWvHJolzG2Dc4JukYFsTMpnbV7r1JgA3OB7bdZ5pzzxwKIvtcxQYq4OKsLbAC+vr489NBDPPTQQ7aOR0REqgBb5BHDMHjyySdZvHgxq1atIjIystDrkZGRhIWFERsbW/AhJjs7m9WrVzN5svkb63bt2uHp6UlsbCyDBw8GICkpie3bt/Pmm2+WOTYREXGcHj16kJqaSnp6eqEvSx599FH8/PxKfZzU1FTy8vJKnFqgJElJSfz000/Mnz+/0P7mzZszd+5cWrduTXp6Ou+99x5dunThjz/+ICoqyuKxsrKyyMq6NNRP830WteKvYwDcdE0Zh4de7L0WfR/UqPw90btGBfPRmr9Zt+/41Xvr+wSah8TGvmCeg671XeChLw9FysvqAtunn35a4uv3339/mYMRERHXZ6s88sQTTzB//ny+++47/P39Cz78BAYG4uvri8lkYsyYMbz++utERUURFRXF66+/jp+fH0OHDi1oO2LECJ555hlq165NrVq1GDduHK1bty5YVVRERCo+d3f3IvNpNmzYsEzHKsvUAmBezKBGjRrceeedhfZ37NiRjh07Fjzv0qULbdu25f3332fatGkWjzVp0iReeukl64OvIs5l57Fh/wkAejUPvUprCxJ+hb9XgZtHpZ577XLtG9bE28ONY+lZ7EvJJCr0KgtH3fAobJwJaQmw+RPo8KhjAhVxYVYX2EaPHl3oeU5ODmfPnsXLyws/Pz8V2EREpES2yiMzZ84EzD0XLjdnzhweeOABAMaPH8+5c+cYNWoUp06dokOHDixdurTQaqXvvvsuHh4eDB48mHPnztGrVy/mzp2Lu7vmI6lsrhxeGhqgCcRFqoJjx44xbtw4li9fTkpKCsYVKyNaWrnakqCgINzd3Yv0Vrt8aoHiGIbBxx9/zLBhw/DyKnm4opubG9dffz179+4tto3m+yzZhv2pZOXmU6eGL01Dq1t/gDUXeqm3uQdqNii5bSXh4+nODZG1WLs3lTV7U69eYPP0hW7/gh/Hwpq3zMNEvar4NA0i5WR1ge3UqVNF9u3du5fHH3+cf/3rXzYJSkREXJet8siVH6AsMZlMTJw4kYkTJxbbxsfHh/fff5/333+/1OeWiqWmnyfk5zHtnrbODkVEnOCBBx4gISGB559/nvDw8FL1NrPEy8uLdu3aERsby4ABAwr2x8bGcscdd5T43tWrV7Nv3z5GjBhx1fMYhsHWrVtp3bp1sW0032fJll9cPfSaEOvv9+HNsG8ZmNyh6zN2iM55bmwSxNq9qazde5wRN0Ze/Q3Rw2DDNDh1EH790OX+PkQcrUxzsF0pKiqKN954g/vuu49du3bZ4pAiIlKFKI9IeVTz9rC8AmeT3tDrBecFJiIOsW7dOtauXct1111X7mONHTuWYcOG0b59ezp16sSsWbNISEhg5MiRgLln2ZEjR4pMdzB79mw6dOhAq1atihzzpZdeomPHjkRFRZGens60adPYunUrH3zwQbnjrYoMw2DFX+YCW8/mZZh/7eLca23+AbVKUYSqRLo3C2bST7uI23+C8zl5+HhepTe+hxf0fA6+eQTWvwftHwLfmiW/R0SKZZMCG5jnPTh69KitDidSsVQPgfw8LWEtYkfKI1JuV67AGdTUebGIiMPUq1evVL2aS2PIkCGcOHGCl19+maSkJFq1asWSJUsKVgVNSkoiISGh0HvS0tJYtGgR7733nsVjnj59mkcffZTk5GQCAwOJjo5mzZo1Vq1wKpfsTEonOf08vp7udGpU27o3H42Hvb+Ayc0le2s1C/UnPNCHpLTzxP19gp7NSlGAbDUI1r0LKTth/TTo/aL9AxVxUVYX2L7//vtCzw3DICkpienTp9OlSxebBSZSofjUUO8IERtRHpHyuHKeNdBcayJV3dSpU3n22Wf56KOPyrywweVGjRrFqFGjLL42d+7cIvsCAwM5e/Zsscd79913effdd8sdl5hd7L3WpUnQ1XtoXWn1W+Y/W98NtRvbODLnM5lM9GwewvxfE1i5K6V0BTY3d7jpv7BgqHmYaIeR4F+GhSNExPoC25Wr4phMJoKDg7npppt45513bBWXSMWk3hEi5aY8ImWhedZEpDhDhgzh7NmzNG7cGD8/Pzw9PQu9fvLkSSdFJvawYvel+deskrQNdv8ImKDrONsHVkH0bGYusK3YlcJLt5duBVya9YM67eHIJlj7NvR7y/6Birggqwts+fn59ohDRESqCOURKYti51kD9SYWqeKmTp3q7BDEQVIzs9iaeBqgdL2zLndx5dBWAyHYdb8k79y4Nl7ubhw+dY79x8/QJKQUq6yaTOY8+untsGkOdPqny6yuKuJINpuDrSwmTZrEN998w65du/D19aVz585MnjyZZs2aFbQxDIOXXnqJWbNmcerUKTp06MAHH3xAy5YtnRi5SDkVN5+b5nkTESnZlT2JQb2JRaq44cOHOzsEcZBVu49jGNAyIoCwQCumBzi2A/76ATBBt9KvWF4ZVfP2oEOjWqzdm8qq3SmlK7ABNOoOkd3hwGrzQhB3zrBvoCIuyOoC29ixY0vddsqUKSW+vnr1ap544gmuv/56cnNzee6554iJiWHnzp1Uq2aeY+XNN99kypQpzJ07l6ZNm/Lqq6/Sp08fdu/ejb+/v7Xhi1QMlnphBDWFQf9zXkwiDmLLPCIiIgKwf/9+5syZw/79+3nvvfcICQnh559/pl69evpi3oWs2HUMgF7Wrh665sKQxxZ3QMg1No6q4unZLIS1e1NZsSuFh7s2Kv0be70I/7sJ/vgCOj8FIc3tF6SIC7K6wBYfH8+WLVvIzc0t6Gm2Z88e3N3dadv20rwopRnr/fPPPxd6PmfOHEJCQti8eTPdunXDMAymTp3Kc889x8CBAwH45JNPCA0NZf78+Tz22GPWhi9ScVjqhSFSBdgyj4iIiKxevZq+ffvSpUsX1qxZw2uvvUZISAjbtm3jf//7H19//bWzQxQbyM7NZ82eVABuusaKSfiP74Yd35ofu3jvtYt6Ng/h5f/bye8HT5JxPgd/H8+rvwmgbjtofhvs+j9Y+RoM+cy+gYq4GDdr39C/f3+6d+/O4cOH2bJlC1u2bCExMZGePXty2223sXLlSlauXMmKFSusDiYtLQ2AWrVqAXDgwAGSk5OJiYkpaOPt7U337t3ZsGGDxWNkZWWRnp5eaBMRkYrDnnlERESqnmeffZZXX32V2NhYvLy8Cvb37NmTuLg4J0YmtrTp4Ekys3IJqu7FtXUCS//GNW8DhrlwFNbKbvFVJJFB1WhY24+cPIN1e1Ote3PP5wAT/PU9HNlil/hEXJXVBbZ33nmHSZMmUbNmzYJ9NWvW5NVXXy3X6m+GYTB27FhuvPFGWrUy/+BLTk4GIDS08DcUoaGhBa9dadKkSQQGBhZs9erVK3NMIuVSPcQ8p5qIFGKvPCIiIlXTn3/+yYABA4rsDw4O5sSJE06ISOxh+S7z6qE9m4Xg5lbKXu4n9sP2Cz0Yu7nuyqGW9LrQyy925zHr3hjaAq4dYn684hUbRyXi2qwusKWnp3PsWNH/pCkpKWRkZJQ5kH/+859s27aNL774oshrVw4TMozilxueMGECaWlpBVtiYmKZYxIpF58al+Za+6jbpW35y86OTMSp7JVHxLU0Dq5Gy4iAgi00wIrJrEWkSqlRowZJSUlF9sfHx1OnTh0nRCT2sOJCge0ma+ZfWzsFjHyIioGIaDtFVjHFtDAX2FbsTiE3z8oV3Hs8C24esH8FHFhrh+hEXJPVc7ANGDCABx98kHfeeYeOHTsCsHHjRv71r38VzJNmrSeffJLvv/+eNWvWULdu3YL9YWFhgLknW3h4eMH+lJSUIr3aLvL29sbb27tMcYjYxZVzrWm1O6ni7JFHxHXU9POE/Dym3dP26o2rios9orX6tIhFQ4cO5d///jdfffUVJpOJ/Px81q9fz7hx47j//vudHZ7YwN/HMzmQegZPdxM3RgWV7k2nDsG2BebH3cbbL7gKql2DmtT08+TU2Rx+P3iKTo1rl/7NtSKh7XDYNNvcOWDEUtDcuCJXZXWB7cMPP2TcuHHcd9995OTkmA/i4cGIESN46623rDqWYRg8+eSTLF68mFWrVhEZGVno9cjISMLCwoiNjSU62vyNQ3Z2NqtXr2by5MnWhi4iIhWALfOIuJ5q3h6WV1pu0ht6veC8wJzp8h7RWn1apIjXXnuNBx54gDp16mAYBi1atCA3N5d7772X//73v84OT2zgYu+1DpG1Sz9h//qpkJ8LjXpAvevtFltF5eHuxk3NQ1m05TBLdyZbV2AD6D4ets6Hw7/BjsXQSl+CilyN1QU2Pz8/ZsyYwVtvvcX+/fsxDIMmTZpQrVo1q0/+xBNPMH/+fL777jv8/f0L5lULDAzE19cXk8nEmDFjeP3114mKiiIqKorXX38dPz8/hg4davX5RETE+WyZR8SFqfdvUVp9WsQiT09PPv/8c1555RW2bNlCfn4+0dHRREVFOTs0sRGrh4emH4X4eebHVbD32kUxLc0Fttidx3jhthbWrdDuHwZdRsPqNyD2BWjWFzx97ResiAuwusB2UVJSEklJSXTr1g1fX98S50UrzsyZMwHo0aNHof1z5szhgQceAGD8+PGcO3eOUaNGcerUKTp06MDSpUvx9/cva+giIlIB2CKPiIhI1TR27NgSX9+4cWPB4ylTptg7HLGjtHM5/HbgJGBFgW39e5CXDQ26QMMudoyuYusaFYS3hxuHT51jV3IG14QHWHeALqMh/jNIS4QN06H7v+wTqIiLsLrAduLECQYPHszKlSsxmUzs3buXRo0a8fDDD1OjRg2rVoAzDOOqbUwmExMnTmTixInWhioiIhWQLfOIiIhUTfHx8YWeb968mby8PJo1awbAnj17cHd3p127ds4IT2xo1e4UcvMNokKq0zCoFL3dM47B5rnmx92qdkHIz8uDrlFBLPsrhaU7jllfYPPygz4vw6IRsG4KRN8LARH2CVbEBVi9iujTTz+Np6cnCQkJ+Pn5FewfMmQIP//8s02DExER16M8IiIi5bVy5cqCrX///vTo0YPDhw+zZcsWtmzZQmJiIj179uTWW291dqhSTkt3mlce79PC8iJ3RcS9D7nnoe715vnXqriYFuaFA5fuTC7bAVoNgnodIOcsLHvJhpGJuB6rC2xLly5l8uTJhVb7BIiKiuLQoUM2C0xERFyT8oiIiNjSO++8w6RJk6hZs2bBvpo1a/Lqq6+qV3Qll5Wbx+rdxwHoXZoC25kT8PvH5sfd/qWVL4Fe14Tg7mZix9F0Ek6ctf4AJhPcMsn8eNsCOLzJtgGKuBCrC2xnzpwp1OPgotTUVLy9vW0SlIiIuC7lERERsaX09HSOHTtWZH9KSgoZGRlOiEhsZePfJ8nMyiXY35vr6tYoxRs+gJwzEN4GomLsHl9lULu6Nx0b1QLgxz+TynaQOu3gunvNj3/6N+Tn2yg6EddidYGtW7dufPrppwXPTSYT+fn5vPXWW/Ts2dOmwYmIiOtRHhEREVsaMGAADz74IF9//TWHDx/m8OHDfP3114wYMYKBAwc6Ozwph2UXhof2viYEN7er9EY7dwp+nWV+rN5rhfRrHQ7AkrIW2AB6vQBe1eHIJvjzKxtFJuJarF7k4K233qJHjx5s2rSJ7Oxsxo8fz44dOzh58iTr16+3R4wiIuJClEeqnrx8A/erfTASESmjDz/8kHHjxnHfffeRk5MDgIeHByNGjOCtt95ycnRSVoZhsOwvK+Zf+/UjyM6AkBbQTHPvXe7mlmE8/+12/jySRsKJs9SvXXQkwVX5h0HXsbD8ZVj2IjTrCz5WLpog4uKs7sHWokULtm3bxg033ECfPn04c+YMAwcOJD4+nsaNG9sjRhERcSHKI1WPu5uJ0QviuXXa2oLtrV92OTssEXERfn5+zJgxgxMnThAfH8+WLVs4efIkM2bMoFq1Uqw6KRXS9iPpJKWdx8/Lnc6Ng0pufD4dNs4wP+42Dtys/pjr0oKqe9OxUW0AlmwvRy+2jk9AzUjISIIVr9goOhHXYVUPtpycHGJiYvjoo4946SWtICIiItZRHqm69qVksuNoesHzxsH60CsitlWtWjWuvfZaZ4chNvLLDvOql92igvHxdC+58W+z4Hwa1I6CFnfaP7hK6NZrw9mw/wRL/kxiZPcyfqHp6QP9p8Knd8Bv/w9a3QX1O9g0TpHKzKrSvqenJ9u3b8ek8ewiIlIGyiMiIiJyNYZh8H/bjgLQt3VYyY3PnYYN08yPu/0L3K5SjKuibm4ZhpsJth1OI/FkGVYTvahRD7juPsCAH56C3CxbhShS6Vndd/b+++9n9uzZ9ohFRESqAOURERERKcn2I+kcPHEWH083el9zlfnXNrxv7r0WfA20vssxAVZClw8T/eFC8bLMYl6BasFwfBesm1r+4ERchNUFtuzsbGbOnEm7du147LHHGDt2bKFNRESkJMojIiJSkc2YMYPIyEh8fHxo164da9euLbbtqlWrMJlMRbZduwrPM7lo0SJatGiBt7c3LVq0YPHixfa+jErtYgGo1zWhVPMuYVajzBTYONP8+Kb/qvfaVfRvEwHA91vLWWDzqwV9J5sfr3kLUjSvqgiUcg62bdu20apVK9zc3Ni+fTtt27YFYM+ePYXaaciPiIhYojwiIiKVwcKFCxkzZgwzZsygS5cufPTRR/Tt25edO3dSv379Yt+3e/duAgIuragYHBxc8DguLo4hQ4bwyiuvMGDAABYvXszgwYNZt24dHTpo/qor5ecb/N8f5gJQ/2sjSm689h3IOQMRbaG5Vg69mn6twnnxux3sSs7gr6R0rgkvxyqgLQfCti9hz8/moaIP/qzFJaTKK1WBLTo6mqSkJEJCQjh06BC///47tWvXtndsIiLiIpRHRESkMpgyZQojRozg4YcfBmDq1Kn88ssvzJw5k0mTJhX7vpCQEGrUqGHxtalTp9KnTx8mTJgAwIQJE1i9ejVTp07liy++sPk1VHZbEk5xNO081b096NEsuPiGpxNg08fmx71eAH1Jd1WBfp70bB7MLzuO8e3WI+UrsJlMcOs7cHAdJP4Km2bDDY/YLliRSqhUJeYaNWpw4MABAA4ePEh+fr5dgxIREdeiPCJiB9VDID/P8mvF7ReRYmVnZ7N582ZiYmIK7Y+JiWHDhg0lvjc6Oprw8HB69erFypUrC70WFxdX5Jg333zzVY9ZVf1wofdaTMvQklcPXT0Z8rKhYVfzxPtSKndeVwcwDxPNzzfKd7DAutDrRfPjZRPh1KHyHU+kkitVD7ZBgwbRvXt3wsPDMZlMtG/fHnd3yz/s/v77b5sGKCIilZ/yiIgd+NQwzze06GFIvWy4db2OcEsxPW3y8zRHkUgxUlNTycvLIzS08KT6oaGhJCcnW3xPeHg4s2bNol27dmRlZfHZZ5/Rq1cvVq1aRbdu3QBITk626pgAWVlZZGVdWp0xPT29rJdVqeTm5fPjn+a/l4vzhVmUuhe2zjc/7vWieq9ZoWfzEPx9PEhKO8+vB07SqXE5RxRcPwK2L4LEjfDt4zD8B+UZqbJKVWCbNWsWAwcOZN++fTz11FM88sgj+Pv72zs2ERFxEcojInaUugeS/rj0PKip5cJbUFMY9D/HxydSyVw5H6hhGMXOEdqsWTOaNWtW8LxTp04kJiby9ttvFxTYrD0mwKRJk3jppZfKEn6ltnrPcVIzs6jp58mNTYKKb7jyNTDyoVk/qHe94wJ0AT6e7vRrFc7CTYl8t/VI+Qtsbu4w4EP48EY4tB7iPoAuT9kmWJFKplQFNoBbbrkFgM2bNzN69Gh9MBIREasoj4g42JWFNxEpUVBQEO7u7kV6lqWkpBTpgVaSjh07Mm/evILnYWFhVh9zwoQJhVbWTk9Pp169eqWOobL64rdEAAa1rYunezGzGR3dCjsWAybo+ZzDYnMld0RHsHBTIj/+mcTE21uWPBS3NGpFmntOf/8krHgFGt8EYa1sE6xIJWL1Mh9z5szRhyIRESkz5REREamIvLy8aNeuHbGxsYX2x8bG0rlz51IfJz4+nvDw8ILnnTp1KnLMpUuXlnhMb29vAgICCm2u7lj6eVbuTgHgHzcUU0w0DFh2Yc6v1nepiFNGHSNrExHoQ8b5XJbuPGabg0YPM/cozMuGbx6F3Kyrv0fExZS6B5uIiIiIiIgrGzt2LMOGDaN9+/Z06tSJWbNmkZCQwMiRIwFzz7IjR47w6aefAuYVQhs2bEjLli3Jzs5m3rx5LFq0iEWLFhUcc/To0XTr1o3Jkydzxx138N1337Fs2TLWrVvnlGusqL7alEhevsH1DWvSJKSYL+L2LoW/V4G7l3qvlYObm4m72tVl2op9fLUpkdtLmu+utEwm6D8NEn+DlB2w4lWIeaX8xxWpRFRgExERERERAYYMGcKJEyd4+eWXSUpKolWrVixZsoQGDRoAkJSUREJCQkH77Oxsxo0bx5EjR/D19aVly5b8+OOP9OvXr6BN586dWbBgAf/97395/vnnady4MQsXLqRDhw4Ov76KKj/fYOEm8/DQf1xf33KjvBz45UJRrcNI87BEKbO72tVj2op9rNuXytHT54io4Vv+g1YPhtvfhwX3wIb3oenN0PDG8h9XpJJQgU2kMihu1TetBicilVzj4GqFnocG+DgpEhERs1GjRjFq1CiLr82dO7fQ8/HjxzN+/PirHvOuu+7irrvuskV4LmnD/hMknjyHv48H/VqHW2606WM4sRf8gqDbOMcG6ILq1/ajQ2Qtfj1wkm+2HOafN0XZ5sDN+0Hb+2HLp7D4cRi5Fnxr2ObYIhWcCmwilYFWgxMRF1PTzxPy85h2T1tnhyIiIk72+a+HALjzujr4eln48vjsSVg1yfy453/AJ9CB0bmuwe3r8euBk3y1+TBP9GxS4sq2Vrn5dTiwBk4dhB/HwqDZ5iGkIi7O6kUORMRJLq4Gd3G7vNgmIlLJVPP2uPTlwUfdLm3LX3Z2aCIi4kCHTpzhlx3mVVaHdWpgudGKV+DcKQhpAW2HOzA619a3dRjVvT04dOIsvx04absDe/ubi2puHrB9EWydb7tji1RgKrCJiIiI3TUOrkbLiICCrWAo6JVfHpxOKPlAIiLiUj5ed4B8A7o3DaZpqIXFDY5sgU1zzI/7vQ3uGoRlK35eHtx6YUjuxTnwbKZue3NvQ4Al/4LUfbY9vkgFpJ9OIiIiYl8aCioiIhacPpvNl5sOA/Bot0ZFG+Tnm4szGND6bmjYxbEBVgH/uKEeCzcl8uO2JF68rSWBfp62O3iXMbB/JRxcC4seghGx4OFtu+OLVDDqwSYiIpXWmjVr6N+/PxEREZhMJr799ttCrxuGwcSJE4mIiMDX15cePXqwY8eOQm2ysrJ48sknCQoKolq1atx+++0cPnzYgVdRBWgoqIiIWPD5rwmcy8njmvAAOjeuXbRB/GdwZBN4+UOfVxwfYBVwXb0aXBMeQFZuPou22Pj3Hzd3GDgLfGuZe6kr94uLU4FNREQqrTNnztCmTRumT59u8fU333yTKVOmMH36dH7//XfCwsLo06cPGRkZBW3GjBnD4sWLWbBgAevWrSMzM5PbbruNvLw8R11G1aChoCIicpms3Dw+2XAQgEe6RhadYD/jGMQ+b37c41kIKGZ1USkXk8nE0A71AZj/WwKGYdj2BAERcMeF39PipsO+ZbY9vkgFogKbiIhUWn379uXVV19l4MCBRV4zDIOpU6fy3HPPMXDgQFq1asUnn3zC2bNnmT/fPNluWloas2fP5p133qF3795ER0czb948/vzzT5Yt0y+AIiIi9vLNliOkZGQRFuDDbddGFG2wZBycT4Pw66DDSIfHV5XceV0Efl7u7EvJ5PeDp2x/gua3wvUPmx8vfhwyj9v+HCIVgApsIiLikg4cOEBycjIxMTEF+7y9venevTsbNmwAYPPmzeTk5BRqExERQatWrQraiIiIiG3l5OXzwUrzpPePdmuEl8cVH0t3fg9/fW9ehfKO6VrYwM78fTy5vY25yPn5r4fsc5KYV82rwJ5JgW8fN8+vJ+JiVGATqSiqh0C+hqSJ2EpycjIAoaGhhfaHhoYWvJacnIyXlxc1a9Ysts2VsrKySE9PL7SJVAol5RnlHxFxoMXxRzh86hxB1b2554b6hV88d8rcew2gy2gIa+34AKugezs0AOCnP5M5kZll+xN4+sKg2eDhA/ti4dcPbX8OESdTgU2kovCpoYnARezgyjldDMMoOs/LFUpqM2nSJAIDAwu2evXq2SxWEbsqLs8seti8X0TEAXIv6732WLdG+Hpd8fNn6X8h8xjUjoJu450QYdXUum4gbeoGkp2Xzxe/2Wme1NAWcPNr5sfLXjTPySriQlRgE6loNBG4iE2EhYUBFOmJlpKSUtCrLSwsjOzsbE6dOlVsmytNmDCBtLS0gi0xMdEO0VdcefnFT35c0mtSgVyZZ1L3ODsiEalCvv/jKIdOnKVWNS/u7XhF77W/V0H8PPPj298HTx+Hx1eVPdClIQCfbTxETp6dhnC2HwHNb4O8bPh6BGSfsc95RJxABTYREXFJkZGRhIWFERsbW7AvOzub1atX07lzZwDatWuHp6dnoTZJSUls3769oM2VvL29CQgIKLRVJe5uJkYviOfWaWsLbaMXxOPuVnLPQBERqdpy8/J5f4W599ojXRvh53XZ3GrZZ+D7p8yPr38EGnRyQoRVW7/W4QRV9+ZYehY/bbc8VUa5mUzm4ql/BJzYCz/92z7nEXECpxbY1qxZQ//+/YmIiMBkMvHtt98Wet0wDCZOnEhERAS+vr706NGDHTt2OCdYkcpG8+xIFZCZmcnWrVvZunUrYF7YYOvWrSQkJGAymRgzZgyvv/46ixcvZvv27TzwwAP4+fkxdOhQAAIDAxkxYgTPPPMMy5cvJz4+nvvuu4/WrVvTu3dvJ15ZxbYvJZMdR9MLbftSMp0dloiIVHCL449wIPUMNf08GdapQeEXl78Cpw9BQF3o/aJzAqzivD3cue9Cr8I56w/Y70R+tWDgR4AJ4j+DHYvtdy4RB3Jqge3MmTO0adOG6dOnW3z9zTffZMqUKUyfPp3ff/+dsLAw+vTpQ0ZGhoMjFamENM+OVAGbNm0iOjqa6OhoAMaOHUt0dDQvvPACAOPHj2fMmDGMGjWK9u3bc+TIEZYuXYq/v3/BMd59913uvPNOBg8eTJcuXfDz8+OHH37A3V3/V6wRXN1bQ0RFRKRYOXn5TFuxF4CR3RtT3fuy3mv7V8KvM82P+08Fb/+iBxCHuLdDA7zc3YhPOM3WxNP2O1FkN+g61vz4+9GaFkdcglPXO+7bty99+/a1+JphGEydOpXnnnuOgQMHAvDJJ58QGhrK/PnzeeyxxxwZqkjldHGeHREX1aNHDwyj+KKOyWRi4sSJTJw4sdg2Pj4+vP/++7z//vt2iLDqCPD1KBg+enlvtsHt6zK8c6QTIxMRkYrg682HSTx5jqDqXoV7r509Cd+OMj9u/xBE9XFOgAJAsL83t7UJ55stR5i97gDv3xNtv5P1mAB/r4Yjm2DRI/DAj+Du1BKFSLlU2DnYDhw4QHJyMjExMQX7vL296d69Oxs2bHBiZCIiIlKcK4ePHks/7+yQRETEybJy85h+Ye61x3s0uTT3mmHAj2Mh4yjUagwxrzoxSrloxI3mL8Z+3HaUhBNn7Xcid08Y9D/w8ofEjbDmLfudS8QBKmyB7eKqb1eu4hYaGlpkRbjLZWVlkZ6eXmgTERER22kcXI2WEQGFtro1fZ0dlpRV9ZCS5+fU3J0iUk5f/p7IkdPnCA3w5t4Ol60cuu1L8/xbJncY9P/Aq5rzgpQCLSMC6dY0mHwDPlqz374nqxVpHhYMsOZNOKTONFJ5Vfj+lyZT4RXJDMMosu9ykyZN4qWXXrJ3WJWOkZ+HSXNvuZaLH4h0X0XEkfLzmHZP22JfC67u7dh4pPx8alyatzN1T+HXgpqaexeIiJTR+Zw8pq809157omcTfDwv/O56OgGWjDM/7vEs1GnnpAjFklE9GrNmz3G+2nyY0b2jCPH3sd/JWt8F+5bDH/PNQ0UfXwe+Ne13PhE7qbAFtrCwMMDcky08PLxgf0pKSpFebZebMGECY8eOLXienp5OvXr17BdoJWEq7hfnJr2h1wvOCUrKp6QPRLqvImIvVynEBPhW2F8t5Go0b6eI2MH8XxM4lp5FRKAPQ66/8LksPw8Wj4SsdKh7A9w4tuSDiMN1iKxF2/o12JJwmo/XHeTZvs3te8J+b5qHiZ78G75/CgZ/CiV0rBGpiCrsENHIyEjCwsKIjY0t2Jednc3q1avp3Llzse/z9vYmICCg0CYXXPzF+fJNq7VUfrqvIuJoln7uXFlwExGRKu9cdh4zVpmHGP7zpii8PS70XtswDQ6tB6/qMPAjTWxfAZlMJh7v0QSAeRsPkXYux74n9PaHQbPBzRP++h62fGLf84nYgVMLbJmZmWzdupWtW7cC5oUNtm7dSkJCAiaTiTFjxvD666+zePFitm/fzgMPPICfnx9Dhw51ZtgiIiIiIiJyFZ9tPEhqZhb1avlyd/u65p0JG2H5K+bHt0yCWo2cF6CUqFfzEJqF+pOZlcvstX/b/4R12kKv582Pf3oWUnbZ/5wiNuTUAtumTZuIjo4mOtq89O/YsWOJjo7mhRfMQ9vGjx/PmDFjGDVqFO3bt+fIkSMsXboUf39/Z4ZdsWkiYhERERERcbLMrFw+XG0uyjx5UxSe7m5wJhW+ehCMPGh9N0QPc3KUUhI3NxNjekcB8L91B0jNzLL/STs9CY16Qu45+PpByDln/3OK2IhT++L26NEDwzCKfd1kMjFx4kQmTpzouKAqO0tz42g+LhERESmLkhbU0UI7IlKCTzYc5OSZbBrW9mNgdB3Iz4dvHoWMo1A7Cm6bqjm2KoFbWoVxbd1Ath1O44OV+3ixf0v7ntDNDQbOgpldIGUn/Pws9H/PvucUsZEKOweblMOVc+NoPi4REXGQujV9aRkRULCFBthx1TGxv8sX1Pmo26Vt0cMqronLmjFjBpGRkfj4+NCuXTvWrl1bbNtvvvmGPn36EBwcTEBAAJ06deKXX34p1Gbu3LmYTKYi2/nz5+19KU6Tfj6HWWvMvddG947Cw90N1r0D+5eDhy8M/gS8qzs5SikNk8nEv25uBsDnGxM4fOqs/U9aPcRcZMMEm+fC9kX2P6eIDajAJiIiIuV3oafT+Fuu4cenuhZswztHOjsysYUrv7zTohbiohYuXMiYMWN47rnniI+Pp2vXrvTt25eEBMtfWK9Zs4Y+ffqwZMkSNm/eTM+ePenfvz/x8fGF2gUEBJCUlFRo8/Fx3S8gPl53gLRzOTQOrsbtberAgbWw8nXzi7e+DaF27gUlNnVjkyA6NapNdl4+7y3b65iTNu4JXS+sLvv9aPPqoiIVnApsIiIiUn7F9XRa/rKzIxMRKbUpU6YwYsQIHn74Ya655hqmTp1KvXr1mDlzpsX2U6dOZfz48Vx//fVERUXx+uuvExUVxQ8//FConclkIiwsrNDmqtLO5jB77QEAxvRuivvZ47BoBBj50GYoRN/n5AjFWiaTiX/dYu7F9vWWw2w7fNoxJ+7xH6jXEbIz4OuHIDfbMecVKSMV2ERERMR2NE2BiFRS2dnZbN68mZiYmEL7Y2Ji2LBhQ6mOkZ+fT0ZGBrVq1Sq0PzMzkwYNGlC3bl1uu+22Ij3crpSVlUV6enqhrbL4aM1+MrJyaRbqz60tapsXNcg8BsHNzb3XpFJqW78mA6LrYBjw/Hc7yM8vfi51m3H3gLtmg29NOBoPyyba/5wi5aACm4iIiIiIVHmpqank5eURGhpaaH9oaCjJycmlOsY777zDmTNnGDx4cMG+5s2bM3fuXL7//nu++OILfHx86NKlC3v3Fj/UbtKkSQQGBhZs9erVK9tFOdix9PN8vN7ce21snyjcfh4Ph9aBV3UY/Cl4VXNyhFIeE/o2p7q3B38knubLTYmOOWlgXbhjhvnxxg/gr/9zzHlFykAFNhERESkizxHfTIuIVECmK1a2NAyjyD5LvvjiCyZOnMjChQsJCQkp2N+xY0fuu+8+2rRpQ9euXfnyyy9p2rQp77//frHHmjBhAmlpaQVbYqKDihnlNHXZHs7n5NOuQU1iMr8zT1CPCQbNhuBmzg5PyikkwIcxvaMAmPzzLk6fddCQzeb9oOMT5sffPg6p+xxzXhEreTg7ABEREal43N1MjF4Qz76UzIJ9g9vX1aIFIuKygoKCcHd3L9JbLSUlpUivtistXLiQESNG8NVXX9G7d+8S27q5uXH99deX2IPN29sbb2/v0gdfAexLyWTh7+ZC4KRWhzH98h/zC31ehma3ODEysaXhnRvy1abD7D6WwUs/7OTdIdc55sR9XoKjWyAhDhbeB48sV49IqXDUg01EzPLzrNsvIi5vX0omO46mF2zH0s87OySpKC6sGmuR8oZUUl5eXrRr147Y2NhC+2NjY+ncuXOx7/viiy944IEHmD9/PrfeeutVz2MYBlu3biU8PLzcMVckb/2yi3wDHm94jKarnwQjz7ygQecnnR2a2JCnuxuTBrXGzQSL44+w5M8kx5zY3RPungvVQ+H4X/DdE2Cot71ULOrBJiJmF1f/S91zaV9QUxj0P+fFJCIiFdPlq8Yqb4gLGTt2LMOGDaN9+/Z06tSJWbNmkZCQwMiRIwHz0M0jR47w6aefAubi2v333897771Hx44dC3q/+fr6EhgYCMBLL71Ex44diYqKIj09nWnTprF161Y++OAD51ykHWzYn8ovO47R0u0g405Ogtzz0LQv3PYelGJ4rVQubevXZFSPJkxfuY//LP6T9g1qEhLgY/8T+4fB3Z/AJ7fBjsXmhTN6PGv/84qUkgpsInLJxdX/RERESkN5Q1zMkCFDOHHiBC+//DJJSUm0atWKJUuW0KBBAwCSkpJISLi0OvJHH31Ebm4uTzzxBE888UTB/uHDhzN37lwATp8+zaOPPkpycjKBgYFER0ezZs0abrjhBodem71k5+bzwnc7aG36m4W+b+KenQH1O8Pdc8yrQIpLeqpXFCt3p7DjaDrjF23j4+HX4+bmgGJqg05w27vw/ZOwahIERUGrQfY/r0gp6CeeiIiIiIjIBaNGjWLUqFEWX7tYNLto1apVVz3eu+++y7vvvmuDyCqmj9cfoObxTczxfgu/vHNQpx3c8wV4+jo7NLEjLw833h1yHbe9v45Vu4/z3vK9PN2nqWNO3vZ+OL4b4qbDt6MgoA7U7+iYc4uUQHOwiVQlJc2ZIyIiIiJihaOnz7Fr+Wd86vUG1TkHDbvC/d+Bbw1nhyYO0DTUn9fubAXAe8v38suO5Ku8w4b6vAxNbzEPR/58MCT/6bhzixRDBTaRquTyOXM+6nZpW/6ysyMTERERkUrEyM9j85yxTHV7F19TNkaTGLj3K/D2d3Zo4kB3t6/HA50bAjB24VZ2J2c45sRu7nDXHKjXEbLS4LOBcGK/Y84tUgwV2ESqootz5lzcTidc/T0iIiIiIgDpRzn6wa30T5sPwMk2j2HSsNAq67lbr6FTo9qcyc7j/o9/JfHkWcec2MsPhi6E0NZwJgXm3mYeOiriJCqwiYiIiEWNg6vRMiKgYAt1xAphIiJScRkGbPuSvOkdqHMijvOGJ2tbv0atAW9qQYMqzNPdjRn3tqVpaHWOpWdx7/9+5Vj6ecec3LcGDPsGgppBxlGY0xeOxjvm3CJX0E9BERERKSo/j2n3tHV2FCIiUlEk/g6xz0NCHO7A1vxGLKr/PC8PHODsyKQCqFnNi3kjOnDXh3EknDzLvf/7lc8f7uCYL+eqh8CDP8Hnd8HRLTC3Pwz8CJrfav9zi1xGPdhEpHglLYpQ0mIJ1r5HCy+IVDyar1FERABS98HCYTC7NyTEkY0Xb+fczRPekxl7z22YTCZnRygVREiAD58/3IGwAB/2pWQyaOYGDqSecczJq9WG4d+bF9rIzoAFQ2HZRMjLdcz5RVAPNhEpyeWLIqTuubQ/qCkM+l/x77P0nia9odcL1h9LRJzn4nyNFwU1dV4sIiLiWJkpsHoybJ4L+bkYJjfW+MXw7xO3csYnlAUPdqBmNS9nRykVTL1afnz5WCfu//hXDp44y10zNzDnweu5tm4N+5/c2x+GLYbYF2DjDFj3LhzaAP3fg5Br7H9+qfJUYBORq7vyQ3ZZ3nPxg3lZjiUiIiIijpF9BuI+gPXvQXYmADmN+zDx7N18fqA6vp7uzHvwelpGBDo5UKmo6tf246uRnXlgzm/sOJrO3R/G8cag1gyIrmv/k7t7wi2ToG57+P4pSPwVPrwROj8JNz4NPvp3K/ajIaIiIiJVgYZoi4hISfJyYdMcmBYNK18zF9ciokno/yV9kp/g8wPV8fZw4//d3552DWo5O1qp4IL9vVnwaEd6NgsmKzefpxf+wUs/7CA7N98xAbQaBKM2QrNbIT/X3JttamtYOQnOnnRMDFLlqAebiFjv4txsbu7OjkRESsuaodsX94uIiOszDNj9Eyx78VIuqNmQ3J7PM/f0dbzz7T7O5ZylTg1fPhrWjlZ11ANISsffx5PZw6/n3WV7eH/FPuasP8img6eY+o/raBxc3f4B1KgH98yHXT/CspcgdTesfsNcbGtxO7S9Hxp00WcasRkV2ETEesXNzQb6YC5SkZV26LbmWpOyKukLGH0xI1LxHN4ES5+HhA3m5761oPu/iat5OxOX7GP3sd0A3NgkiGn3RFNLc66JldzcTDwT04xWdQIZ//U2/jySxm3T1vHcrdcw9Ib6uLk5YJGM5rdC077w13ew9h1I/hP+/Mq8+QVBs75wTX+I7A6eDlj1VFyWCmwiUnaW5lPTB3MR51IRQ5yprIvjiIhjndgPy1+Cnd+Zn3v4YHR8gl8jhjFlbTK/HYgHoKafJ8/2bc7d7eo5phAiLuvmlmFcWzeQcV/9wfp9J/jvt9v5busRJg1sTZMQf/sH4OYGLQdAizvh6BbY/Ans/BbOpkL8Z+bNqzo06WUeVhrVB/w0FFqsowKbiIiIKylpKKiIo1z5BczVphZQrzcRxzh1CNa+DVvnm+elMrlhtBnKb5GP8daGTDYt2wmAl7sb99xQj6f7NKWGn3qtiW2EB/ry2UMd+CTuIG/9spvfD56i73trebBLJE/0bEKgr6f9gzCZoE4783brO3BwnXkI6a4fIeOouei88zswuUP9TtC8n7mHW61G9o9NKj0V2Cor/cIpIiLF0ZBPqWhKM7XAla/V62heCc4S/R4kYp1Th8xD47Z+bi6sAUaTGNZH/pN3/vAgfmMiAF4ebgy9oT4juzcmLFBD5cT23NxMPNglkpiWYbzw7XaW70ph1pq/+WpTIk/eFMXQDvXx8XTQz3d3T2jc07z1fROS4s2Ftt0/QcpOOLTOvP3yHwhubi60NetnLs4pB4kFKrBVVuqhICIiIpVNSVMLWCoMa7ipSPkc3w1xHxQqrOU16kls8INM3hHIge2ZAHh7uDG0g7mwFhqgwprYX50avvxveHtW7TnOaz/+xb6UTF7+v53MXL2fR7s24p4O9anu7cByhZvbpZ5tvV6Akwdgz8+wewkcXA/Hd5m3de9CtWBoerO52NaoB3hVc1ycUqGpwFaZqYeCiIiIuDpLRTkRKV5WprkwsHkuHFx7aXf97nxbYxhv7qjBiZ3ZwBkCfT25r2N9hnduSIi/CmviWCaTiZ7NQujaJIiFmxKZsXI/R06f47Ulf/He8r0MbFuH+zo2oGmoA+Zou1KtSOj4uHk7dwr2LTcX2/bGwpnjED/PvHn4mItszfpC01vAP8zxsUqFoQKbiIhIZaPhcSIicrm0w/D3KvOH/z2/QO45AAyTG8fCejLHuI3/tzeUfAMgmzo1fBlxYyRDrq9HNUf2EhKxwMPdjXs7NODudvX4Nv4IH67Zz9/Hz/Bp3CE+jTtEi/AA7oyOoG+rcOrV8nN8gL41ofVd5i0327zq7q4l5qGkaQnmgvaen81t67S7NJQ0pIV5zjepMvTTVEREpLK52lxWIlWVFksQV5ebDcf3wIm95uFqSX/A0a1w+lChZhm+dVnl3YN3Ujty8MCllRBviKzFvR3qc2vrcDzc3RwcvEjJvDzcGHx9Pe5uX5cN+0/wadxBlv+Vws6kdHYmpfP6kl00Dq7GTc1D6NkshPYNa+Hl4eB/xx5e5h5rjXpA38nmudp2Xyi2Hdl8aVvxKtSoD037QlQMNOwCnr6OjVUcTgW2ik6/EIqrK2FlOSM/D5O1K86JVBUlzWUl4spKWpFUc7aJq3urEXgX7RGThzv7PaNYmdOCH7Lasv18JGBu16C2H31bhXN3+7o0Dq7u4IBFrGcymejSJIguTYI4dSabH/9M4oc/jrLp0Cn2Hz/D/uMH+H9rD1Dd24OOjWrTqXFtOjaqxTVhAbi5ObDHmMkEoS3NW7d/QUbyhXnbfjL3KD2dAL99ZN48fKDhjeYvQ5v0htpN1LvNBanAVtFpMQNxdcWtLNekNyZLq8qBPiyJ61GvG5HSKyFv0OsFzdkmLu+8yYeDRLA7N4wd+Q3402jE9vxIMs6bh855e7jRpWFNOjWqzU3NQ7km3B+TPshLJVWzmhf3dWzAfR0bkHYuh7V7j7Ny13FW70khNTObZX8dY9lfxwAI9PWkQ2QtOjaqTcdGtWke5u/Ygpt/GLR7wLxlnzEX2fb8bJ6/Lf0I7Ftm3gBqNLhUbIvsBt4qfrsCFdgqAy1mIFVBcf/O9UFJqgL1uhGxnn4/kiroxvPvkm6EcrF3WkSgD83C/Lk3LIBmYdVpFhpA45BqeHvoyxlxPYG+ntx2bQS3XRtBfr7Bn0fSiPv7BBv/PsHvB06Sdi6HpTuPsXSnueBWw8+Ta+vWoFVEAK3rBNKqTiB1a/o6puDsVQ2a32reDMM8pHvfMvM8iQlx5mHdm2abNzdPqN/R3MOt3g1Qpz34BNg/RrE5FdhEREQqgiuLBSUNgxOR0rva/yX9P5NKpO8NLWkdGU7zMH+ahvkT4OPp7JBEnMLNzUSbejVoU68GI7s3Jicvn+1H0tj490ni/j7BpoMnOX02hzV7jrNmz/GC9wX6etKwth9hgT6EB/oSUcP8Z7C/N7WqeVGrmhc1/bxwt2XPN5MJQq4xb52fNK/0e3DdhR5tsXDqoHnF34ur/prcIKQl1LvevFBC7cbmIaUBdcFNcydWZJWiwDZjxgzeeustkpKSaNmyJVOnTqVr167ODqt41g710S92ItYp6cOSlfvz8g2LCbSk+d+Kfc2G/8eLO0eJ89JJuVS4XHO1YXAiUjrF/V8CqNcRbplk+X36/azKsjYfrF69mrFjx7Jjxw4iIiIYP348I0eOLNRm0aJFPP/88+zfv5/GjRvz2muvMWDAAKtje+7WFgQEqGeLyJU83d2Irl+T6Po1ebyHueC282g6fx5JY8fRNLYfSWd3cgZp53L443AafxxOK/ZYJpO5EBfq70Pdmr4XNj/q1vSlXi0/GtT2w788xW3v6tDsFvMGcGI/7F8Bib9B4q/m3m3H/jRvl3P3hlqR5qGo1YLBLwiqXdj8aoNvLfCrdelPdxXgHa3CF9gWLlzImDFjmDFjBl26dOGjjz6ib9++7Ny5k/r16zs7PMtK+kBU2v2XvyYihV2t8GDFUDt3NxOjF8SzLyWzYN/g9nUZ3jmy2PnfTMUN27PhMD9TMccq9txSLhU612gYnIhtFLcwiK1+dquXnEuwNh8cOHCAfv368cgjjzBv3jzWr1/PqFGjCA4OZtCgQQDExcUxZMgQXnnlFQYMGMDixYsZPHgw69ato0OHDo6+RJEqwdPdraCH20XZufnsS8nk8KmzJKWdv7CdI+n0eVIzszh5NpvTZ3MwDDh9NofTZ3PYfSzD4vFrV/OiQW0/GtauRt1afgRX96J2dW9qVzP/WauaF35e7nh7uF19SGrtxubthkfMzzOSzcW2I5sgdR+c2Acn/4a8LPNQ0+O7SveX4B0AvjXNxbdqwZcV44IKP79YrPP0Kd1xpVgVvsA2ZcoURowYwcMPPwzA1KlT+eWXX5g5cyaTJhXzjWNFUNr5pEqaZ0ofokRKZqN52/alZLLjaHrB82Pp58t0nDK/xxHHkhJV2lwjIrZhzc9ba1YwBc2nWMlYmw8+/PBD6tevz9SpUwG45ppr2LRpE2+//XZBgW3q1Kn06dOHCRMmADBhwgRWr17N1KlT+eKLLxxzYSKCl4cbLSICaBFRfC/Q3Lx8Tp/L4eSZbJLSznP41FkOnzrH4VPnSDx5lsOnzpKamc2JM+ZtS8LpEs/pZgI/Lw98vdzx9XTHz8sdX68Lf3p64OfljoebCTc3E+4mE25u4GYyYRBJXl5Dct0N8oLyya+ZS2B2MrWyjlA99yTVck9RPe80/rmn8c87jX9+Ov5GBv5GOtXyM3HDgKx083b6UKn+fnI9q5PrXYtc39oYXtUxPHzB07yZPH1xc/fAZHIzL35qcsOECUwmcwHxwmaCy/50u+K5yfweTx9Mnj6YPH3Bw9dc2LP0p4e3efVVD+9Ljyv4l1UVusCWnZ3N5s2befbZZwvtj4mJYcOGDRbfk5WVRVZWVsHztDRz18/09HSL7e3GryHUyL303DME0tNLv78s76mI56iq53b166tsf7d+Dc37i9Gxri/1qhkFzxv4m8w/Myyd+yrHsvbcJbLlsWzo4s9TwzCu0rJysDbX2C3PVIb/f1X13K5+ffq7Lfpa7Wg4far4X+TXTTWvCHdReDRED4Wz2XDuinMY1Yo9lq2G/dt0WoMKwFl5piyfPeLi4oiJiSm07+abb2b27Nnk5OTg6elJXFwcTz/9dJE2F4tyllSYzzQiVZAXEOYLYb7eRId5AzULvZ5xPofEk2dJPHmOQyfPcPT0eU6dzeJkZg6nzmZz4kwWGefzAMgH0s+D7f7n1r6wFc+NfPw5Qw3TGWqQSU1TBjVNGdQik1qmdGqaMqhNOrVMGdQ0ZVKLdLxMeZCVAZkZQNGCnAHk2ewayi7HcCfb5EE2nuTgSTYe5OOGgQkDE1z407y5caEaaN5MBmAqePVMdj5g41xjVGBHjhwxAGP9+vWF9r/22mtG06ZNLb7nxRdfNDDff23atGnTZsctMTHREanA7qzNNcoz2rRp0+aYzdF5piyfPaKioozXXnut0L7169cbgHH06FHDMAzD09PT+Pzzzwu1+fzzzw0vL69iY1Gu0aZNmzbHbPv37y9LyrCoQvdgu+jKMcuGYRQ7jnnChAmMHTu24Hl+fj4nT56kdu3aZVqONz09nXr16pGYmFjpJxR1pWsBXU9Fp+upuMp7LYZhkJGRQUREhB2ic57S5hrlmZK50vW40rWArqei0/Vc4uw8Y81nj+LaX7nf2mNemWtOnz5NgwYNSEhIIDAw8OoXUQm52v8BS3SNrkHX6BrS0tKoX78+tWrVstkxK3SBLSgoCHd3d5KTkwvtT0lJITQ01OJ7vL298fb2LrSvRo0a5Y4lICDAZf5hudK1gK6notP1VFzluRZX+uXe2lyjPFM6rnQ9rnQtoOup6HQ9Zs7IM2X57BEWFmaxvYeHB7Vr1y6xTXHHBMu5Bsx/L67078MSV/s/YImu0TXoGl2Dm5ub7Y5lsyPZgZeXF+3atSM2NrbQ/tjYWDp37uykqERExJUo14iICJQtH3Tq1KlI+6VLl9K+fXs8PT1LbKMcIyLiWip0DzaAsWPHMmzYMNq3b0+nTp2YNWsWCQkJjBw50tmhiYiIi1CuERERuHo+mDBhAkeOHOHTTz8FYOTIkUyfPp2xY8fyyCOPEBcXx+zZswutDjp69Gi6devG5MmTueOOO/juu+9YtmwZ69atc8o1ioiIfVT4AtuQIUM4ceIEL7/8MklJSbRq1YolS5bQoEEDh5zf29ubF1980WIX7crGla4FdD0Vna6n4nKla7EVZ+YaV7sfrnQ9rnQtoOup6HQ9FcPV8kFSUhIJCQkF7SMjI1myZAlPP/00H3zwAREREUybNo1BgwYVtOncuTMLFizgv//9L88//zyNGzdm4cKFdOjQodRxVda/T2voGl2DrtE16BrLxmQYDl7/WkRERERERERExIVU6DnYREREREREREREKjoV2ERERERERERERMpBBTYREREREREREZFyUIFNRERERERERESkHFRgu8Jrr71G586d8fPzo0aNGqV6j2EYTJw4kYiICHx9fenRowc7duywb6CldOrUKYYNG0ZgYCCBgYEMGzaM06dPl/ieBx54AJPJVGjr2LGjYwK+wowZM4iMjMTHx4d27dqxdu3aEtuvXr2adu3a4ePjQ6NGjfjwww8dFGnpWHM9q1atKnIfTCYTu3btcmDElq1Zs4b+/fsTERGByWTi22+/vep7KvK9sfZ6KvK9mTRpEtdffz3+/v6EhIRw5513snv37qu+ryLfH1ejPKM8Y0+ukmfAtXKNK+UZUK5xBFfLFZZU9vxhiavlFEtcKc9Y4kq5pziulpOu5MwcpQLbFbKzs7n77rt5/PHHS/2eN998kylTpjB9+nR+//13wsLC6NOnDxkZGXaMtHSGDh3K1q1b+fnnn/n555/ZunUrw4YNu+r7brnlFpKSkgq2JUuWOCDawhYuXMiYMWN47rnniI+Pp2vXrvTt27fQ0uiXO3DgAP369aNr167Ex8fzn//8h6eeeopFixY5OHLLrL2ei3bv3l3oXkRFRTko4uKdOXOGNm3aMH369FK1r+j3xtrruagi3pvVq1fzxBNPsHHjRmJjY8nNzSUmJoYzZ84U+56Kfn9cjfKMmfKM7blSngHXyjWulGdAucYRXC1XWFKZ84clrpZTLHG1PGOJK+We4rhaTrqSU3OUIRbNmTPHCAwMvGq7/Px8IywszHjjjTcK9p0/f94IDAw0PvzwQztGeHU7d+40AGPjxo0F++Li4gzA2LVrV7HvGz58uHHHHXc4IMKS3XDDDcbIkSML7WvevLnx7LPPWmw/fvx4o3nz5oX2PfbYY0bHjh3tFqM1rL2elStXGoBx6tQpB0RXdoCxePHiEttU9HtzudJcT2W5N4ZhGCkpKQZgrF69utg2len+uBLlmTscEGHJlGcqz88yV8o1rpZnDEO5xp5cIVdYUtnzhyWullMsceU8Y4kr5Z7iuGJOupIjc5R6sJXTgQMHSE5OJiYmpmCft7c33bt3Z8OGDU6MDOLi4ggMDKRDhw4F+zp27EhgYOBVY1u1ahUhISE0bdqURx55hJSUFHuHW0h2djabN28u9PcKEBMTU2zscXFxRdrffPPNbNq0iZycHLvFWhpluZ6LoqOjCQ8Pp1evXqxcudKeYdpNRb435VEZ7k1aWhoAtWrVKraNq94fV6E8Yx/KM5dUhp9lpVGR709ZVZZ7o1zjfBU5V1hSmfOHJa6WUyxRnrGsst3H8qis99GROUoFtnJKTk4GIDQ0tND+0NDQgtecJTk5mZCQkCL7Q0JCSoytb9++fP7556xYsYJ33nmH33//nZtuuomsrCx7hltIamoqeXl5Vv29JicnW2yfm5tLamqq3WItjbJcT3h4OLNmzWLRokV88803NGvWjF69erFmzRpHhGxTFfnelEVluTeGYTB27FhuvPFGWrVqVWw7V7s/rkZ5xj6UZyrPz7LSqsj3x1qV6d4o11QMFTlXWFKZ84clrpZTLFGesayy3ceyqMz30dE5yqPMkVYiEydO5KWXXiqxze+//0779u3LfA6TyVTouWEYRfbZSmmvx1JcpYltyJAhBY9btWpF+/btadCgAT/++CMDBw4sY9RlY+3fq6X2lvY7izXX06xZM5o1a1bwvFOnTiQmJvL222/TrVs3u8ZpDxX93lijstybf/7zn2zbto1169Zdta0r3R9nUJ4pTHnGeapynoGKf39KqzLdG+Wa0nO1XGFJVcoflrhaTrGkqucZSyrjfbRGZb6Pjs5RVaLA9s9//pN//OMfJbZp2LBhmY4dFhYGmCue4eHhBftTUlKKVEBtpbTXs23bNo4dO1bktePHj1sVW3h4OA0aNGDv3r1Wx1pWQUFBuLu7F/k2pKS/17CwMIvtPTw8qF27tt1iLY2yXI8lHTt2ZN68ebYOz+4q8r2xlYp2b5588km+//571qxZQ926dUtsWxXuj70pzxSmPON4VT3PQMW+P7ZQEe+Nco11XC1XWFIV8oclrpZTLFGesayy3UdbqQz30Rk5qkoU2IKCgggKCrLLsSMjIwkLCyM2Npbo6GjAPD599erVTJ482S7nLO31dOrUibS0NH777TduuOEGAH799VfS0tLo3Llzqc934sQJEhMTCyVre/Py8qJdu3bExsYyYMCAgv2xsbHccccdFt/TqVMnfvjhh0L7li5dSvv27fH09LRrvFdTluuxJD4+3qH3wVYq8r2xlYpybwzD4Mknn2Tx4sWsWrWKyMjIq76nKtwfe1OeUZ5x9v+Vqp5noGLfH1uoSPdGuaZsXC1XWFIV8oclrpZTLFGesayy3Udbqcj30ak5yqolEaqAQ4cOGfHx8cZLL71kVK9e3YiPjzfi4+ONjIyMgjbNmjUzvvnmm4Lnb7zxhhEYGGh88803xp9//mncc889Rnh4uJGenu6MSyjklltuMa699lojLi7OiIuLM1q3bm3cdttthdpcfj0ZGRnGM888Y2zYsME4cOCAsXLlSqNTp05GnTp1HH49CxYsMDw9PY3Zs2cbO3fuNMaMGWNUq1bNOHjwoGEYhvHss88aw4YNK2j/999/G35+fsbTTz9t7Ny505g9e7bh6elpfP311w6NuzjWXs+7775rLF682NizZ4+xfft249lnnzUAY9GiRc66hAIZGRkF/zcAY8qUKUZ8fLxx6NAhwzAq372x9noq8r15/PHHjcDAQGPVqlVGUlJSwXb27NmCNpXt/rga5RnlGXtxpTxjGK6Va1wpzxiGco0juFqusKQy5w9LXC2nWOJqecYSV8o9xXG1nHQlZ+YoFdiuMHz4cAMosq1cubKgDWDMmTOn4Hl+fr7x4osvGmFhYYa3t7fRrVs3488//3R88BacOHHCuPfeew1/f3/D39/fuPfee4ssr3v59Zw9e9aIiYkxgoODDU9PT6N+/frG8OHDjYSEBMcHbxjGBx98YDRo0MDw8vIy2rZtW2hp3eHDhxvdu3cv1H7VqlVGdHS04eXlZTRs2NCYOXOmgyMumTXXM3nyZKNx48aGj4+PUbNmTePGG280fvzxRydEXdTFpZqv3IYPH24YRuW7N9ZeT0W+N5au48qfWZXt/rga5RnlGXtylTxjGK6Va1wpzxiGco0juFqusKSy5w9LXC2nWOJKecYSV8o9xXG1nHQlZ+Yo04UAREREREREREREpAzcnB2AiIiIiIiIiIhIZaYCm4iIiIiIiIiISDmowCYiIiIiIiIiIlIOKrCJiIiIiIiIiIiUgwpsIiIiIiIiIiIi5aACm4iIiIiIiIiISDmowCYiIiIiIiIiIlIOKrCJiIiIiIiIiIiUgwpsIiIiIiIiIiIi5aACm4iIiIiIiIiISDmowCYiIiIiIiIiIlIOKrCJiIiIiIiIiIiUw/8Hyf3eG2A9Lf0AAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 1500x1200 with 12 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAACWkAAAHBCAYAAAAR96uIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACCc0lEQVR4nOzdeZxWdd0//tewDYuAAsJAIpKCqZCRmqamICii4lpUVkouWSxFwm2RmXjnF9JS7MbSFm/ALcxyDXPBBTO1lNwr0wJXJswIRHFYPL8//HHdjmyCc80A83w+Hufx8PqczznX+wwXzavD+/qciqIoigAAAAAAAAAAAFAWTRq6AAAAAAAAAAAAgC2ZJi0AAAAAAAAAAIAy0qQFAAAAAAAAAABQRpq0AAAAAAAAAAAAykiTFgAAAAAAAAAAQBlp0gIAAAAAAAAAACgjTVoAAAAAAAAAAABlpEkLAAAAAAAAAACgjDRpAQAAAAAAAAAAlJEmLXifHnnkkRx44IFp3759KioqctFFFyVJ7rzzzuy5555p06ZNKioqcsMNN2TatGmpqKjIvHnzNug9JkyYkIqKirovfhP27W9/O9tvv32aNWuWrbfeuqHLYT3e62f7lltuyYQJE+qlJgC2TLJXechemxfZC4D6IHeVh9y1eZG7AKgvsld5yF6bF9mLxqBZQxcAm7uTTjopr7/+embMmJFtttkmO+ywQ4qiyLBhw9K7d+/cdNNNadOmTXbeeeesWLEiDzzwQLp27bpB73HKKafk0EMPLdMVbHpuvPHG/L//9/9y5plnZsiQIamsrGzokqgjt9xyS370ox8JTgBsNNmr7sleWy7ZC4D3Q+6qe3LXlkvuAuD9kr3qnuy15ZK92Jxp0oL36cknn8ypp56aIUOGlMZeeuml/Pvf/84xxxyTgQMH1pq/7bbbbvB7bLfddtluu+3ed62biyeffDJJ8tWvfjWdO3fe4ON32GGHDB8+3C/m92DlypVZsWKFYArAZkP2qnuyV/2RvQDYnMhddU/uqj9yFwCbG9mr7sle9Uf2gvfO4w5hLZ555pkcf/zx6dy5cyorK7PLLrvkRz/6UWn/quUWV6xYkUsuuSQVFRWpqKjIhAkTSgHnG9/4RioqKrLDDjvUOubdSzTeeuutGThwYNq3b5/WrVtnl112yaRJk0r717b86DXXXJOPf/zjadOmTbbaaqsMHjw4jzzySK05w4cPz1ZbbZVnn302hx12WLbaaqt07949Y8eOTU1NTa25NTU1+e///u/ssssuadmyZTp27JgBAwbk/vvvT5IMHDgwH/rQh1IURa3jiqLITjvtlMMPP3ydP9O33nor559/fj70oQ+lsrIynTt3zgknnJAXX3yxNGeHHXbIt7/97SRJly5dSj/T+vLXv/41n/3sZ9OlS5dUVlZm++23zwknnFDrZ/Xkk0/mqKOOyjbbbJOWLVvmIx/5SKZPn17rPPfcc08qKipy9dVX5xvf+Ea6du2arbbaKkOHDs0///nPvPbaa/nSl76UTp06pVOnTvniF7+YJUuW1DpHRUVFRo0alZ/85Cfp3bt3Kisrs+uuu2bGjBm15r3yyisZMWJEdt1112y11Vbp3LlzDjrooPzud7+rNW/evHmpqKjI+eefn3PPPTc9e/ZMZWVl7r777iTJww8/nCOPPDIdOnRIy5Yt069fv/zyl79c7Wf04IMPZr/99kvLli3TrVu3jB8/PsuXL1/vz3b48OGlv0Or/r688+/Dm2++mfHjx6dnz55p0aJFPvCBD2TkyJH5z3/+s95zA7D5k71kL9lL9gKgfshdcpfcJXcBUH9kL9lL9pK9oJYCWM1TTz1VtG/fvujbt29x+eWXF7fffnsxduzYokmTJsWECROKoiiKBQsWFA888ECRpPjkJz9ZPPDAA8UDDzxQvPDCC8V1111XJClGjx5dPPDAA8Wf/vSnoiiKYurUqUWSYu7cuaX3+vnPf15UVFQU/fv3L66++upi1qxZxY9//ONixIgRpTlnn3128e6/rv/v//2/oqKiojjppJOK3/zmN8V1111XfPzjHy/atGlTPPXUU6V5J554YtGiRYtil112KX7wgx8Us2bNKr7zne8UFRUVxTnnnFOat3z58mLAgAFFs2bNinHjxhW33HJLcdNNNxXf+ta3il/84hdFURTFjTfeWCQp7rjjjlq1zJw5s0hSzJw5c50/1y996UtFkmLUqFHFrbfeWlx66aXFtttuW3Tv3r145ZVXiqIoij/96U/FySefXCQpbr311tLPdEP06NGjOPvsszfomKIoikcffbTYaqutih122KG49NJLizvvvLO48sori2HDhhWLFy8uiqIo/vrXvxZt27Ytdtxxx+Lyyy8vZs6cWXz2s58tkhTnnXde6Vx33313kaTo0aNHMXz48NL1brXVVsWAAQOKgw8+uBg3blxx++23F+edd17RtGnTYvTo0bXqSVJ079692HXXXYtf/OIXxU033VQceuihRZLi2muvLc3761//WnzlK18pZsyYUdxzzz3Fb37zm+Lkk08umjRpUtx9992leXPnzi2SFB/4wAeKAQMGFL/61a+K22+/vZg7d25x1113FS1atCg+8YlPFNdcc01x6623FsOHDy+SFFOnTi2d46mnnipat25dqunGG28sBg8eXGy//farfbbf7dlnny0++clPFklKf18eeOCB4s033yzeeuutYvDgwUWzZs2Ks846q7j99tuLH/zgB0WbNm2Kfv36FW+++eYG/3kCsPmQvWQv2Uv2AqB+yF1yl9wldwFQf2Qv2Uv2kr3g3TRpwRoMHjy42G677YpFixbVGh81alTRsmXL4t///ndpLEkxcuTIWvNW/XL6/ve/X2v83aHptddeK9q1a1fsv//+xVtvvbXWet4dmp5//vmiWbNmq/2Sfe2114qqqqpi2LBhpbETTzyxSFL88pe/rDX3sMMOK3beeefS68svv7xIUvzsZz9bax0rV64sPvjBDxZHHXVUrfEhQ4YUO+644zqv4S9/+UuRpFYYLIqi+MMf/lAkKb71rW+tdr2rgtS6vPXWW8Xy5ctrbT169CjOOuus1cbX56CDDiq23nrrYsGCBWud85nPfKaorKwsnn/++VrjQ4YMKVq3bl385z//KYri/0LT0KFDa80bM2ZMkaT46le/Wmv86KOPLjp06FBrLEnRqlWrorq6ujS2YsWK4kMf+lCx0047rbXGFStWFMuXLy8GDhxYHHPMMaXxVZ/LHXfcsVi2bFmtYz70oQ8V/fr1W+3ndMQRRxRdu3YtVq5cWRRFUXz6059ea03rC01FURQjR45c7f8AFEVR3HrrrUWS4vzzz681fs011xRJip/+9KfrPC8AmzfZa81kL9lL9gKgrsldayZ3yV1yFwDlIHutmewle8leNGYedwjv8uabb+bOO+/MMccck9atW2fFihWl7bDDDsubb76ZBx98sE7e6/7778/ixYszYsSINS4vuja33XZbVqxYkRNOOKFWfS1btsyBBx6Ye+65p9b8ioqKDB06tNbYhz/84Tz33HOl17/97W/TsmXLnHTSSWt93yZNmmTUqFH5zW9+k+effz5J8ve//z233nrreq9h1RKXw4cPrzX+sY99LLvsskvuvPPO93Lpq5k+fXqaN29ea3vuuefy3e9+d7XxdXnjjTcye/bsDBs2bJ3P8b7rrrsycODAdO/evdb48OHD88Ybb+SBBx6oNX7EEUfUer3LLrskyWpLte6yyy7597//vdoSpAMHDkyXLl1Kr5s2bZpPf/rTefbZZ2st23rppZfmox/9aFq2bJlmzZqlefPmufPOO/OXv/xltWs48sgja/08nn322fz1r3/N5z73uSRZ7TM/f/78PP3000ne/nNcW03vx1133ZVk9c/Hpz71qbRp02adn4+iKGrVvGLFivdVCwD1S/aSvWQv2QuA+iF3yV1yl9wFQP2RvWQv2Uv2gjXRpAXv8uqrr2bFihWZMmXKar90DzvssCTJv/71rzp5r1deeSVJSs+Ufq/++c9/Jkn22muv1Wq85pprVquvdevWadmyZa2xysrKvPnmm7Vq6datW5o0Wff/LJx00klp1apVLr300iTJj370o7Rq1WqdYSt5++eaJF27dl1tX7du3Ur7N9TQoUPz0EMP1dq6du2aU089dbXxdVm4cGFWrly53j+LV199da3XsGr/O3Xo0KHW6xYtWqxz/J1/JklSVVW12nutGlv1XhdeeGG+8pWvZO+9986vf/3rPPjgg3nooYdy6KGHZunSpasd/+76V32exo0bt9rnacSIEUn+7zP/6quvrrOmjfXqq6+mWbNmqwXWioqKVFVVrfPzMXv27NXqfvdz2AHYdMlestf6rkP2kr0AqBtyl9y1vuuQu+QuAOqO7CV7re86ZC/Zi8apWUMXAJuabbbZJk2bNs0XvvCFjBw5co1zevbsWSfvteoXxDs7lN+LTp06JUl+9atfpUePHnVWy3333Ze33nprncGpffv2OfHEE/Pzn/8848aNy9SpU3P88cdn6623Xuf5O3bsmCSZP3/+asHk5ZdfLl3ThurYsWPp3Ku0aNEi3bp1y5577vmez9OhQ4c0bdp0vX8WHTt2zPz581cbf/nll5Nko69jbaqrq9c6tuq6r7zyyvTv3z+XXHJJrXmvvfbaGs/57m8grKp5/PjxOfbYY9d4zM4771x6z3XVtLE6duyYFStW5JVXXqkVnIqiSHV1dfbaa6+1HrvHHnusFopXhVgANn2yl+y1vveTvWQvAOqG3CV3re/95C65C4C6I3vJXut7P9lL9qJxspIWvEvr1q0zYMCAPPLII/nwhz+cPffcc7Xt3b+kN9a+++6b9u3b59JLL01RFO/5uMGDB6dZs2b5+9//vsb6NiQsrDJkyJC8+eabmTZt2nrnfvWrX82//vWvfPKTn8x//vOfjBo1ar3HHHTQQUne/gX/Tg899FD+8pe/ZODAgRtcc11q1apVDjzwwFx77bXr/ObCwIEDc9ddd5VC0iqXX355WrdunX322adO67rzzjtLnedJsnLlylxzzTXZcccdS+GzoqIilZWVtY57/PHHV1sKdW123nnn9OrVK4899thaP09t27ZNkgwYMGCtNb0Xq+p8d8f9qj//d38+fv3rX+f1119f5+ejbdu2q9W76psCAGz6ZK9p650re8leshcAdUHumrbeuXKX3CV3AVBXZK9p650re8lesheNkZW0YA1++MMfZv/9988nPvGJfOUrX8kOO+yQ1157Lc8++2xuvvnm0vNs36+tttoqF1xwQU455ZQMGjQop556arp06ZJnn302jz32WC6++OI1HrfDDjvkv//7v3PmmWfmH//4Rw499NBss802+ec//5k//vGPadOmTc4555wNquWzn/1spk6dmi9/+ct5+umnM2DAgLz11lv5wx/+kF122SWf+cxnSnN79+6dQw89NL/97W+z//77Z/fdd1/v+Xfeeed86UtfypQpU9KkSZMMGTIk8+bNy1lnnZXu3bvn61//+gbVWw4XXnhh9t9//+y999755je/mZ122in//Oc/c9NNN+UnP/lJ2rZtm7PPPju/+c1vMmDAgHznO99Jhw4dctVVV2XmzJk5//zz0759+zqtqVOnTjnooINy1llnpU2bNvnxj3+cv/71r5kxY0ZpzhFHHJHvfve7Ofvss3PggQfm6aefzn//93+nZ8+e7/l5yT/5yU8yZMiQDB48OMOHD88HPvCB/Pvf/85f/vKX/OlPf8q1116bJPn2t7+dm266KQcddFC+853vpHXr1vnRj36U119//T29T9++fZMk5513XoYMGZKmTZvmwx/+cA4++OAMHjw43/jGN7J48eLst99+efzxx3P22WenX79++cIXvrCBPzkANieyl+wle8leANQPuUvukrvkLgDqj+wle8leshespgDWaO7cucVJJ51UfOADHyiaN29ebLvttsW+++5bnHvuubXmJSlGjhy52rFJiu9///u1xqdOnVokKebOnVtr/JZbbikOPPDAok2bNkXr1q2LXXfdtTjvvPNK+88+++xiTX9db7jhhmLAgAFFu3btisrKyqJHjx7FJz/5yWLWrFmlOSeeeGLRpk2b1Y5d0zmXLl1afOc73yl69epVtGjRoujYsWNx0EEHFffff/9qx0+bNq1IUsyYMWO1fWuzcuXK4rzzzit69+5dNG/evOjUqVPx+c9/vnjhhRfWWNsrr7zyns/9Tj169CjOPvvsjTr2z3/+c/GpT32q6NixY9GiRYti++23L4YPH168+eabpTlPPPFEMXTo0KJ9+/ZFixYtit13372YOnVqrfPcfffdRZLi2muvrTW+6jPw0EMP1Rpf0zWv+mz9+Mc/LnbccceiefPmxYc+9KHiqquuqnVsTU1NMW7cuOIDH/hA0bJly+KjH/1occMNNxQnnnhi0aNHj9K8tX0uV3nssceKYcOGFZ07dy6aN29eVFVVFQcddFBx6aWX1pr3+9//vthnn32KysrKoqqqqviv//qv4qc//ekaP9vvVlNTU5xyyinFtttuW1RUVNQ6ZunSpcU3vvGNokePHkXz5s2Lrl27Fl/5yleKhQsXrvOcAGwZZC/ZS/aSvQCoH3KX3CV3yV0A1B/ZS/aSvWQveKeKotiANQ8B/n/HHXdcHnzwwcybNy/Nmzdv6HK2SBUVFRk5cuRav+EAADQeslf5yV4AQCJ31Qe5CwBYRfYqP9kLNi0edwi8ZzU1NfnTn/6UP/7xj7n++utz4YUXCkwAAGUiewEA1A+5CwCg/sheQGOmSQt4z+bPn59999037dq1y2mnnZbRo0c3dEkAAFss2QsAoH7IXQAA9Uf2AhozjzsEAAAAAAAAAAAooyYNXQAAAAAAAAAAAMCWTJMWAAAAAAAAAABAGWnSAgAAAAAAAAAAKKNmDV3ApuCtt97Kyy+/nLZt26aioqKhywEA6khRFHnttdfSrVu3NGmiN31TIHcBwJZL9tr0yF4AsGWSuzY9chcAbLnqMntp0kry8ssvp3v37g1dBgBQJi+88EK22267hi6DyF0A0BjIXpsO2QsAtmxy16ZD7gKALV9dZC9NWknatm2b5O0faLt27Rq4GgCgrixevDjdu3cv/a6n4cldALDlkr02PbIXAGyZ5K5Nj9wFAFuuusxemrSS0rKj7dq1E5wAYAtkifFNh9wFAFs+2WvTIXsBwJZN7tp0yF0AsOWri+zlQdUAAAAAAAAAAABlpEkLAAAAAAAAAACgjDRpAQAAAAAAAAAAlFGzhi4AAN5p5cqVWb58eUOXwWakRYsWadJE3zkAjYvMRENo3rx5mjZt2tBlAECjJP81Pu55AUB5yFW8W33e82rQJq1Jkybluuuuy1//+te0atUq++67b84777zsvPPOpTnDhw/P9OnTax23995758EHHyy9rqmpybhx4/KLX/wiS5cuzcCBA/PjH/842223Xb1dCwDvT1EUqa6uzn/+85+GLoXNTJMmTdKzZ8+0aNGioUsBgLKTmWhoW2+9daqqqlJRUdHQpQBAoyD/NV7ueQFA3ZKrWJf6uufVoE1as2fPzsiRI7PXXntlxYoVOfPMM3PIIYfkz3/+c9q0aVOad+ihh2bq1Kml1+8OpGPGjMnNN9+cGTNmpGPHjhk7dmyOOOKIzJkzxzc8ATYTq0JR586d07p1a//ow3vy1ltv5eWXX878+fOz/fbb+9wAsMWTmWgoRVHkjTfeyIIFC5IkXbt2beCKAKBxkP8aJ/e8AKDuyVWsSX3f82rQJq1bb7211uupU6emc+fOmTNnTg444IDSeGVlZaqqqtZ4jkWLFuWyyy7LFVdckUGDBiVJrrzyynTv3j2zZs3K4MGDy3cBANSJlStXlkJRx44dG7ocNjPbbrttXn755axYsSLNmzdv6HIAoGxkJhpaq1atkiQLFixI586dfTEOAMpM/mvc3PMCgLojV7Eu9XnPa5N6mPWiRYuSJB06dKg1fs8996Rz587p3bt3Tj311FIHW5LMmTMny5cvzyGHHFIa69atW/r06ZP7779/je9TU1OTxYsX19oAaDirnvvcunXrBq6EzdGqFTZXrlzZwJUAQHnJTGwKVn3+Vn0eAYDykf8aN/e8AKDuyFWsT33d89pkmrSKosjpp5+e/fffP3369CmNDxkyJFdddVXuuuuuXHDBBXnooYdy0EEHpaamJsnbS9K1aNEi22yzTa3zdenSJdXV1Wt8r0mTJqV9+/alrXv37uW7MADeM8uKsjF8bgBobPzuoyH5/AFA/fP7t3Hy5w4Adc/vV9amvj4bDfq4w3caNWpUHn/88dx33321xj/96U+X/rtPnz7Zc88906NHj8ycOTPHHnvsWs9XFMVaf4jjx4/P6aefXnq9ePFijVoAAAAAAAAAAEBZbBIraY0ePTo33XRT7r777my33XbrnNu1a9f06NEjzzzzTJKkqqoqy5Yty8KFC2vNW7BgQbp06bLGc1RWVqZdu3a1NgAol6effjpVVVV57bXXGuT9FyxYkG233TYvvfRSg7w/AMB7ITMBADQuW3r+Gz58eI4++uiynBsA4J229Fy1PhMmTMhHPvKRBnnvDdWgK2kVRZHRo0fn+uuvzz333JOePXuu95hXX301L7zwQrp27Zok2WOPPdK8efPccccdGTZsWJJk/vz5efLJJ3P++eeXtX4Aym+Hb86st/ea973Dy3LeM888MyNHjkzbtm3Lcv716dy5c77whS/k7LPPzs9//vPS+PDhwzN9+vTV5j/zzDPZaaed6rNEAOB9kpnev7VlpiSprq7OpEmTMnPmzLz44otp3759evXqlc9//vM54YQT0rp16wapGQBovOoz/yXlyYCbav4bPnx4/vOf/+SGG25IkvTv3z8f+chHctFFFzVInQBAebmv9v6tLVctWLAgZ511Vn7729/mn//8Z7bZZpvsvvvumTBhQj7+8Y/X2fuPGzcuo0ePrrPzlVODrqQ1cuTIXHnllbn66qvTtm3bVFdXp7q6OkuXLk2SLFmyJOPGjcsDDzyQefPm5Z577snQoUPTqVOnHHPMMUmS9u3b5+STT87YsWNz55135pFHHsnnP//59O3bN4MGDWrIywOAvPjii7npppvyxS9+ca1zpk2blv79+2/0e7z++ut59dVX1znni1/8Yq666qrVVp489NBDM3/+/Frbmpqmly1bttH1AQCsz6acmf7xj3+kX79+uf322zNx4sQ88sgjmTVrVr7+9a/n5ptvzqxZsza6puXLl2/0sQAAm7NNOf8BAGxONuVcddxxx+Wxxx7L9OnT87e//S033XRT+vfvn3//+98bXcuabLXVVunYsWOdnrNcGrRJ65JLLsmiRYvSv3//dO3atbRdc801SZKmTZvmiSeeyFFHHZXevXvnxBNPTO/evfPAAw/U6gCcPHlyjj766AwbNiz77bdfWrdunZtvvjlNmzZtqEsDoJHo379/Ro0alVGjRmXrrbdOx44d8+1vfztFUSRJfvnLX2b33Xdf7+N8N1RRFJk9e3ZOOumkVFVV5b777lvn/L59+6aqqirXX399rfHKyspUVVXV2po2bVq6rtNPPz2dOnXKwQcfnCS58MIL07dv37Rp0ybdu3fPiBEjsmTJktL5pk2blq233jq33XZbdtlll2y11ValRrB3+t///d/stttuqaysTNeuXTNq1KjSvkWLFuVLX/pSOnfunHbt2uWggw7KY4899n5/ZABAA9qcM9OIESPSrFmzPPzwwxk2bFh22WWX9O3bN8cdd1xmzpyZoUOHluauL8esWnr9f//3f/PBD34wlZWVKYoiFRUV+clPfpIjjjgirVu3zi677JIHHnggzz77bPr37582bdrk4x//eP7+97+XzvX3v/89Rx11VLp06ZKtttoqe+2112oNYzvssEMmTpyYk046KW3bts3222+fn/70p6X9Bx10UK0clry9gnllZWXuuuuuDfthAwC8w+ac/95p+PDhmT17dn74wx+moqIiFRUVmTdvXlauXJmTTz45PXv2TKtWrbLzzjvnhz/84Vrf5/LLL0/Hjh1TU1NTa/y4447LCSecsOEXCgA0GptrrvrPf/6T++67L+edd14GDBiQHj165GMf+1jGjx+fww//vxXFKioqcskll2TIkCFp1apVevbsmWuvvbbWub/xjW+kd+/ead26dT74wQ/mrLPOqvXlx3c/7nDVY6d/8IMfpGvXrunYsWNGjhy5SXxhskGbtIqiWOM2fPjwJEmrVq1y2223ZcGCBVm2bFmee+65TJs2Ld27d691npYtW2bKlCl59dVX88Ybb+Tmm29ebQ4AlMv06dPTrFmz/OEPf8j//M//ZPLkyaWlPO+9997sueeedfZe//jHPzJhwoTsuOOOOfzww7NixYpcd911tf5xcG0+9rGP5Xe/+917fq9V1/X73/8+P/nJT5IkTZo0yf/8z//kySefzPTp03PXXXfljDPOqHXcG2+8kR/84Ae54oorcu+99+b555/PuHHjSvsvueSSjBw5Ml/60pfyxBNP5Kabbio9XrEoihx++OGprq7OLbfckjlz5uSjH/1oBg4cWOdd9QBA/docM9Orr76a22+/PSNHjkybNm3WOL+ioiLJe88xzz77bH75y1/m17/+dR599NHS+He/+92ccMIJefTRR/OhD30oxx9/fE477bSMHz8+Dz/8cJLUaqhasmRJDjvssMyaNSuPPPJIBg8enKFDh+b555+vVd8FF1yQPffcM4888khGjBiRr3zlK/nrX/+aJDnllFNy9dVX1/rHwquuuirdunXLgAED1vuzAgBYl80x/73bD3/4w3z84x/PqaeeWlqFvnv37nnrrbey3Xbb5Ze//GX+/Oc/5zvf+U6+9a1v5Ze//OUaz/OpT30qK1euzE033VQa+9e//pXf/OY361z1AgAg2Txz1VZbbZWtttoqN9xww2qN6u921llnlVbd+vznP5/Pfvaz+ctf/lLa37Zt20ybNi1//vOf88Mf/jA/+9nPMnny5HWe8+67787f//733H333Zk+fXqmTZuWadOmrf8HUGYN2qQFAFuC7t27Z/Lkydl5553zuc99LqNHjy4Fg3nz5qVbt27v6/xLlizJZZddlgMOOCC9e/fO73//+0yYMCH//Oc/c/nll+fggw9Okybr/5X+gQ98IPPmzas19pvf/KYUkrbaaqt86lOfKu3baaedcv7552fnnXfOhz70oSTJmDFjMmDAgPTs2TMHHXRQvvvd765282n58uW59NJLs+eee+ajH/1oRo0alTvvvLO0/9xzz83YsWPzta99Lb17985ee+2VMWPGJHk7MD3xxBO59tprs+eee6ZXr175wQ9+kK233jq/+tWvNvInCABsCjbHzPTss8+mKIrsvPPOteZ06tSplJ++8Y1vJHnvOWbZsmW54oor0q9fv3z4wx8uNXl98YtfzLBhw9K7d+984xvfyLx58/K5z30ugwcPzi677JKvfe1rueeee0rn2X333XPaaaelb9++6dWrV84999x88IMfrPUPf0ly2GGHZcSIEdlpp53yjW98I506dSqd57jjjktFRUVuvPHG0vypU6dm+PDhpboAADbW5pj/3q19+/Zp0aJFWrduXWsV+ubNm+ecc87JXnvtlZ49e+Zzn/tchg8fvtYmrVatWuX444/P1KlTS2NXXXVVtttuu/f16CEAoHHYHHNVs2bNMm3atEyfPj1bb7119ttvv3zrW9/K448/vtpxn/rUp3LKKaekd+/e+e53v5s999wzU6ZMKe3/9re/nX333Tc77LBDhg4dmrFjx641d62yzTbb5OKLL86HPvShHHHEETn88MNr/XtlQ2nW0AUAm7cdvjmzoUvYKPO+d/j6J8F7tM8++9T6R6yPf/zjueCCC7Jy5cosXbo0LVu2rDX/+eefz6677lp6vWLFiixfvjxbbbVVaezzn/98Lr300iTJr371q5xyyinp06dPHnvssey2225rreXLX/5yrrzyytLrdz6KsFWrVnnjjTdqzR8wYEAuueSS0ut3rhCxpq77u+++OxMnTsyf//znLF68OCtWrMibb76Z119/vXRs69ats+OOO5aO6dq1axYsWJAkWbBgQV5++eUMHDhwjfXPmTMnS5YsWe250UuXLq31eB+AxkjuYnO3OWemdzcs/fGPf8xbb72Vz33uc6VvAr7XHNOjR49su+22q9X04Q9/uPTfXbp0SfL2MvHvHHvzzTezePHitGvXLq+//nrOOeec/OY3v8nLL7+cFStWZOnSpautpPXO81ZUVKSqqqqUzSorK/P5z38+//u//5thw4bl0UcfzWOPPZYbbrhhDT81gMZF9oL3b3POf+/FpZdemp///Od57rnnsnTp0ixbtqzWY3be7dRTT81ee+2Vl156KR/4wAc0xwP8/+QuWL/NNVcdd9xxOfzww/O73/0uDzzwQG699dacf/75+fnPf156wt6q63mnj3/847VWoP/Vr36Viy66KM8++2yWLFmSFStWpF27dmutMUl22223NG3atPS6a9eueeKJJ9Z5TH3QpAUAZdSpU6csXLiw1li3bt1qBYvrrrsuv/71r3PVVVeVxt4ZLI466qhMnjw506dPzx577JGhQ4fmC1/4QoYMGZLmzZvXOvd///d/13q04Dv9+9//Xu0fBNu0aVN61OC7vfuRPs8991wOO+ywfPnLX853v/vddOjQIffdd19OPvnkWs9wfndNFRUVpedit2rVao3vtcpbb72Vrl271lolYpWtt956nccCAJuvTTUz7bTTTqmoqCg9HnCVD37wg0lqZ5v3mmPW9tjEd9a46qbbmsbeeuutJMl//dd/5bbbbssPfvCD7LTTTmnVqlU++clPZtmyZWs976rzrDpH8vYjDz/ykY/kxRdfzP/+7/9m4MCB6dGjxxprBACoK5tq/nuvfvnLX+brX/96Lrjggnz84x9P27Zt8/3vfz9/+MMf1npMv379svvuu+fyyy/P4MGD88QTT+Tmm2/eoPcFAHi3TT1XtWzZMgcffHAOPvjgfOc738kpp5ySs88+u1aT1pqsuhf24IMP5jOf+UzOOeecDB48OO3bt8+MGTNywQUXrPP49d0TayiatADgfXrwwQdXe92rV680bdo0/fr1y5///Oda+5s1a1arMapz585p1arVWpulttlmm4wZMyZjxozJ448/nunTp+dLX/pSVqxYkc985jP5whe+kL333rt0rs6dO6/xPE8++eT7Wj794YcfzooVK3LBBReUljRd31Ki79a2bdvssMMOufPOOzNgwIDV9n/0ox9NdXV1mjVrlh122GGjawUANj2bY2bq2LFjDj744Fx88cUZPXr0WhuskvrPMb/73e8yfPjwHHPMMUne/tbi2h7Tsy59+/bNnnvumZ/97Ge5+uqray0lDwDwfmyO+W9NWrRokZUrV9Ya+93vfpd99903I0aMKI29l1XgTznllEyePDkvvfRSBg0alO7du6/3GACALSVXJcmuu+662iruDz74YE444YRar/v165ck+f3vf58ePXrkzDPPLO1/7rnn1vkemzJNWgDwPr3wwgs5/fTTc9ppp+VPf/pTpkyZUureHjx4cE455ZSsXLmy1pKaG+vDH/5wLrjggpx33nm59dZbM3369Bx44IG59tprM3To0LUe98Ybb2TOnDmZOHHiRr/3jjvumBUrVmTKlCkZOnRofv/735eWQd0QEyZMyJe//OV07tw5Q4YMyWuvvZbf//73GT16dAYNGpSPf/zjOfroo3Peeedl5513zssvv5xbbrklRx999BofwQgAbB4218z04x//OPvtt1/23HPPTJgwIR/+8IfTpEmTPPTQQ/nrX/+aPfbYI0nqPcfstNNOue666zJ06NBUVFTkrLPO2uhvA55yyikZNWpUWrduXWr6AgB4vzbX/PduO+ywQ/7whz9k3rx52WqrrdKhQ4fstNNOufzyy3PbbbelZ8+eueKKK/LQQw+lZ8+e66zzc5/7XMaNG5ef/exnufzyyzf6egFoeB7TSH3aHHPVq6++mk996lM56aST8uEPfzht27bNww8/nPPPPz9HHXVUrWOvvfba7Lnnntl///1z1VVX5Y9//GMuu+yyJG/fA3v++eczY8aM7LXXXpk5c2auv/76932dDUWTFgC8TyeccEKWLl2aj33sY2natGlGjx6dL33pS0mSww47LM2bN8+sWbMyePDgOnvPZs2a5YgjjsgRRxyRf//731mxYsU65994443Zfvvt84lPfGKj3/MjH/lILrzwwpx33nkZP358DjjggEyaNKlWZ/t7ceKJJ+bNN9/M5MmTM27cuHTq1Cmf/OQnk7y91Ogtt9ySM888MyeddFJeeeWVVFVV5YADDkiXLl02unYAoOFtrplpxx13zCOPPJKJEydm/PjxefHFF1NZWZldd90148aNK62eUN85ZvLkyTnppJOy7777plOnTvnGN76RxYsXb9S5PvvZz2bMmDE5/vjj07JlyzquFABorDbX/Pdu48aNy4knnphdd901S5cuzdy5c/PlL385jz76aD796U+noqIin/3sZzNixIj89re/Xef7tWvXLscdd1xmzpyZo48+emMuEQBohDbHXLXVVltl7733zuTJk/P3v/89y5cvT/fu3XPqqafmW9/6Vq1jzznnnMyYMSMjRoxIVVVVrrrqquy6665J3n4U49e//vWMGjUqNTU1Ofzww3PWWWdlwoQJdXat9amiKIqioYtoaIsXL0779u2zaNGiWs/dBNZPlzh14c0338zcuXPTs2fPze4fhfr375+PfOQjueiii9Y658c//nFuvPHG3HbbbfVX2Lt87GMfK/3D25ZmXZ8fv+M3Pf5MYOPJXchM5bclZ6Z1eeGFF7LDDjvkoYceykc/+tF1zpW9Ni/+TGDjyV5sCuS/8muI/HfwwQdnl112yf/8z/+sc57ctXnxZwIbb3PNXZurxpoX5ary29hcVVFRkeuvv77BG9jrK3tZSQsAyuxLX/pSFi5cmNdeey1t27at9/dfsGBBPvnJT+azn/1svb83AMB7JTPVv+XLl2f+/Pn55je/mX322We9DVoAAHWpseW/f//737n99ttz11135eKLL66X9wQAGofGlqs2Z5q0AKDMmjVrljPPPLPB3r9z584544wzGuz9AQDeC5mp/v3+97/PgAED0rt37/zqV79q6HIAgEamseW/j370o1m4cGHOO++87LzzzvX2vgDAlq+x5arNmSYtAHgf7rnnnoYuAQBgkyczbZr69++foigaugwAYAsk/61u3rx5DV0CALAZ2tJzVWO7N9WkoQsAAAAAAAAAAADYkmnSAgAAAAAAAAAAKCNNWgBsMt56662GLoHNUGNbBhUAZCYaks8fANQ/v38bJ/e8AKDuyVWsTX19NprVy7sAwDq0aNEiTZo0ycsvv5xtt902LVq0SEVFRUOXxWagKIq88sorqaioSPPmzRu6HAAoK5mJhlQURZYtW5ZXXnklTZo0SYsWLRq6JADY4sl/jZd7XgBQt+Qq1qa+73lp0gKgwTVp0iQ9e/bM/Pnz8/LLLzd0OWxmKioqst1226Vp06YNXQoAlJXMxKagdevW2X777dOkicXZAaDc5L/GzT0vAKg7chXrU1/3vDRpAbBJaNGiRbbffvusWLEiK1eubOhy2Iw0b97czSoAGg2ZiYbUtGnTNGvWzDdNAaAeyX+Nl3teAFC35CrWpj7veWnSAmCTsWr5bkt4AwCsncwEANC4yH8AAHVDrqKhWZseAAAAAAAAAACgjDRpAQAAAAAAAAAAlJEmLQAAAAAAAAAAgDLSpAUAAAAAAAAAAFBGmrQAAAAAAAAAAADKqFlDFwDQEHb45syGLmGjzPve4Q1dAgAAAAAAAACwgaykBQAAAAAAAAAAUEaatAAAAAAAAAAAAMpIkxYAAAAAAAAAAEAZadICAAAAAAAAAAAoI01aAAAAAAAAAAAAZaRJCwAAAAAAAAAAoIw0aQEAAAAAAAAAAJSRJi0AAAAAAAAAAIAy0qQFAAAAAAAAAABQRpq0AAAAAAAAAAAAyqhZQxcAAADAlmuHb85s6BI2yrzvHd7QJQAAAAAAsAWxkhYAAAAAAAAAAEAZadICAAAAAAAAAAAoI01aAAAAAAAAAAAAZaRJCwAAAAAAAAAAoIw0aQEAAABAHZo0aVL22muvtG3bNp07d87RRx+dp59+utac4cOHp6Kiota2zz771JpTU1OT0aNHp1OnTmnTpk2OPPLIvPjii/V5KQAAAADUEU1aAAAAAFCHZs+enZEjR+bBBx/MHXfckRUrVuSQQw7J66+/XmveoYcemvnz55e2W265pdb+MWPG5Prrr8+MGTNy3333ZcmSJTniiCOycuXK+rwcAAAAAOpAs4YuAAAAAAC2JLfeemut11OnTk3nzp0zZ86cHHDAAaXxysrKVFVVrfEcixYtymWXXZYrrrgigwYNSpJceeWV6d69e2bNmpXBgweX7wIAAAAAqHNW0gIAAACAMlq0aFGSpEOHDrXG77nnnnTu3Dm9e/fOqaeemgULFpT2zZkzJ8uXL88hhxxSGuvWrVv69OmT+++/f43vU1NTk8WLF9faAAAAANg0aNICAAAAgDIpiiKnn3569t9///Tp06c0PmTIkFx11VW56667csEFF+Shhx7KQQcdlJqamiRJdXV1WrRokW222abW+bp06ZLq6uo1vtekSZPSvn370ta9e/fyXRgAAAAAG8TjDgEAAACgTEaNGpXHH3889913X63xT3/606X/7tOnT/bcc8/06NEjM2fOzLHHHrvW8xVFkYqKijXuGz9+fE4//fTS68WLF2vUAgAAANhEWEkLAAAAAMpg9OjRuemmm3L33Xdnu+22W+fcrl27pkePHnnmmWeSJFVVVVm2bFkWLlxYa96CBQvSpUuXNZ6jsrIy7dq1q7UBAAAAsGnQpAUAAAAAdagoiowaNSrXXXdd7rrrrvTs2XO9x7z66qt54YUX0rVr1yTJHnvskebNm+eOO+4ozZk/f36efPLJ7LvvvmWrHQAAAIDy8LhDAAAAAKhDI0eOzNVXX50bb7wxbdu2TXV1dZKkffv2adWqVZYsWZIJEybkuOOOS9euXTNv3rx861vfSqdOnXLMMceU5p588skZO3ZsOnbsmA4dOmTcuHHp27dvBg0a1JCXBwAAAMBG0KQFAAAAAHXokksuSZL079+/1vjUqVMzfPjwNG3aNE888UQuv/zy/Oc//0nXrl0zYMCAXHPNNWnbtm1p/uTJk9OsWbMMGzYsS5cuzcCBAzNt2rQ0bdq0Pi8HAAAAgDqgSQsAAAAA6lBRFOvc36pVq9x2223rPU/Lli0zZcqUTJkypa5KAwAAAKCBNGnoAgAAAAAAAAAAALZkmrQAAAAAAAAAAADKSJMWAAAAAAAAAABAGWnSAgAAAAAAADY7kyZNyl577ZW2bdumc+fOOfroo/P000/XmlMURSZMmJBu3bqlVatW6d+/f5566qlac2pqajJ69Oh06tQpbdq0yZFHHpkXX3yxPi8FAGgENGkBAAAAAAAAm53Zs2dn5MiRefDBB3PHHXdkxYoVOeSQQ/L666+X5px//vm58MILc/HFF+ehhx5KVVVVDj744Lz22mulOWPGjMn111+fGTNm5L777suSJUtyxBFHZOXKlQ1xWQDAFqpZQxcAAAAAAAC8fzt8c2ZDl7BR5n3v8IYuAdhM3XrrrbVeT506NZ07d86cOXNywAEHpCiKXHTRRTnzzDNz7LHHJkmmT5+eLl265Oqrr85pp52WRYsW5bLLLssVV1yRQYMGJUmuvPLKdO/ePbNmzcrgwYPr/boAgC2TlbQAABoBS78DAAAAsKVbtGhRkqRDhw5Jkrlz56a6ujqHHHJIaU5lZWUOPPDA3H///UmSOXPmZPny5bXmdOvWLX369CnNAQCoC5q0AAAaAUu/AwAAALAlK4oip59+evbff//06dMnSVJdXZ0k6dKlS625Xbp0Ke2rrq5OixYtss0226x1zrvV1NRk8eLFtTYAgPXxuEMAgEbA0u8AAAAAbMlGjRqVxx9/PPfdd99q+yoqKmq9LopitbF3W9ecSZMm5Zxzztn4YgGARslKWgAAjVB9Lf3uW4UAAAAAlNvo0aNz00035e677852221XGq+qqkqS1VbEWrBgQWl1raqqqixbtiwLFy5c65x3Gz9+fBYtWlTaXnjhhbq8HABgC6VJCwCgkanPpd8nTZqU9u3bl7bu3bvX9eUAAAAA0EgVRZFRo0bluuuuy1133ZWePXvW2t+zZ89UVVXljjvuKI0tW7Yss2fPzr777psk2WOPPdK8efNac+bPn58nn3yyNOfdKisr065du1obAMD6eNwhAEAjU59Lv48fPz6nn3566fXixYs1agEAAABQJ0aOHJmrr746N954Y9q2bVv6ImH79u3TqlWrVFRUZMyYMZk4cWJ69eqVXr16ZeLEiWndunWOP/740tyTTz45Y8eOTceOHdOhQ4eMGzcuffv2zaBBgxry8gCALYwmLQCARmTV0u/33nvvWpd+79q1a2l8bUu/v3M1rQULFqzzW4WVlZXluBQAAAAAGrlLLrkkSdK/f/9a41OnTs3w4cOTJGeccUaWLl2aESNGZOHChdl7771z++23p23btqX5kydPTrNmzTJs2LAsXbo0AwcOzLRp09K0adP6uhQAoBHwuEMAgEagoZZ+BwAAAIByKYpijduqBq3k7ZXjJ0yYkPnz5+fNN9/M7Nmz06dPn1rnadmyZaZMmZJXX301b7zxRm6++WarwQMAdc5KWgAAjYCl3wEAAAAAAKDhNOhKWpMmTcpee+2Vtm3bpnPnzjn66KPz9NNP15pTFEUmTJiQbt26pVWrVunfv3+eeuqpWnNqamoyevTodOrUKW3atMmRRx6ZF198sT4vBQBgk3bJJZdk0aJF6d+/f7p27VrarrnmmtKcM844I2PGjMmIESOy55575qWXXlrj0u9HH310hg0blv322y+tW7fOzTffbOl3AAAAAAAAWIcGbdKaPXt2Ro4cmQcffDB33HFHVqxYkUMOOSSvv/56ac7555+fCy+8MBdffHEeeuihVFVV5eCDD85rr71WmjNmzJhcf/31mTFjRu67774sWbIkRxxxRFauXNkQlwUAsMmx9DsAAAAAAAA0nAZ93OGtt95a6/XUqVPTuXPnzJkzJwcccECKoshFF12UM888M8cee2ySZPr06enSpUuuvvrqnHbaaVm0aFEuu+yyXHHFFaXH7Fx55ZXp3r17Zs2alcGDB9f7dQEAAAAAAAAAAKzSoCtpvduiRYuSJB06dEiSzJ07N9XV1TnkkENKcyorK3PggQfm/vvvT5LMmTMny5cvrzWnW7du6dOnT2nOu9XU1GTx4sW1NgAAAAAAAAAAgHLYZJq0iqLI6aefnv3337/0WJ3q6uokSZcuXWrN7dKlS2lfdXV1WrRokW222Watc95t0qRJad++fWnziB4AAAAAAAAAAKBcNpkmrVGjRuXxxx/PL37xi9X2VVRU1HpdFMVqY++2rjnjx4/PokWLStsLL7yw8YUDAAAAAAAAAACswybRpDV69OjcdNNNufvuu7PddtuVxquqqpJktRWxFixYUFpdq6qqKsuWLcvChQvXOufdKisr065du1obAAAAAAAAAABAOTRok1ZRFBk1alSuu+663HXXXenZs2et/T179kxVVVXuuOOO0tiyZcsye/bs7LvvvkmSPfbYI82bN681Z/78+XnyySdLcwAAAAAAAAAAABpKs4Z885EjR+bqq6/OjTfemLZt25ZWzGrfvn1atWqVioqKjBkzJhMnTkyvXr3Sq1evTJw4Ma1bt87xxx9fmnvyySdn7Nix6dixYzp06JBx48alb9++GTRoUENeHgAAAAAAAAAAQMM2aV1yySVJkv79+9canzp1aoYPH54kOeOMM7J06dKMGDEiCxcuzN57753bb789bdu2Lc2fPHlymjVrlmHDhmXp0qUZOHBgpk2blqZNm9bXpQAAAAAAAAAAAKxRgzZpFUWx3jkVFRWZMGFCJkyYsNY5LVu2zJQpUzJlypQ6rA4AAAAAAAAAAOD9a9LQBQAAAAAAAAAAAGzJNGkBAAAAAAAAAACUkSYtAAAAAAAAAACAMtKkBQAAAAAAAAAAUEaatAAAAAAAAAAAAMqoWUMXAAAAAAAAAABsvB2+ObOhSwBgPaykBQAAAAAAAAAAUEaatAAAAAAAAAAAAMpIkxYAAAAAAAAAAEAZadICAAAAAAAAAAAoI01aAAAAAAAAAAAAZaRJCwAAAAAAAAAAoIw0aQEAAAAAAAAAAJSRJi0AAAAAAAAAAIAy0qQFAAAAAAAAAABQRs0augAAAID6tMM3ZzZ0CQAAAAAAQCNjJS0AAAAAAAAAAIAy0qQFAAAAAAAAAABQRpq0AAAAAAAAAAAAykiTFgAAAAAAAAAAQBlp0gIAAAAAAAAAACgjTVoAAAAAAAAAAABlpEkLAAAAAAAAAACgjDRpAQAAAAAAAAAAlJEmLQAAAAAAAAAAgDLSpAUAAAAAAAAAAFBGmrQAAAAAAAAAAADKSJMWAAAAAAAAAABAGWnSAgAAAIA6NGnSpOy1115p27ZtOnfunKOPPjpPP/10rTlFUWTChAnp1q1bWrVqlf79++epp56qNaempiajR49Op06d0qZNmxx55JF58cUX6/NSAAAAAKgjmrQAAAAAoA7Nnj07I0eOzIMPPpg77rgjK1asyCGHHJLXX3+9NOf888/PhRdemIsvvjgPPfRQqqqqcvDBB+e1114rzRkzZkyuv/76zJgxI/fdd1+WLFmSI444IitXrmyIywIAAADgfWjW0AUAAAAAwJbk1ltvrfV66tSp6dy5c+bMmZMDDjggRVHkoosuyplnnpljjz02STJ9+vR06dIlV199dU477bQsWrQol112Wa644ooMGjQoSXLllVeme/fumTVrVgYPHlzv1wUAAADAxrOSFgAAAACU0aJFi5IkHTp0SJLMnTs31dXVOeSQQ0pzKisrc+CBB+b+++9PksyZMyfLly+vNadbt27p06dPac671dTUZPHixbU2AAAAADYNmrQAAAAAoEyKosjpp5+e/fffP3369EmSVFdXJ0m6dOlSa26XLl1K+6qrq9OiRYtss802a53zbpMmTUr79u1LW/fu3ev6cgAAAADYSJq0AAAAAKBMRo0alccffzy/+MUvVttXUVFR63VRFKuNvdu65owfPz6LFi0qbS+88MLGFw4AAABAndKkBQAAAABlMHr06Nx00025++67s91225XGq6qqkmS1FbEWLFhQWl2rqqoqy5Yty8KFC9c6590qKyvTrl27WhsAAAAAmwZNWgAAAABQh4qiyKhRo3LdddflrrvuSs+ePWvt79mzZ6qqqnLHHXeUxpYtW5bZs2dn3333TZLssccead68ea058+fPz5NPPlmaAwAAAMDmo1lDFwAAAAAAW5KRI0fm6quvzo033pi2bduWVsxq3759WrVqlYqKiowZMyYTJ05Mr1690qtXr0ycODGtW7fO8ccfX5p78sknZ+zYsenYsWM6dOiQcePGpW/fvhk0aFBDXh4AAAAAG0GTFgAAAADUoUsuuSRJ0r9//1rjU6dOzfDhw5MkZ5xxRpYuXZoRI0Zk4cKF2XvvvXP77benbdu2pfmTJ09Os2bNMmzYsCxdujQDBw7MtGnT0rRp0/q6FAAAAADqiCYtAAAAAKhDRVGsd05FRUUmTJiQCRMmrHVOy5YtM2XKlEyZMqUOqwMAAACgITRp6AIAAAAAAAAAAAC2ZJq0AAAAAAAAAAAAykiTFgAAAAAAAAAAQBlp0gIAAAAAAAAAACgjTVoAAAAAAAAAAABlpEkLAAAAAAAAAACgjDRpAQAAAAAAAAAAlJEmLQAAAAAAAAAAgDLSpAUAAAAAAAAAAFBGmrQAAAAAAAAAAADKSJMWAAAAAAAAAABAGWnSAgAAAAAAAAAAKCNNWgAAAAAAAAAAAGWkSQsAAAAAAAAAAKCMmjV0AQAAALCp2eGbMxu6hI0y73uHN3QJAAAAAACsgZW0AAAAAAAAAAAAykiTFgAAAAAAALBZuvfeezN06NB069YtFRUVueGGG2rtHz58eCoqKmpt++yzT605NTU1GT16dDp16pQ2bdrkyCOPzIsvvliPVwEANAYedwibiM31cSoAAAAAAAAN5fXXX8/uu++eL37xiznuuOPWOOfQQw/N1KlTS69btGhRa/+YMWNy8803Z8aMGenYsWPGjh2bI444InPmzEnTpk3LWj8A0HhYSQsAoJHwrUIAAAAAtjRDhgzJueeem2OPPXatcyorK1NVVVXaOnToUNq3aNGiXHbZZbngggsyaNCg9OvXL1deeWWeeOKJzJo1qz4uAQBoJDRpAQA0Equ+VXjxxRevdc6hhx6a+fPnl7Zbbrml1v4xY8bk+uuvz4wZM3LfffdlyZIlOeKII7Jy5cpylw8AAAAAG+Wee+5J586d07t375x66qlZsGBBad+cOXOyfPnyHHLIIaWxbt26pU+fPrn//vvXeL6amposXry41gYAsD4edwgA0EgMGTIkQ4YMWeecVd8qXJNV3yq84oorMmjQoCTJlVdeme7du2fWrFkZPHhwndcMAAAAAO/HkCFD8qlPfSo9evTI3Llzc9ZZZ+Wggw7KnDlzUllZmerq6rRo0SLbbLNNreO6dOmS6urqNZ5z0qRJOeecc+qjfABgC2IlLQAASnyrEAAAAIAtyac//ekcfvjh6dOnT4YOHZrf/va3+dvf/paZM2eu87iiKFJRUbHGfePHj8+iRYtK2wsvvFCO0gGALYyVtAAASOJbhQAAQN3b4Zvr/gdwAKhvXbt2TY8ePfLMM88kSaqqqrJs2bIsXLiw1n2vBQsWZN99913jOSorK1NZWVkv9QIAWw4raQEAkMS3CgEAAADY8r366qt54YUX0rVr1yTJHnvskebNm+eOO+4ozZk/f36efPLJtTZpAQBsjAZt0rr33nszdOjQdOvWLRUVFbnhhhtq7R8+fHgqKipqbfvss0+tOTU1NRk9enQ6deqUNm3a5Mgjj8yLL75Yj1cBALBlWte3Ct9pwYIF6dKlyxrPUVlZmXbt2tXaAAAAAKCuLFmyJI8++mgeffTRJMncuXPz6KOP5vnnn8+SJUsybty4PPDAA5k3b17uueeeDB06NJ06dcoxxxyTJGnfvn1OPvnkjB07NnfeeWceeeSRfP7zn0/fvn0zaNCgBrwyAGBL06BNWq+//np23333XHzxxWudc+ihh2b+/Pml7ZZbbqm1f8yYMbn++uszY8aM3HfffVmyZEmOOOKIrFy5stzlAwBs0XyrEAAAAIBN3cMPP5x+/fqlX79+SZLTTz89/fr1y3e+8500bdo0TzzxRI466qj07t07J554Ynr37p0HHnggbdu2LZ1j8uTJOfroozNs2LDst99+ad26dW6++eY0bdq0oS4LANgCNWvINx8yZEiGDBmyzjmVlZWpqqpa475FixblsssuyxVXXFHqZL/yyivTvXv3zJo1K4MHD67zmgEANldLlizJs88+W3q96luFHTp0SIcOHTJhwoQcd9xx6dq1a+bNm5dvfetba/1WYceOHdOhQ4eMGzfOtwoBAAAAaDD9+/dPURRr3X/bbbet9xwtW7bMlClTMmXKlLosDQCglgZdSeu9uOeee9K5c+f07t07p556ahYsWFDaN2fOnCxfvjyHHHJIaaxbt27p06dP7r///oYoFwBgk+VbhQAAAAAAANAwNnglrblz56Znz57lqGU1Q4YMyac+9an06NEjc+fOzVlnnZWDDjooc+bMSWVlZaqrq9OiRYtss802tY7r0qVLqqur13rempqa1NTUlF4vXry4bNcAAPB+1GX28q1CAIC1q897XgAAjZ3sBQA0Rhu8ktZOO+2UAQMG5Morr8ybb75ZjppKPv3pT+fwww9Pnz59MnTo0Pz2t7/N3/72t8ycOXOdxxVFkYqKirXunzRpUtq3b1/aunfvXtelAwDUifrMXgAAjZncBQBQf2QvAKAx2uAmrcceeyz9+vXL2LFjU1VVldNOOy1//OMfy1Hbarp27ZoePXrkmWeeSZJUVVVl2bJlWbhwYa15CxYsSJcuXdZ6nvHjx2fRokWl7YUXXihr3QAAG6shsxcAQGMidwEA1B/ZCwBojDa4SatPnz658MIL89JLL2Xq1Kmprq7O/vvvn9122y0XXnhhXnnllXLUmSR59dVX88ILL6Rr165Jkj322CPNmzfPHXfcUZozf/78PPnkk9l3333Xep7Kysq0a9eu1gYAsClqyOwFANCYyF0AAPVH9gIAGqMNbtJapVmzZjnmmGPyy1/+Muedd17+/ve/Z9y4cdluu+1ywgknZP78+es9x5IlS/Loo4/m0UcfTfL286cfffTRPP/881myZEnGjRuXBx54IPPmzcs999yToUOHplOnTjnmmGOSJO3bt8/JJ5+csWPH5s4778wjjzySz3/+8+nbt28GDRq0sZcGALDJqYvsBQDA+sldAAD1R/YCABqTjW7SevjhhzNixIh07do1F154YcaNG5e///3vueuuu/LSSy/lqKOOek/n6NevX/r165ckOf3009OvX7985zvfSdOmTfPEE0/kqKOOSu/evXPiiSemd+/eeeCBB9K2bdvSOSZPnpyjjz46w4YNy3777ZfWrVvn5ptvTtOmTTf20gAANjl1kb0AAFg/uQsAoP7IXgBAY9JsQw+48MILM3Xq1Dz99NM57LDDcvnll+ewww5LkyZv93v17NkzP/nJT/KhD31ovefq379/iqJY6/7bbrttvedo2bJlpkyZkilTprz3iwAA2EzUZfYCAGDt5C4AgPojewEAjdEGN2ldcsklOemkk/LFL34xVVVVa5yz/fbb57LLLnvfxQEANHayFwBA/ZC7AADqj+wFADRGG9yk9cwzz6x3TosWLXLiiSduVEEAAPwf2QsAoH7IXQAA9Uf2AgAaoyYbesDUqVNz7bXXrjZ+7bXXZvr06XVSFAAAb5O9AADqh9wFAFB/ZC8AoDHa4Cat733ve+nUqdNq4507d87EiRPrpCgAAN4mewEA1A+5CwCg/sheAEBjtMFNWs8991x69uy52niPHj3y/PPP10lRAAC8TfYCAKgfchcAQP2RvQCAxmiDm7Q6d+6cxx9/fLXxxx57LB07dqyTogAAeJvsBQBQP+QuAID6I3sBAI1Rsw094DOf+Uy++tWvpm3btjnggAOSJLNnz87Xvva1fOYzn6nzAgH4Pzt8c2ZDl7BR5n3v8IYuATZbshcAQP2QuwAA6o/sBQA0RhvcpHXuuefmueeey8CBA9Os2duHv/XWWznhhBM8IxoAoI7JXgAA9UPuAgCoP7IXANAYbXCTVosWLXLNNdfku9/9bh577LG0atUqffv2TY8ePcpRHwBAoyZ7AQDUD7kLAKD+yF4AQGO0wU1aq/Tu3Tu9e/euy1oAAFgL2QsAoH7IXQAA9Uf2AgAakw1u0lq5cmWmTZuWO++8MwsWLMhbb71Va/9dd91VZ8UBADR2shcAQP2QuwAA6o/sBQA0RhvcpPW1r30t06ZNy+GHH54+ffqkoqKiHHUBABDZCwCgvshdAAD1R/YCABqjDW7SmjFjRn75y1/msMMOK0c9AAC8g+wFAFA/5C4AgPojewEAjVGTDT2gRYsW2WmnncpRCwAA7yJ7AQDUD7kLAKD+yF4AQGO0wU1aY8eOzQ9/+MMURVGOegAAeAfZCwCgfshdAAD1R/YCABqjDX7c4X333Ze77747v/3tb7PbbrulefPmtfZfd911dVYcAEBjJ3sBANQPuQsAoP7IXgBAY7TBTVpbb711jjnmmHLUAgDAu8heAAD1Q+4CAKg/shcA0BhtcJPW1KlTy1EHAABrIHsBANQPuQsAoP7IXgBAY9RkYw5asWJFZs2alZ/85Cd57bXXkiQvv/xylixZUqfFAQAgewEA1Be5CwCg/sheAEBjs8FNWs8991z69u2bo446KiNHjswrr7ySJDn//PMzbty4Oi8QAKAxk70AAOpHXeaue++9N0OHDk23bt1SUVGRG264odb+4cOHp6Kiota2zz771JpTU1OT0aNHp1OnTmnTpk2OPPLIvPjii+/rGgEANhXueQEAjdEGN2l97Wtfy5577pmFCxemVatWpfFjjjkmd955Z50WBwDQ2MleAAD1oy5z1+uvv57dd989F1988VrnHHrooZk/f35pu+WWW2rtHzNmTK6//vrMmDEj9913X5YsWZIjjjgiK1eu3LALAwDYBLnnBQA0Rs029ID77rsvv//979OiRYta4z169MhLL71UZ4UBACB7AQDUl7rMXUOGDMmQIUPWOaeysjJVVVVr3Ldo0aJcdtllueKKKzJo0KAkyZVXXpnu3btn1qxZGTx48AbVAwCwqXHPCwBojDZ4Ja233nprjd/Ye/HFF9O2bds6KQoAgLfJXgAA9aO+c9c999yTzp07p3fv3jn11FOzYMGC0r45c+Zk+fLlOeSQQ0pj3bp1S58+fXL//fev9Zw1NTVZvHhxrQ0AYFPknhcA0BhtcJPWwQcfnIsuuqj0uqKiIkuWLMnZZ5+dww47rC5rAwBo9GQvAID6UZ+5a8iQIbnqqqty11135YILLshDDz2Ugw46KDU1NUmS6urqtGjRIttss02t47p06ZLq6uq1nnfSpElp3759aevevXud1g0AUFfc8wIAGqMNftzh5MmTM2DAgOy666558803c/zxx+eZZ55Jp06d8otf/KIcNQIANFqyFwBA/ajP3PXpT3+69N99+vTJnnvumR49emTmzJk59thj13pcURSpqKhY6/7x48fn9NNPL71evHixRi0AYJPknhcA0BhtcJNWt27d8uijj+YXv/hF/vSnP+Wtt97KySefnM997nNp1apVOWoEAGi0ZC8AgPrRkLmra9eu6dGjR5555pkkSVVVVZYtW5aFCxfWWk1rwYIF2Xfffdd6nsrKylRWVpa1VgCAuuCeFwDQGG1wk1aStGrVKieddFJOOumkuq4HAIB3kb0AAOpHQ+WuV199NS+88EK6du2aJNljjz3SvHnz3HHHHRk2bFiSZP78+XnyySdz/vnn12ttAADl4p4XANDYbHCT1uWXX77O/SeccMJGFwMAQG2yFwBA/ajL3LVkyZI8++yzpddz587No48+mg4dOqRDhw6ZMGFCjjvuuHTt2jXz5s3Lt771rXTq1CnHHHNMkqR9+/Y5+eSTM3bs2HTs2DEdOnTIuHHj0rdv3wwaNGjjLhAAYBPinhcA0BhtcJPW1772tVqvly9fnjfeeCMtWrRI69athSYAgDokewEA1I+6zF0PP/xwBgwYUHp9+umnJ0lOPPHEXHLJJXniiSdy+eWX5z//+U+6du2aAQMG5Jprrknbtm1Lx0yePDnNmjXLsGHDsnTp0gwcODDTpk1L06ZN3+eVAgA0PPe8AIDGaIObtBYuXLja2DPPPJOvfOUr+a//+q86KQoAgLfJXgAA9aMuc1f//v1TFMVa9992223rPUfLli0zZcqUTJkyZYPeGwBgc+CeFwDQGDWpi5P06tUr3/ve91bregcAoO7JXgAA9UPuAgCoP7IXALClq5MmrSRp2rRpXn755bo6HQAA6yB7AQDUD7kLAKD+yF4AwJZsgx93eNNNN9V6XRRF5s+fn4svvjj77bdfnRUGAIDsBQBQX+QuAID6I3sBAI3RBjdpHX300bVeV1RUZNttt81BBx2UCy64oK7qAgAgshcAQH2RuwAA6o/sBQA0RhvcpPXWW2+Vow4AANZA9gIAqB9yFwBA/ZG9AIDGqElDFwAAAAAAAAAAALAl2+CVtE4//fT3PPfCCy/c0NMDAPAOshcAQP2QuwAA6o/sBQA0RhvcpPXII4/kT3/6U1asWJGdd945SfK3v/0tTZs2zUc/+tHSvIqKirqrEgCgkZK9AADqh9wFAFB/ZC8AoDHa4CatoUOHpm3btpk+fXq22WabJMnChQvzxS9+MZ/4xCcyduzYOi8SAKCxkr0AAOqH3AUAUH9kLwCgMWqyoQdccMEFmTRpUikwJck222yTc889NxdccEGdFgcA0NjJXgAA9UPuAgCoP7IXANAYbXCT1uLFi/PPf/5ztfEFCxbktddeq5OiAAB4m+wFAFA/5C4AgPojewEAjdEGP+7wmGOOyRe/+MVccMEF2WeffZIkDz74YP7rv/4rxx57bJ0XCADQmMleAAD1Q+4CAKg/shebsh2+ObOhSwBgC7XBTVqXXnppxo0bl89//vNZvnz52ydp1iwnn3xyvv/979d5gQAAjZnsBQBQP+QuAID6I3sBAI3RBjdptW7dOj/+8Y/z/e9/P3//+99TFEV22mmntGnTphz1AQA0arIXAED9kLsAAOqP7AUANEYb3KS1yvz58zN//vwccMABadWqVYqiSEVFRV3WBgDA/0/2AgCoH3IXAED9kb0A6tfm+jjPed87vKFLgDrRZEMPePXVVzNw4MD07t07hx12WObPn58kOeWUUzJ27Ng6LxAAoDGTvQAA6ofcBQBQf2QvAKAx2uAmra9//etp3rx5nn/++bRu3bo0/ulPfzq33nprnRYHANDYyV4AAPVD7gIAqD+yFwDQGG3w4w5vv/323Hbbbdluu+1qjffq1SvPPfdcnRUGAIDsBQBQX+QuAID6I3sBAI3RBq+k9frrr9fqaF/lX//6VyorK+ukKAAA3iZ7AQDUD7kLAKD+yF4AQGO0wU1aBxxwQC6//PLS64qKirz11lv5/ve/nwEDBtRpcQAAjZ3sBQBQP+QuAID6I3sBAI3RBj/u8Pvf/3769++fhx9+OMuWLcsZZ5yRp556Kv/+97/z+9//vhw1AgA0WrIXAED9kLsAAOqP7AUANEYbvJLWrrvumscffzwf+9jHcvDBB+f111/Psccem0ceeSQ77rhjOWoEAGi0ZC8AgPohdwEA1B/ZCwBojDZoJa3ly5fnkEMOyU9+8pOcc8455aoJAIDIXgAA9UXuAgCoP7IXANBYbdBKWs2bN8+TTz6ZioqKctUDAMD/T/YCAKgfchcAQP2RvQCAxmqDH3d4wgkn5LLLLitHLQAAvIvsBQBQP+QuAID6I3sBAI3RBj3uMEmWLVuWn//857njjjuy5557pk2bNrX2X3jhhXVWHABAYyd7AQDUD7kLAKD+yF4AQGP0npq0Hn/88fTp0ydNmjTJk08+mY9+9KNJkr/97W+15lmWFADg/ZO9AADqh9wFAFB/ZC8AoLF7T01a/fr1y/z589O5c+c899xzeeihh9KxY8dy1wYA0CjJXgAA9UPuAgCoP7IXANDYNXkvk7beeuvMnTs3STJv3ry89dZbZS0KAKAxk70AAOqH3AUAUH/Klb3uvffeDB06NN26dUtFRUVuuOGGWvuLosiECRPSrVu3tGrVKv37989TTz1Va05NTU1Gjx6dTp06pU2bNjnyyCPz4osv1kl9AACrvKeVtI477rgceOCB6dq1ayoqKrLnnnumadOma5z7j3/8o04LBABobGQvAID6IXcBANSfcmWv119/Pbvvvnu++MUv5rjjjltt//nnn58LL7ww06ZNS+/evXPuuefm4IMPztNPP522bdsmScaMGZObb745M2bMSMeOHTN27NgcccQRmTNnzlprBADYUO+pSeunP/1pjj322Dz77LP56le/mlNPPbUUWgAAqFvlyl733ntvvv/972fOnDmZP39+rr/++hx99NGl/UVR5JxzzslPf/rTLFy4MHvvvXd+9KMfZbfddivNqampybhx4/KLX/wiS5cuzcCBA/PjH/8422233fuuDwCgvrnnBQBQf8qVvYYMGZIhQ4ascV9RFLnoooty5pln5thjj02STJ8+PV26dMnVV1+d0047LYsWLcpll12WK664IoMGDUqSXHnllenevXtmzZqVwYMHv+8aAQCS99iklSSHHnpokmTOnDn52te+5oYVAEAZlSN7+VYhAMDq3PMCAKg/9Z295s6dm+rq6hxyyCGlscrKyhx44IG5//77c9ppp2XOnDlZvnx5rTndunVLnz59cv/992vSAgDqzHtu0lpl6tSp5agDAIA1qMvs5VuFAABr554XAED9qa/sVV1dnSTp0qVLrfEuXbrkueeeK81p0aJFttlmm9XmrDr+3WpqalJTU1N6vXjx4rosGwDYQjVp6AIAAGh46/tWYZL1fqtwTWpqarJ48eJaGwAAAADUp4qKilqvi6JYbezd1jVn0qRJad++fWnr3r17ndUKAGy5GrRJ6957783QoUPTrVu3VFRU5IYbbqi1vyiKTJgwId26dUurVq3Sv3//PPXUU7Xm1NTUZPTo0enUqVPatGmTI488Mi+++GI9XgUAwOZvXd8qXLVvY75V6IYVAAAAAA2lqqoqSVa7d7VgwYLSfbCqqqosW7YsCxcuXOucdxs/fnwWLVpU2l544YUyVA8AbGkatEnr9ddfz+67756LL754jfvPP//8XHjhhbn44ovz0EMPpaqqKgcffHBee+210pwxY8bk+uuvz4wZM3LfffdlyZIlOeKII7Jy5cr6ugwAgC1GXX+r0A0rAAAAABpKz549U1VVlTvuuKM0tmzZssyePTv77rtvkmSPPfZI8+bNa82ZP39+nnzyydKcd6usrEy7du1qbQAA69OsId98yJAhGTJkyBr3FUWRiy66KGeeeWaOPfbYJMn06dPTpUuXXH311TnttNOyaNGiXHbZZbniiisyaNCgJMmVV16Z7t27Z9asWRk8eHC9XQsAwObsnd8q7Nq1a2l8bd8qfOdqWgsWLFjnDavKysoyVg4AAABAY7ZkyZI8++yzpddz587No48+mg4dOmT77bfPmDFjMnHixPTq1Su9evXKxIkT07p16xx//PFJkvbt2+fkk0/O2LFj07Fjx3To0CHjxo1L3759S//+CABQFxp0Ja11mTt3bqqrq3PIIYeUxiorK3PggQfm/vvvT5LMmTMny5cvrzWnW7du6dOnT2kOAADrV65vFQIAAABAOT388MPp169f+vXrlyQ5/fTT069fv3znO99JkpxxxhkZM2ZMRowYkT333DMvvfRSbr/99rRt27Z0jsmTJ+foo4/OsGHDst9++6V169a5+eab07Rp0wa5JgBgy9SgK2mty6pnQ7/7Wc9dunTJc889V5rTokWLWis5rJrz7mdLv1NNTU1qampKrxcvXlxXZQMAbLJ8qxAAAACALU3//v1TFMVa91dUVGTChAmZMGHCWue0bNkyU6ZMyZQpU8pQIQDA2zbZJq1VKioqar0uimK1sXdb35xJkyblnHPOqZP6AAA2Fw8//HAGDBhQen366acnSU488cRMmzYtZ5xxRpYuXZoRI0Zk4cKF2Xvvvdf4rcJmzZpl2LBhWbp0aQYOHJhp06b5ViEAAAAAAACswybbpFVVVZXk7dWyunbtWhpfsGBBaXWtqqqqLFu2LAsXLqy1mtaCBQvW+cid8ePHl/5RMnl7Ja3u3bvX9SXQQHb45syGLgEANkm+VUhdk7sAAAAAAADemyYNXcDa9OzZM1VVVbnjjjtKY8uWLcvs2bNLDVh77LFHmjdvXmvO/Pnz8+STT66zSauysjLt2rWrtQEAAAAAAAAAAJRDg66ktWTJkjz77LOl13Pnzs2jjz6aDh06ZPvtt8+YMWMyceLE9OrVK7169crEiRPTunXrHH/88UmS9u3b5+STT87YsWPTsWPHdOjQIePGjUvfvn0zaNCghrosAAAAAAAAAACAkgZt0nr44YczYMCA0utVjyA88cQTM23atJxxxhlZunRpRowYkYULF2bvvffO7bffnrZt25aOmTx5cpo1a5Zhw4Zl6dKlGThwYKZNm5amTZvW+/UAAAAAAAAAAAC8W4M2afXv3z9FUax1f0VFRSZMmJAJEyasdU7Lli0zZcqUTJkypQwVAgAAAAAAAAAAvD9NGroAAAAAAAAAAACALZkmLQAAAAAAAAAAgDLSpAUAAAAAAAAAAFBGzRq6AAAAAAAAoPHa4ZszG7qEjTLve4c3dAkAAMBmxEpaAAAAAAAAAAAAZaRJCwAAAAAAAAAAoIw0aQEAAAAAAAAAAJSRJi0AAAAAAAAAAIAy0qQFAAAAAAAAAABQRpq0AAAAAKAO3XvvvRk6dGi6deuWioqK3HDDDbX2F0WRCRMmpFu3bmnVqlX69++fp556qtacmpqajB49Op06dUqbNm1y5JFH5sUXX6zHqwAAAACgLmnSAgAAAIA69Prrr2f33XfPxRdfvMb9559/fi688MJcfPHFeeihh1JVVZWDDz44r732WmnOmDFjcv3112fGjBm57777smTJkhxxxBFZuXJlfV0GAAAAAHWoWUMXAAAAAABbkiFDhmTIkCFr3FcURS666KKceeaZOfbYY5Mk06dPT5cuXXL11VfntNNOy6JFi3LZZZfliiuuyKBBg5IkV155Zbp3755Zs2Zl8ODB9XYtAAAAANQNK2kBAAAAQD2ZO3duqqurc8ghh5TGKisrc+CBB+b+++9PksyZMyfLly+vNadbt27p06dPac6a1NTUZPHixbU2AAAAADYNmrQAAAAAoJ5UV1cnSbp06VJrvEuXLqV91dXVadGiRbbZZpu1zlmTSZMmpX379qWte/fudVw9AAAAABtLkxYAAAAA1LOKiopar4uiWG3s3dY3Z/z48Vm0aFFpe+GFF+qkVgAAAADeP01aAAAAAFBPqqqqkmS1FbEWLFhQWl2rqqoqy5Yty8KFC9c6Z00qKyvTrl27WhsAAAAAmwZNWgAAAABQT3r27JmqqqrccccdpbFly5Zl9uzZ2XfffZMke+yxR5o3b15rzvz58/Pkk0+W5gAAAACweWnW0AUAAAAAwJZkyZIlefbZZ0uv586dm0cffTQdOnTI9ttvnzFjxmTixInp1atXevXqlYkTJ6Z169Y5/vjjkyTt27fPySefnLFjx6Zjx47p0KFDxo0bl759+2bQoEENdVkAAAAAvA+atAAAAACgDj388MMZMGBA6fXpp5+eJDnxxBMzbdq0nHHGGVm6dGlGjBiRhQsXZu+9987tt9+etm3blo6ZPHlymjVrlmHDhmXp0qUZOHBgpk2blqZNm9b79QAAAADw/mnSAgAAAIA61L9//xRFsdb9FRUVmTBhQiZMmLDWOS1btsyUKVMyZcqUMlQIAAAAQH1r0tAFAAAAAAAAAAAAbMk0aQEAAAAAAAAAAJSRJi0AAAAAAAAAAIAy0qQFAAAAAAAAAABQRpq0AAAAAAAAAAAAyqhZQxcAAAAAAMC67fDNmQ1dAgAAAPA+WEkLAAAAAAAAAACgjDRpAQAAAAAAAAAAlJEmLQAAAAAAAAAAgDLSpAUAAAAAAAAAAFBGmrQAAAAAAAAAAADKSJMWAAAAAAAAAABAGWnSAgAAAAAAAAAAKCNNWgAAAAAAAAAAAGWkSQsAAAAAAAAAAKCMNGkBAAAAAAAAAACUkSYtAAAAAAAAAACAMtKkBQAAAAAAAAAAUEaatAAAAAAAAAAAAMpIkxYAAAAAAAAAAEAZNWvoAgAAAIC6scM3ZzZ0CRtl3vcOb+gSAAAAAADKykpaAAAAAAAAAAAAZaRJCwAAAAAAAAAAoIw0aQEAAAAAAAAAAJSRJi0AAAAAAAAAAIAy0qQFAAAAAAAAAABQRs0augAAtnw7fHNmQ5ewweZ97/CGLgEAAAAAAACALYSVtAAAAAAAAAAAAMpIkxYAAAAAAAAAAEAZadICAAAAAAAAAAAoI01aAAAAAAAAAAAAZaRJCwAAAAAAAAAAoIw0aQEAAAAAAAAAAJSRJi0AAAAAAAAAAIAy0qQFAAAAAAAAAABQRpq0AAAAAAAAAAAAykiTFgAAAAAAAAAAQBk1a+gCAAAAAAAANjc7fHNmQ5ewUeZ97/CGLgEAABolK2kBAAAAAAAAAACUkSYtAAAAAAAAAACAMtKkBQAAAAAAAAAAUEaatAAAAAAAAIAt0oQJE1JRUVFrq6qqKu0viiITJkxIt27d0qpVq/Tv3z9PPfVUA1YMAGypmjV0AQAAbBomTJiQc845p9ZYly5dUl1dneTtG1bnnHNOfvrTn2bhwoXZe++986Mf/Si77bZbQ5QLAAAAAO/JbrvtllmzZpVeN23atPTf559/fi688MJMmzYtvXv3zrnnnpuDDz44Tz/9dNq2bdsQ5QLwLjt8c2ZDl7BR5n3v8IYugU2MlbQAACjZbbfdMn/+/NL2xBNPlPatumF18cUX56GHHkpVVVUOPvjgvPbaaw1YMQAAAACsW7NmzVJVVVXatt122yRvfynxoosuyplnnpljjz02ffr0yfTp0/PGG2/k6quvbuCqAYAtzSbdpGX5UQCA+uWGFQAAAABbmmeeeSbdunVLz54985nPfCb/+Mc/kiRz585NdXV1DjnkkNLcysrKHHjggbn//vsbqlwAYAu1STdpJVZzAACoT3V9w6qmpiaLFy+utQEAAABAfdl7771z+eWX57bbbsvPfvazVFdXZ999982rr76a6urqJEmXLl1qHdOlS5fSvjVxzwsA2BibfJOW1RwAAOpHOW5YTZo0Ke3bty9t3bt3L+s1AAAAAMA7DRkyJMcdd1z69u2bQYMGZebMmUmS6dOnl+ZUVFTUOqYoitXG3sk9LwBgY2zyTVrlWH5UdzsAwOrKccNq/PjxWbRoUWl74YUXylM8AAAAALwHbdq0Sd++ffPMM8+kqqoqSVb7EuKCBQtW+7LiO7nnBQBsjE26SascqzkkutsBAN6LurhhVVlZmXbt2tXaAAAAAKCh1NTU5C9/+Uu6du2anj17pqqqKnfccUdp/7JlyzJ79uzsu+++az2He14AwMbYpJu0yrGaQ6K7HQDgvaiLG1YAAAAA0JDGjRuX2bNnZ+7cufnDH/6QT37yk1m8eHFOPPHEVFRUZMyYMZk4cWKuv/76PPnkkxk+fHhat26d448/vqFLBwC2MM0auoAN8c7VHI4++ugkb6/m0LVr19Kc9a3mkLzd3V5ZWVnOUgEANjvjxo3L0KFDs/3222fBggU599xz13jDqlevXunVq1cmTpzohhUAAAAAm7QXX3wxn/3sZ/Ovf/0r2267bfbZZ588+OCD6dGjR5LkjDPOyNKlSzNixIgsXLgwe++9d26//fa0bdu2gSsHALY0m1WT1qrVHD7xiU/UWs2hX79+Sf5vNYfzzjuvgSsFANj8uGEFAAAAwJZmxowZ69xfUVGRCRMmZMKECfVTEADQaG3STVpWcwAAqD9uWAEAAAAAAEB5bNJNWlZzAAAAAAAAAAAANndNGrqAdZkxY0ZefvnlLFu2LC+99FJ+/etfZ9dddy3tX7Waw/z58/Pmm29m9uzZ6dOnTwNWDAAAAADrN2HChFRUVNTaqqqqSvuLosiECRPSrVu3tGrVKv37989TTz3VgBUDAAAA8H5s0k1aAAAAALCl2m233TJ//vzS9sQTT5T2nX/++bnwwgtz8cUX56GHHkpVVVUOPvjgvPbaaw1YMQAAAAAbS5MWAAAAADSAZs2apaqqqrRtu+22Sd5eReuiiy7KmWeemWOPPTZ9+vTJ9OnT88Ybb+Tqq69u4KoBAAAA2BiatAAAAACgATzzzDPp1q1bevbsmc985jP5xz/+kSSZO3duqqurc8ghh5TmVlZW5sADD8z999+/1vPV1NRk8eLFtTYAAAAANg2atAAAAACgnu299965/PLLc9ttt+VnP/tZqqurs+++++bVV19NdXV1kqRLly61junSpUtp35pMmjQp7du3L23du3cv6zUAAAAA8N5p0gIAAACAejZkyJAcd9xx6du3bwYNGpSZM2cmSaZPn16aU1FRUeuYoihWG3un8ePHZ9GiRaXthRdeKE/xAAAAAGwwTVoAAAAA0MDatGmTvn375plnnklVVVWSrLZq1oIFC1ZbXeudKisr065du1obAAAAAJsGTVoAAAAA0MBqamryl7/8JV27dk3Pnj1TVVWVO+64o7R/2bJlmT17dvbdd98GrBIAAACAjdWsoQsAAAAAgMZm3LhxGTp0aLbffvssWLAg5557bhYvXpwTTzwxFRUVGTNmTCZOnJhevXqlV69emThxYlq3bp3jjz++oUsHAAAAYCNo0gIAAACAevbiiy/ms5/9bP71r39l2223zT777JMHH3wwPXr0SJKcccYZWbp0aUaMGJGFCxdm7733zu233562bds2cOUAAPDe7PDNmQ1dAgBsUjRpAQAAAEA9mzFjxjr3V1RUZMKECZkwYUL9FAQAAABAWTVp6AIAAAAAAAAAAAC2ZJq0AAAAAAAAAAAAykiTFgAAAAAAAAAAQBlp0gIAAAAAAAAAACgjTVoAAAAAAAAAAABlpEkLAAAAAAAAAACgjDRpAQAAAAAAAAAAlJEmLQAAAAAAAAAAgDLSpAUAAAAAAAAAAFBGmrQAAAAAAAAAAADKSJMWAAAAAAAAAABAGWnSAgAAAAAAAAAAKCNNWgAAAAAAAAAAAGWkSQsAAAAAAAAAAKCMNGkBAAAAAAAAAACUUbOGLoBN1w7fnNnQJQAAAAAAAAAAwGbPSloAAAAAAAAAAABlpEkLAAAAAAAAAACgjDRpAQAAAAAAAAAA/H/t3XtsnXUZB/Cna9eVTDbuo7s4tgLbuMhl0zHmEAGHKDKiRAhICFETIiSSSUwNxAHiuMpFZSRMGIiGGR0oEVyYyBA2BxFbo2OOsTEB2STcR5CObT//MGscLaeXc96+57z9fJIm69nb93n7zXPe/c6zX08zZJMWAAAAAAAAAABAhmzSAgAAAAAAAAAAyJBNWgAAAAAAAAAAABmySQsAAAAAAAAAACBDNmkBAAAAAAAAAABkyCYtAAAAAAAAAACADNmkBQAAAAAAAAAAkCGbtAAAAAAAAAAAADJkkxYAAAAAAAAAAECGbNICAAAAAAAAAADIUEPeFwAAAIPdAa0P5n0JAAAAAAAAZMg7aQEAAAAAAAAAAGTIJi0AAAAAAAAAAIAM+XWHAAAAQK5q9de+brzm83lfAgAAAABVysyLD/JOWgAAAAAAAAAAABmySQsAAAAAAAAAACBDNmkBAAAAAAAAAABkyCYtAAAAAAAAAACADDXkfQGDwQGtD+Z9CQD0Ua3euzde8/m8LwEAAKCq1errPQAAAKC2eSctAAAAAAAAAACADNmkBQAAAAAAAAAAkCGbtAAAAAAAAAAAADJkkxYAAAAAAAAAAECGbNICAAAAAAAAAADIkE1aAAAAAAAAAAAAGbJJCwAAAAAAAAAAIEMNeV8AAAAAAAAAA+OA1gfzvoQ+23jN5/O+BAAAKJt30gIAAAAAAAAAAMiQd9ICAAAAAAAAqFK1+A54AEBX3kkLAAAAAAAAAAAgQ95JCwCAwvBThQAAAAAAAFQjm7QAAAAAgD6zQR4AAACg92zSAgAAAOiHWt2gsvGaz+d9CQAAAAAw6NikBQAAAAAAAAAA+MHEDA3J+wIAAAAAAAAAAACKrDDvpLVgwYK4/vrrY9OmTXHooYfGzTffHLNmzcr7sgBgQNnZzkCx9gIAGBjWXQAAA8faCwDIUiHeSesXv/hFXHzxxXHppZdGW1tbzJo1K0455ZR44YUX8r40AIDCsfYCABgY1l0AAAPH2gsAyFpdSinlfRHlmj59ehx99NFx2223dT42ZcqUOP300+Pqq6/u8evffvvtGDlyZLz11lsxYsSIil9frb6rCQAMlKzeSSvrf+MHq3LWXtZdAJA/a6/aYeYFALXNuqu2mHkBQG2rhbVXzf+6w61bt8bTTz8dra2tuzw+e/bsWLlyZbdf09HRER0dHZ2fv/XWWxHxv2CzsKPj3UzOCwBFkdW/wTvPW4A96VWjr2sv6y4AqD7WXrXBzAsAap91V+0w8wKA2lcLa6+a36T16quvxvbt22PUqFG7PD5q1KjYvHlzt19z9dVXxxVXXNHl8XHjxmVyjQBAaSNvzvb8W7ZsiZEjR2ZbZJDo69rLugsAqo+1V20w8wKA2mfdVTvMvACg9tXC2qvmN2ntVFdXt8vnKaUuj+30ne98J+bOndv5+Y4dO+L111+Pvffe+0O/ZrB4++23Y9y4cfHiiy96i9x+kF955Fce+fWf7MpTzfmllGLLli0xevTovC+lcHq79hrIdVc192ItkWP5ZFg+GVaGHMsnw76x9spGtcy8PB96JqPS5FOafHomo9LkU1rR8rHuys5AzLyK1o95kGH5ZFge+ZVPhuWRX/n6kmEl1141v0lrn332ifr6+i672F955ZUuu913GjZsWAwbNmyXx/bYY4+sLrEmjRgxwpO5DPIrj/zKI7/+k115qjU/P01YWX1de+Wx7qrWXqw1ciyfDMsnw8qQY/lk2HvWXpVTrTMvz4eeyag0+ZQmn57JqDT5lFakfKy7KiuPmVeR+jEvMiyfDMsjv/LJsDzyK19vM6zU2mtIRc6So8bGxpg6dWosW7Zsl8eXLVsWxx57bE5XBQBQTNZeAAADw7oLAGDgWHsBAAOh5t9JKyJi7ty5ce6558a0adNixowZcfvtt8cLL7wQF1xwQd6XBgBQONZeAAADw7oLAGDgWHsBAFkrxCatM888M1577bW48sorY9OmTXHYYYfFQw89FOPHj8/70mrOsGHDYt68eV3eopXekV955Fce+fWf7Mojv8GnWtdeerEy5Fg+GZZPhpUhx/LJkLxV07rL86FnMipNPqXJp2cyKk0+pcmH3hiotZd+LJ8MyyfD8sivfDIsj/zKl1eGdSmlNKAVAQAAAAAAAAAABpEheV8AAAAAAAAAAABAkdmkBQAAAAAAAAAAkCGbtAAAAAAAAAAAADJkkxYAAAAAAAAAAECGbNIqmAULFsSECROiqakppk6dGo8//viHHrt8+fKoq6vr8vGPf/yj85jVq1fHl770pTjggAOirq4ubr755i7nufzyy7ucY//998/i28tcpfNbuHBhzJo1K/bcc8/Yc88946STToqnnnqqrLrVLI/8itJ/lc7uvvvui2nTpsUee+wRw4cPjyOPPDLuueeesupWszzyK0rvRVQ+v/+3ePHiqKuri9NPP72sugwO/e2JFStWRENDQxx55JEfesxg6sU8cizSPTGi8hnedddd3d4733vvvYrUrUZ5ZFi0PozI5vn85ptvxoUXXhjNzc3R1NQUU6ZMiYceeqgidatRHhkWsRcpBjOPnplrlGZ2UZrZRM/MH0rLI59a6qFK5zMYX6dROZXux/fffz+uvPLKaGlpiaampjjiiCNi6dKlZdWtdnlkWEv3vN7oaz90dHTEpZdeGuPHj49hw4ZFS0tL3Hnnnbscs2TJkjjkkENi2LBhccghh8T9999fdt1qlUd+erB0hr3Zl9CfutUqj/z0YOkMB2zOkSiMxYsXp6FDh6aFCxemZ555Jn3zm99Mw4cPT//85z+7Pf7RRx9NEZHWrl2bNm3a1Pmxbdu2zmOeeuqpdMkll6R777037b///ummm27qcp558+alQw89dJdzvPLKK1l9m5nJIr+zzz473XrrramtrS2tWbMmnX/++WnkyJHppZde6nfdapVXfkXovyyye/TRR9N9992XnnnmmfTcc8+lm2++OdXX16elS5f2u261yiu/IvReStnkt9PGjRvTmDFj0qxZs9KcOXPKqkvx9bcn3nzzzTRx4sQ0e/bsdMQRR3R7zGDqxbxyLMo9MaVsMly0aFEaMWLELvls2rSpInWrUV4ZFqkPU8omx46OjjRt2rT0uc99Lj3xxBNp48aN6fHHH0/t7e1l161GeWVYtF6kGMw8emauUZrZRWlmEz0zfygtr3xqpYeyyGewvU6jcrLox29/+9tp9OjR6cEHH0zr169PCxYsSE1NTekvf/lLv+tWs7wyrJV7Xm/0px9OO+20NH369LRs2bL0/PPPpyeffDKtWLGi8+9XrlyZ6uvr0/z589OaNWvS/PnzU0NDQ1q1alVZdatRXvnpwdIZ9mZfgh4sLz89WDrDgZpz2KRVIJ/4xCfSBRdcsMtjkydPTq2trd0ev3NR88Ybb/Tq/OPHj//QJ/OH/WdeLck6v5RS2rZtW9p9993T3Xff3e+61Sqv/IrQfwORXUopHXXUUemyyy7rd91qlVd+Rei9lLLLb9u2bWnmzJnpJz/5STrvvPO6DAGL0n9UTn974swzz0yXXXbZhz4nB1sv5pVjUe6JKWWT4aJFi9LIkSMzqVuN8sqwSH2YUjY53nbbbWnixIlp69atFa9bjfLKsGi9SDGYefTMXKM0s4vSzCZ6Zv5QWl751EoPZZHPYHudRuVk0Y/Nzc3pxz/+8S6PzZkzJ51zzjn9rlvN8sqwVu55vdHXDH/3u9+lkSNHptdee+1Dz/nlL385ffazn93lsZNPPjmdddZZ/a5brfLKTw+WzvD/fdi+BD1YXn56sPcZppTdnMOvOyyIrVu3xtNPPx2zZ8/e5fHZs2fHypUrS37tUUcdFc3NzXHiiSfGo48+2q/669ati9GjR8eECRPirLPOig0bNvTrPHkZqPzefffdeP/992OvvfYqu241ySu/nWq5/wYiu5RSPPLII7F27do47rjjyq5bTfLKb6da7r2IbPO78sorY999942vfvWrFa1LMfW3JxYtWhTr16+PefPmfegxg6kX88pxp1q/J0Zkm+E777wT48ePj7Fjx8app54abW1tZdetRnlluFMR+jAiuxwfeOCBmDFjRlx44YUxatSoOOyww2L+/Pmxffv2supWo7wy3KkovUgxmHn0zFyjNLOL0swmemb+UFpe+exU7T2UZT6D5XUalZNVP3Z0dERTU9Muj+22227xxBNPlF232uSV4U7Vfs/rjf5k+MADD8S0adPiuuuuizFjxsTBBx8cl1xySfznP//pPOZPf/pTl3OefPLJnecsSh/mld9OevDDM8yibjXKK7+d9GDvM8xqztHQ6yOpaq+++mps3749Ro0atcvjo0aNis2bN3f7Nc3NzXH77bfH1KlTo6OjI+6555448cQTY/ny5V1e7Jcyffr0+OlPfxoHH3xw/Pvf/46rrroqjj322Fi9enXsvffeZX1fA2Wg8mttbY0xY8bESSed1O+61Siv/CJqv/+yzO6tt96KMWPGREdHR9TX18eCBQviM5/5TL/rVqO88ouo/d6LyC6/FStWxB133BHt7e0Vq0ux9acn1q1bF62trfH4449HQ0P3S9rB1ot55RhRjHtiRHYZTp48Oe666644/PDD4+23345bbrklZs6cGX/961/joIMOKlQv5pVhRHH6MCK7HDds2BB/+MMf4pxzzomHHnoo1q1bFxdeeGFs27Ytvvvd7+rFCmQYUaxepBjMPHpmrlGa2UVpZhM9M38oLa98Imqjh7LKZzC9TqNysurHk08+OW688cY47rjjoqWlJR555JH4zW9+0/nDIEXqx7wyjKiNe15v9CfDDRs2xBNPPBFNTU1x//33x6uvvhrf+MY34vXXX48777wzIiI2b95c8pxF6cO88ovQgz1lmEXdapRXfhF6sK8ZZjXnsEmrYOrq6nb5PKXU5bGdJk2aFJMmTer8fMaMGfHiiy/GDTfc0KdNWqecckrnnw8//PCYMWNGtLS0xN133x1z587t43eQryzzu+666+Lee++N5cuXd9nN35e61SyP/IrSf1lkt/vuu0d7e3u888478cgjj8TcuXNj4sSJcfzxx/erbjXLI7+i9F5EZfPbsmVLfOUrX4mFCxfGPvvsU7G6DA697Ynt27fH2WefHVdccUUcfPDB3Z5rMPdiHjkW6Z4YUdkMIyKOOeaYOOaYYzo/nzlzZhx99NHxox/9KH74wx/2uW4tyCPDovVhROVz3LFjR+y3335x++23R319fUydOjVefvnluP766zs3GPWlbi3II8Mi9iLFYObRM3ON0swuSjOb6Jn5Q2l55FNLPVTp59hgfJ1G5VS6H2+55Zb4+te/HpMnT466urpoaWmJ888/PxYtWtTvutUujwxr6Z7XG33JcMeOHVFXVxc///nPY+TIkRERceONN8YZZ5wRt956a+y22269PmdR+jCP/PRgzxlWum41yyM/Pdj7DLOcc9ikVRD77LNP1NfXd9mh98orr3TZyVfKMcccEz/72c/Kupbhw4fH4YcfHuvWrSvrPAMp6/xuuOGGmD9/fvz+97+Pj33sYxWvm7e88utOrfVfltkNGTIkDjzwwIiIOPLII2PNmjVx9dVXx/HHH6/3PqCv+XWn1novIpv81q9fHxs3bowvfOELnX+/Y8eOiIhoaGiItWvXxrhx4wrRf1ROX3txy5Yt8ec//zna2trioosuioj/9VlKKRoaGuLhhx+Ovfbaa9D1Yl45trS0dDl3Ld4TI7LJ8IQTTujydUOGDImPf/zjnfkU5d/liPwy7E6t9mFEdjk2NzfH0KFDo76+vvNrp0yZEps3b46tW7fqxQpk2NjY2OXctdyLFIOZR8/MNUozuyjNbKJn5g+l5ZVPrbyWG6j/+yjy6zQqJ6t+3HfffePXv/51vPfee/Haa6/F6NGjo7W1NSZMmFDRutUgrwy7U433vN7oT4bNzc0xZsyYzo0JEf97LZtSipdeeikOOuig2H///Uuesyh9mFd+3dGDu2aYRd1qlFd+3dGD3WeY9ZxjSK+PpKo1NjbG1KlTY9myZbs8vmzZsjj22GN7fZ62trZobm4u61o6OjpizZo1ZZ9nIGWZ3/XXXx/f+973YunSpTFt2rRM6uYtr/y6U2v9N5DP3ZRSdHR0VLRu3vLKrzu11nsR2eQ3efLk+Nvf/hbt7e2dH6eddlp8+tOfjvb29hg3blxh+o/K6WtPjBgxokufXXDBBTFp0qRob2+P6dOnD8pezCvH7tTiPTEimwy7k1KK9vb2znyK1It5ZdidWu3DiOxynDlzZjz33HOd/0EXEfHss89Gc3NzNDY26sUKZNidWu5FisHMo2fmGqWZXZRmNtEz84fS8sqnO9XYQwP1HCvy6zQqJ+t+bGpqijFjxsS2bdtiyZIlMWfOnIrWrQZ5Zdidarzn9UZ/Mpw5c2a8/PLL8c4773Q+9uyzz8aQIUNi7NixEfG/dyj74DkffvjhznMWpQ/zyq87enDXDLOoW43yyq87erBrhgMy50gUxuLFi9PQoUPTHXfckZ555pl08cUXp+HDh6eNGzemlFJqbW1N5557bufxN910U7r//vvTs88+m/7+97+n1tbWFBFpyZIlncd0dHSktra21NbWlpqbm9Mll1yS2tra0rp16zqP+da3vpWWL1+eNmzYkFatWpVOPfXUtPvuu3fWrRVZ5HfttdemxsbG9Ktf/Spt2rSp82PLli29rlsr8sqvCP2XRXbz589PDz/8cFq/fn1as2ZN+sEPfpAaGhrSwoULe123VuSVXxF6L6Vs8vug8847L82ZM6dPdRl8+tqLHzRv3rx0xBFHlKwxGHoxrxyLck9MKZsML7/88rR06dK0fv361NbWls4///zU0NCQnnzyyV7XrSV5ZVikPkwpmxxfeOGF9JGPfCRddNFFae3atem3v/1t2m+//dJVV13V67q1JK8Mi9aLFIOZR8/MNUozuyjNbKJn5g+l5ZVPrfRQFvkMttdpVE4W/bhq1aq0ZMmStH79+vTHP/4xnXDCCWnChAnpjTfe6HXdWpJXhrVyz+uNvma4ZcuWNHbs2HTGGWek1atXp8ceeywddNBB6Wtf+1rnMStWrEj19fXpmmuuSWvWrEnXXHNNamhoSKtWrep13VqRV356sHSGvdmXoAfLy08Pls5woOYcNmkVzK233prGjx+fGhsb09FHH50ee+yxzr8777zz0qc+9anOz6+99trU0tKSmpqa0p577pk++clPpgcffHCX8z3//PMpIrp8/P95zjzzzNTc3JyGDh2aRo8enb74xS+m1atXZ/2tZqLS+Y0fP77b/ObNm9frurUkj/yK0n+Vzu7SSy9NBx54YOcxM2bMSIsXL+5T3VqSR35F6b2UKp/fB3U3BOypLoNTX3rxg/q7uainurUojxyLdE9MqfIZXnzxxemjH/1oamxsTPvuu2+aPXt2WrlyZZ/q1po8MixaH6aUzfN55cqVafr06WnYsGFp4sSJ6fvf/37atm1br+vWmjwyLGIvUgxmHj0z1yjN7KI0s4memT+Ulkc+tdRDlc5nML5Oo3Iq3Y/Lly9PU6ZMScOGDUt77713Ovfcc9O//vWvPtWtNXlkWEv3vN7o6+vdNWvWpJNOOinttttuaezYsWnu3Lnp3Xff3eWYX/7yl2nSpElp6NChafLkyd1u/i1KH+aRnx4snWFv9iX0VLeW5JGfHiyd4UDNOepSSqn377sFAAAAAAAAAABAXwzJ+wIAAAAAAAAAAACKzCYtAAAAAAAAAACADNmkBQAAAAAAAAAAkCGbtAAAAAAAAAAAADJkkxYAAAAAAAAAAECGbNICAAAAAAAAAADIkE1aAAAAAAAAAAAAGbJJCwAAAAAAAAAAIEM2aQEAAAAAAAAAAGTIJi0AAAAAAAAAAIAM2aQFAAAAAAAAAACQIZu0AAAAAAAAAAAAMvRf/5aNCwxgA6kAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 3000x500 with 4 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAOcCAYAAAA7OVB3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1gU1/s28HtpS68iRQlFpCiIBSsaQVTUSOwaNQooGoMltmjQ2Auxd8UGaKJBrDFWVMQGKhpJVLCLxIgxYvvakDLvH77Mz3VhRcDMEu9Prrmu7MyZc56Z2V05+5w5IxMEQQARERERERERqR0NqQMgIiIiIiIioqKx005ERERERESkpthpJyIiIiIiIlJT7LQTERERERERqSl22omIiIiIiIjUFDvtRERERERERGqKnXYiIiIiIiIiNcVOOxEREREREZGaYqediIiIiIiISE2x005E9A7BwcFwcHCQpO2MjAzIZDLExMSI65KSkjB58mQ8evToX4lBJpNh8uTJ/0pb70vKawOo97l5X8+fP8fkyZORmJhY6jru3LmDyZMnIzU1VWnb5MmTIZPJSh/gRyAxMREymaxU1yAtLQ2TJ09GRkaG0japPycl8eDBA3zxxReoXLkyZDIZOnbsKHVIBODJkyf44Ycf0LBhQ5iamkJbWxtWVlZo06YNNm7ciJycHKlDJPoosNNORPQOEyZMwPbt26UOQ5SUlIQpU6b8a5325ORkhIaG/ittvS91uzYV2fPnzzFlypQyd9qnTJlSZKc9NDQUycnJpQ+QVEpLS8OUKVOK7LRXhM/JtGnTsH37dixYsADJycmYPXu21CF99K5evYo6depgxowZaNq0KdavX4+EhAQsWbIEVapUQb9+/TB9+nSpwyT6KGhJHQARkbqrVq2a1CFIqlGjRlKHUKyP/dpUJFWrVkXVqlWlDuODeP78OfT19ZXW5+fnIy8vD3K5XIKo/k9F+JxcuHAB1apVQ+/evUu1/4sXL6Cnp1fOUX288vLy0LFjRzx48ACnT5+Gu7u7wvbu3btj4sSJOHfuXLm0JwgCXr58yWtIVAxm2onoo/bPP/9g4MCBsLOzg1wuh6WlJXx8fHDw4EGxTFFDS2UyGYYMGYLo6Gi4urpCT08P3t7eOHnyJARBwJw5c+Do6AhDQ0O0aNEC165dU9jfwcEBwcHBSvH4+vrC19e32HgnT56Mb7/9FgDg6OgImUymMJx206ZNaN26NWxsbKCnpwd3d3d89913ePbsmUI9wcHBMDQ0xLVr19CuXTsYGhrCzs4Oo0aNUhruWNQQ8AsXLqBDhw4wMzODrq4uateujXXr1imUiYmJgUwmU8r8FTUE+Ny5c2jfvj0qV64MuVwOW1tbfPbZZ7h9+3ax56LwOMr72vj6+sLDwwPHjh1Do0aNoKenhypVqmDChAnIz89XGQ8A3L17F1999RWqVq0KHR0dODo6YsqUKcjLyxPLFN72MGfOHMyaNQsODg7Q09ODr68vrly5gtzcXHz33XewtbWFiYkJOnXqhHv37im1tWnTJjRu3BgGBgYwNDREQECA0h/RJbnWGRkZsLS0BABMmTJFfF8VvkevXbuGkJAQVK9eHfr6+qhSpQoCAwNx/vx5sZ3ExETUr18fABASEiLWUfjeKWp4fEFBAWbPng03NzfI5XJUrlwZffv2VbruhdckJSUFzZo1g76+PpycnPDDDz+goKDgndekoKAAS5YsQe3ataGnpwdTU1M0atQIO3fuLHUsR48eRZMmTaCvr49+/fqJ13T27NmYPn06HB0dIZfLcfjwYQDAmTNn8Pnnn8Pc3By6urqoU6cO4uLi3hn7mTNn8MUXX4jvEQcHB/Ts2RO3bt0Sy8TExKBbt24AAD8/P/HcF95WU9Tn5OXLlwgPD4ejoyN0dHRQpUoVDB48WGkEj4ODA9q3b499+/ahbt260NPTg5ubG6Kiot4ZO/B62HtYWBiqVKkCHR0dODk5Yfz48QrvPZlMhoMHDyI9PV3pO60ohTFt27YNderUga6uLqZMmQKgZJ8/AFixYgW8vLxgaGgIIyMjuLm5Ydy4cQrnVCaT4cCBAwgJCYG5uTkMDAwQGBiIGzduKMUUFRUFLy8v6OrqwtzcHJ06dUJ6erpCmff53n1XfOV5rEXZvn070tLSMH78eKUOeyF7e3ul2xiePHmC0aNHK7yvhg8frvRvUOH3dGRkJNzd3SGXy7Fu3TrxvCckJGDAgAGwsLCAsbEx+vbti2fPnuHu3bvo3r07TE1NYWNjg9GjRyM3N1eh7ilTpqBhw4YwNzeHsbEx6tati7Vr10IQBIVyJXlvZ2RkQEtLCxEREUrHf/ToUchkMmzevFnluSQqFwIR0UcsICBAsLS0FFatWiUkJiYKO3bsECZOnCjExsaKZYKCggR7e3uF/QAI9vb2QpMmTYRt27YJ27dvF1xcXARzc3NhxIgRQocOHYRdu3YJGzZsEKysrIRatWoJBQUF4v729vZCUFCQUjzNmzcXmjdvLr6+efOmAECIjo4WBEEQ/vzzT2Ho0KECAGHbtm1CcnKykJycLDx+/FgQBEGYNm2asGDBAmH37t1CYmKiEBkZKTg6Ogp+fn4K7QQFBQk6OjqCu7u7MHfuXOHgwYPCxIkTBZlMJkyZMkXpWCdNmiS+vnTpkmBkZCRUq1ZNWL9+vbB7926hZ8+eAgBh1qxZYrno6GgBgHDz5k2F+g4fPiwAEA4fPiwIgiA8ffpUsLCwELy9vYW4uDjhyJEjwqZNm4RBgwYJaWlpRV02heMo72vTvHlzwcLCQrC1tRUWL14s7N+/Xxg2bJgAQBg8eLDKc5OVlSXY2dkJ9vb2wsqVK4WDBw8K06ZNE+RyuRAcHCyWK7yu9vb2QmBgoLBr1y7hp59+EqysrAQXFxehT58+Qr9+/YS9e/cKkZGRgqGhoRAYGKjQ9owZMwSZTCb069dP2LVrl7Bt2zahcePGgoGBgXDx4kWFc/Sua/3y5Uth3759AgChf//+4vvq2rVrgiAIwpEjR4RRo0YJW7ZsEY4cOSJs375d6Nixo6CnpydcunRJEARBePz4sXjNv//+e7GOP//8UxAEQZg0aZLw9p8dAwcOFAAIQ4YMEfbt2ydERkYKlpaWgp2dnfDPP/8oXZPq1asLkZGRwoEDB4SwsDABgLBu3TqV7xFBEIQ+ffoIMplMCA0NFX755Rdh7969wowZM4RFixaVKhZzc3PBzs5OWLJkiXD48GHhyJEj4jWtUqWK4OfnJ2zZskWIj48Xbt68KSQkJAg6OjpCs2bNhE2bNgn79u0TgoODFT7bgqD82RAEQdi8ebMwceJEYfv27cKRI0eE2NhYoXnz5oKlpaUY171794SZM2cKAIRly5aJ5/7evXvie+DNz0lBQYEQEBAgaGlpCRMmTBDi4+OFuXPnCgYGBkKdOnWEly9fimXt7e2FqlWrCjVq1BDWr18v7N+/X+jWrZsAQDhy5IjK8/7ixQuhVq1agoGBgTB37lwhPj5emDBhgqClpSW0a9dOEITX773k5GShTp06gpOTk9J3WlHs7e0FGxsbwcnJSYiKihIOHz4snD59usSfv59//lkAIAwdOlSIj48XDh48KERGRgrDhg0TyxS+l+3s7MTP4qpVq4TKlSsLdnZ2wsOHD8Wyhee+Z8+ewu7du4X169cLTk5OgomJiXDlyhWxXEm/d0sSX3kea1EGDBggABAuX76sstybnj17JtSuXVuoVKmSMH/+fOHgwYPCokWLBBMTE6FFixYK37OFn5VatWoJGzduFBISEoQLFy6I593R0VEYNWqUEB8fL8yaNUvQ1NQUevbsKdStW1eYPn26cODAAWHs2LECAGHevHkKcQQHBwtr164VDhw4IBw4cECYNm2aoKenp/RvW0nf2506dRI++eQTIS8vT2H/bt26Cba2tkJubm6JzxFRabHTTkQfNUNDQ2H48OEqyxTXMbS2thaePn0qrtuxY4cAQKhdu7bCHycLFy4UAAh//PGHuK60nXZBEIQ5c+YU2Rl+W0FBgZCbmyscOXJEACD8/vvvCscEQIiLi1PYp127doKrq6vSsb7ZMf3iiy8EuVwuZGZmKpRr27atoK+vLzx69EgQhJJ32s+cOSMAEHbs2KHyeIryIa5N8+bNBQDCL7/8olDvgAEDBA0NDeHWrVsKbb15br766ivB0NBQoYwgCMLcuXMFAGJnuvC6enl5Cfn5+UrxfP755wr7Dx8+XAAgdmQyMzMFLS0tYejQoQrl/ve//wnW1tZC9+7dFc5RSa71P//8o3Q8xcnLyxNevXolVK9eXRgxYoS4PiUlRen9WujtTnt6eroAQAgLC1Mod+rUKQGAMG7cOHFd4TU5deqUQtkaNWoIAQEBKmM9evSoAEAYP358sWVKE8uhQ4cUyhZe02rVqgmvXr1S2Obm5ibUqVNH6Y/79u3bCzY2NuJ7oKhO+9vy8vKEp0+fCgYGBgo/OmzevLnYfd/+nBT+QDN79myFcps2bRIACKtWrRLX2dvbC7q6ugrv6RcvXgjm5ubCV199VWycgiAIkZGRRb73Zs2aJQAQ4uPjxXXNmzcXatasqbK+N2PS1NRU6lCW9PM3ZMgQwdTUVGUbhd9fnTp1Ulh/4sQJAYAwffp0QRAE4eHDh4Kenp74I0ShzMxMQS6XC7169RLXlfSzWJL4yvNYi9KmTRsBgMIPOILwf/+uFC5vdmQjIiIEDQ0NISUlRWGfLVu2CACEPXv2iOsACCYmJsKDBw8Uyhae97e/2zp27CgAEObPn6+wvnbt2kLdunWLPY78/HwhNzdXmDp1qmBhYaH043lJ3tuFn8vt27eL6/766y9BS0tL6YcAog+Fw+OJ6KPWoEEDxMTEYPr06Th58qTSMDtV/Pz8YGBgIL4uHELYtm1bhWHAhevfHM76ody4cQO9evWCtbU1NDU1oa2tjebNmwOA0lBNmUyGwMBAhXW1atV6Z5wJCQnw9/eHnZ2dwvrg4GA8f/78vScbc3Z2hpmZGcaOHYvIyEikpaW91/5FKeu1MTIywueff66wrlevXigoKMDRo0eLbXfXrl3w8/ODra0t8vLyxKVt27YAgCNHjiiUb9euHTQ0/u+f4sJ4PvvsM4VyheszMzMBAPv370deXh769u2r0I6uri6aN2+uNLS4tNe6UF5eHmbOnIkaNWpAR0cHWlpa0NHRwdWrV5XeVyVVOGz87dtEGjRoAHd3dxw6dEhhvbW1NRo0aPDex7B3714AwODBg8stFjMzM7Ro0aLIuj7//HNoa2uLr69du4ZLly6J92q/eb3atWuHrKwsXL58udjYnj59irFjx8LZ2RlaWlrQ0tKCoaEhnj17Vupzn5CQAED5eLt16wYDAwOl461duzY++eQT8bWuri5cXFxK9F1hYGCArl27KqwvbPftdt5HrVq14OLiorCupJ+/Bg0a4NGjR+jZsyd++eUX3L9/v9h23r7HvkmTJrC3txffM8nJyXjx4oXSubSzs0OLFi2UjrEkn8WSxPchjrUkFi1aBG1tbXHx8vJSiMnDwwO1a9dWiCkgIKDIWx5atGgBMzOzIttp3769wmtV341vvw8TEhLQsmVLmJiYiP8OTpw4EdnZ2Uq3GZXkve3r6wsvLy8sW7ZMXBcZGQmZTIaBAwcWd6qIyhU77UT0Udu0aROCgoKwZs0aNG7cGObm5ujbty/u3r37zn3Nzc0VXuvo6Khc//Lly3KKumhPnz5Fs2bNcOrUKUyfPh2JiYlISUnBtm3bALyeqOlN+vr60NXVVVgnl8vfGWd2djZsbGyU1tva2orb34eJiQmOHDmC2rVrY9y4cahZsyZsbW0xadKk9/oR5U1lvTZWVlZKdVpbWwNQfXx///03fv31V4U/arW1tVGzZk0AUPqDubRx/v333wCA+vXrK7W1adMmpXZKe60LjRw5EhMmTEDHjh3x66+/4tSpU0hJSYGXl5fS+6qkCs9jce+lt8+zhYWFUjm5XP7O9v/55x9oamqK1688YimqXHHbCq/V6NGjla5VWFgYAOX3xZt69eqFpUuXIjQ0FPv378fp06eRkpICS0vLMp17LS0tcR6DQjKZDNbW1uV27rOzs2Ftba00l0HlypWhpaX13t8VbyrqGpT089enTx9ERUXh1q1b6NKlCypXroyGDRviwIEDSnUW9b558xy973unJJ/FksT3IY71TYUd2bc7xL169UJKSgpSUlJQt25dhW1///03/vjjD6WYjIyMIAiC0vtc1efofb4b3zx3p0+fRuvWrQEAq1evxokTJ5CSkoLx48cDUP53sKTv7WHDhuHQoUO4fPkycnNzsXr1anTt2lXl9wpReeLs8UT0UatUqRIWLlyIhQsXIjMzEzt37sR3332He/fuYd++fR+sXV1d3SKfb3v//n1UqlSpVHUmJCTgzp07SExMFLPrAMr90XAWFhbIyspSWn/nzh0AEOMv/MP07eMsqoPi6emJ2NhYCIKAP/74AzExMZg6dSr09PTw3XfflWv8JVHY0XpT4Q85Rf2RV6hSpUqoVasWZsyYUeT2wh82yqrwHG/ZsgX29vblUqcqP/30E/r27YuZM2cqrL9//z5MTU1LVWfheczKylKaVf7OnTul/hy8zdLSEvn5+bh7926xnYT3jUXV8+bf3la4b3h4ODp37lzkPq6urkWuf/z4MXbt2oVJkyYpfA5ycnLw4MGDYmN4FwsLC+Tl5eGff/5R6LgLgoC7d++KEwqWlYWFBU6dOgVBEBTOy71795CXl1ema1zUNXifz19ISAhCQkLw7NkzHD16FJMmTUL79u1x5coVhc9UUT/g3r17F87OzuIxAij2O7G0x/iu+D7Esb6pVatWWLVqFXbu3InRo0eL6ytXrozKlSsDeD0i6c3v90qVKkFPT6/YSQrf53NUWrGxsdDW1sauXbsUfhzZsWNHmert1asXxo4di2XLlqFRo0a4e/euytE7ROWNmXYiov/vk08+wZAhQ9CqVSv89ttvH7QtBwcH/PHHHwrrrly5onKYbKHCx0e9nQko/APo7cdLrVy5siyhKvH39xd/IHjT+vXroa+vLz4irnC26reP880Zu98mk8ng5eWFBQsWwNTU9INfh+L873//U4pz48aN0NDQwKefflrsfu3btxcfXeXt7a20lFenPSAgAFpaWrh+/XqR7Xh7e793ncW9r4DX1+Xt99Xu3bvx119/lbiOtxUOL//pp58U1qekpCA9PR3+/v4lD16FwuHCK1askCQWV1dXVK9eHb///nux18rIyKjIfWUyGQRBUDr3a9asUXqSwfuc+8Ljeft4t27dimfPnpXbuff398fTp0+VOkzr169XiKO8lObzZ2BggLZt22L8+PF49eoVLl68qLB9w4YNCq+TkpJw69Yt8SkfjRs3hp6entK5vH37tngrUVkUF9+HONY3derUCTVq1MDMmTNx6dKlEsXavn17XL9+HRYWFkXG9PYTDD4EmUwGLS0taGpqiutevHiBH3/8sUz16urqYuDAgVi3bh3mz5+P2rVrw8fHp6zhEpUYM+1E9NF6/Pgx/Pz80KtXL7i5ucHIyAgpKSnYt29fsRmx8tKnTx98+eWXCAsLQ5cuXXDr1i3Mnj1babhqUTw9PQG8vrcwKCgI2tracHV1RZMmTWBmZoZBgwZh0qRJ0NbWxoYNG/D777+Xa+yTJk0S76ecOHEizM3NsWHDBuzevRuzZ8+GiYkJgNdDt11dXTF69Gjk5eXBzMwM27dvx/HjxxXq27VrF5YvX46OHTvCyckJgiBg27ZtePToEVq1alWusZeUhYUFvv76a2RmZsLFxQV79uzB6tWr8fXXXyvc//i2qVOn4sCBA2jSpAmGDRsGV1dXvHz5EhkZGdizZw8iIyPL5VnlDg4OmDp1KsaPH48bN26gTZs2MDMzw99//43Tp0/DwMBAfARWSRkZGcHe3h6//PIL/P39YW5ujkqVKomPRYqJiYGbmxtq1aqFs2fPYs6cOUrHUq1aNejp6WHDhg1wd3eHoaEhbG1ti+xAuLq6YuDAgViyZAk0NDTQtm1bZGRkYMKECbCzs8OIESPKdI4KNWvWDH369MH06dPx999/o3379pDL5Th37hz09fUxdOjQDx7LypUr0bZtWwQEBCA4OBhVqlTBgwcPkJ6ejt9++63YR0YZGxvj008/xZw5c8RrceTIEaxdu1ZphIOHhwcAYNWqVTAyMoKuri4cHR2LHBnSqlUrBAQEYOzYsXjy5Al8fHzwxx9/YNKkSahTpw769OlTpuMt1LdvXyxbtgxBQUHIyMiAp6cnjh8/jpkzZ6Jdu3Zo2bJlubRTqKSfvwEDBkBPTw8+Pj6wsbHB3bt3ERERARMTE6VRBmfOnEFoaCi6deuGP//8E+PHj0eVKlXEWxtMTU0xYcIEjBs3Dn379kXPnj2RnZ2NKVOmQFdXF5MmTXrv4yhJfB/iWN+kqamJHTt2ICAgAA0aNMCAAQPg6+sLMzMzPHr0CKdOncLvv/+u8Di44cOHY+vWrfj0008xYsQI1KpVCwUFBcjMzER8fDxGjRqFhg0bvvf5eB+fffYZ5s+fj169emHgwIHIzs7G3LlzlX74Ko2wsDDMnj0bZ8+exZo1a8ohWqL3IOUseEREUnr58qUwaNAgoVatWoKxsbGgp6cnuLq6CpMmTRKePXsmlituhvK3H/9VOHv0nDlzFNYXzjy7efNmcV1BQYEwe/ZswcnJSdDV1RW8vb2FhISEEs0eLwiCEB4eLtja2goaGhoKM0YnJSUJjRs3FvT19QVLS0shNDRU+O2335TqCAoKEgwMDJTOSVGP5UIRM4qfP39eCAwMFExMTAQdHR3By8uryBnDr1y5IrRu3VowNjYWLC0thaFDhwq7d+9WiPnSpUtCz549hWrVqgl6enqCiYmJ0KBBAyEmJkapvrd9iGtTOIt1YmKi4O3tLcjlcsHGxkYYN26c0uzfRZ2bf/75Rxg2bJjg6OgoaGtrC+bm5kK9evWE8ePHizPav088gvB/Myq/PSvzjh07BD8/P8HY2FiQy+WCvb290LVrV+HgwYMK56ik1/rgwYNCnTp1BLlcLgAQn3Dw8OFDoX///kLlypUFfX19oWnTpsKxY8eU3q+C8PoRU25uboK2trbC+Smqvfz8fGHWrFmCi4uLoK2tLVSqVEn48ssvxcfEFSpuZvGirn9R8vPzhQULFggeHh6Cjo6OYGJiIjRu3Fj49ddfyy2W4q5pod9//13o3r27ULlyZUFbW1uwtrYWWrRoIURGRoplipo9/vbt20KXLl0EMzMzwcjISGjTpo1w4cKFIp9AsXDhQsHR0VHQ1NRU+MwXdZ5evHghjB07VrC3txe0tbUFGxsb4euvv1Z4lJkgvJ5h+7PPPlM6nqKufVGys7OFQYMGCTY2NoKWlpZgb28vhIeHK81K/r6zxxcVkyCU7PO3bt06wc/PT7CyshJ0dHQEW1tboXv37gpPkSj8zMXHxwt9+vQRTE1NxVnir169qtTumjVrhFq1aonvrw4dOig8elEQSv5ZLEl85Xmsqjx+/FiYOXOmUL9+fcHY2FjQ0tISKleuLLRq1UpYtmyZwr+VgvD6EZ7ff/+94OrqKp4LT09PYcSIEcLdu3fFckV9TwtC8d91hefozccvFndOo6KiBFdXV0EulwtOTk5CRESEsHbtWqWnmZTmve3r6yuYm5sLz58/L3I70YciEwRB+Fd+HSAiIqoAfH19cf/+fVy4cEHqUIhIIjExMQgJCUFKSkqpbjeh/5579+7B3t4eQ4cOxezZs6UOhz4yHB5PRERERERUhNu3b+PGjRuYM2cONDQ08M0330gdEn2EOBEdERERERFREdasWQNfX19cvHgRGzZsQJUqVaQOiT5CHB5PREREREREpKaYaSciIiIiIiJ6h6NHjyIwMBC2traQyWRKj7QsypEjR1CvXj3o6urCyckJkZGR790uO+1ERERERERE7/Ds2TN4eXlh6dKlJSp/8+ZNtGvXDs2aNcO5c+cwbtw4DBs2DFu3bn2vdjk8noiIiIiIiOg9yGQybN++HR07diy2zNixY7Fz506kp6eL6wYNGoTff/8dycnJJW6LmXYiIiIiIiL66OTk5ODJkycKS05OTrnVn5ycjNatWyusCwgIwJkzZ5Cbm1vievjINyIqd0Edf5Q6hFJre3C91CGUyd6WfaUO4aPkuzNG6hCoguqz3lbqEErtx753pA6h1KpmBkkdQpk0mF5x/53dtqpA6hA+WiEFh6QOoVhS/e3oWPs6pkyZorBu0qRJmDx5crnUf/fuXVhZWSmss7KyQl5eHu7fvw8bG5sS1cNOOxEREREREX10wsPDMXLkSIV1crm8XNuQyWQKrwvvTn97vSrstBMREREREdFHRy6Xl3sn/U3W1ta4e/euwrp79+5BS0sLFhYWJa6HnXYiIiIiIiKSTIFGybPOFUnjxo3x66+/KqyLj4+Ht7c3tLW1S1wPJ6IjIiIiIiIieoenT58iNTUVqampAF4/0i01NRWZmZkAXg+379v3/+YXGjRoEG7duoWRI0ciPT0dUVFRWLt2LUaPHv1e7TLTTkRERERERJIRKkim/cyZM/Dz8xNfF94PHxQUhJiYGGRlZYkdeABwdHTEnj17MGLECCxbtgy2trZYvHgxunTp8l7tstNORERERERE9A6+vr7iRHJFiYmJUVrXvHlz/Pbbb2Vql512IiIiIiIikkyBZsXItEuF97QTERERERERqSl22omIiIiIiIjUFIfHExERERERkWT+q498Ky/MtBMRERERERGpKWbaiYiIiIiISDLMtKvGTDsRERERERGRmmKnnYiIiIiIiEhNcXg8ERERERERSUbg8HiVmGknIiIiIiIiUlPstNNHTSaTYceOHVKHQURERET00SrQlEmyVBTstNN/2t27dzF06FA4OTlBLpfDzs4OgYGBOHToULm3FRMTA5lMBplMBk1NTZiZmaFhw4aYOnUqHj9+XO7tERERERHRfx/vaaf/rIyMDPj4+MDU1BSzZ89GrVq1kJubi/3792Pw4MG4dOlSubdpbGyMy5cvQxAEPHr0CElJSYiIiEB0dDROnDgBW1vbcm+zvLx69Qo6OjpSh0FEREREHxk+8k01ZtrpPyssLAwymQynT59G165d4eLigpo1a2LkyJE4efJkkfucP38eLVq0gJ6eHiwsLDBw4EA8ffpU3J6YmIgGDRrAwMAApqam8PHxwa1bt8TtMpkM1tbWsLGxgbu7O/r374+kpCQ8ffoUY8aMEcvt27cPTZs2hampKSwsLNC+fXtcv35d3N6iRQsMGTJEIbbs7GzI5XIkJCQAAHJycjBmzBjY2dlBLpejevXqWLt2LQAgPz8f/fv3h6OjI/T09ODq6opFixYp1BccHIyOHTsiIiICtra2cHFxAQD89ddf6NGjB8zMzGBhYYEOHTogIyOjFFeAiIiIiIjKip12+k968OAB9u3bh8GDB8PAwEBpu6mpqdK658+fo02bNjAzM0NKSgo2b96MgwcPip3nvLw8dOzYEc2bN8cff/yB5ORkDBw4EDKZ6l8GK1eujN69e2Pnzp3Iz88HADx79gwjR45ESkoKDh06BA0NDXTq1AkFBQUAgNDQUGzcuBE5OTliPRs2bICtrS38/PwAAH379kVsbCwWL16M9PR0REZGwtDQEABQUFCAqlWrIi4uDmlpaZg4cSLGjRuHuLg4hdgOHTqE9PR0HDhwALt27cLz58/h5+cHQ0NDHD16FMePH4ehoSHatGmDV69elfDsExERERFReeHwePpPunbtGgRBgJubW4n32bBhA168eIH169eLHf2lS5ciMDAQs2bNgra2Nh4/foz27dujWrVqAAB3d/cS1e3m5ob//e9/yM7ORuXKldGlSxeF7WvXrkXlypWRlpYGDw8PdOnSBUOHDsUvv/yC7t27AwCio6MRHBwMmUyGK1euIC4uDgcOHEDLli0BAE5OTmJ92tramDJlivja0dERSUlJiIuLE+sDAAMDA6xZs0YcFh8VFQUNDQ2sWbNG/DEiOjoapqamSExMROvWrUt8PomIiIiISqJAg7lkVXh26D9JEAQAeGcW/E3p6enw8vJSyMz7+PigoKAAly9fhrm5OYKDgxEQEIDAwEAsWrQIWVlZpYrn+vXr6NWrF5ycnGBsbAxHR0cAQGZmJgBALpfjyy+/RFRUFAAgNTUVv//+O4KDg8XXmpqaaN68ebFtRkZGwtvbG5aWljA0NMTq1avF+gt5enoq3Md+9uxZXLt2DUZGRjA0NIShoSHMzc3x8uVLheH7b8rJycGTJ08Ulvz83BKdFyIiIiIiUo2ddvpPql69OmQyGdLT00u8jyAIxXby38w6Jycno0mTJti0aRNcXFyKvT/+Tenp6TA2NoaFhQUAIDAwENnZ2Vi9ejVOnTqFU6dOAYDCEPTQ0FAcOHAAt2/fRlRUFPz9/WFvbw8A0NPTU9leXFwcRowYgX79+iE+Ph6pqakICQlRGuL+9q0DBQUFqFevHlJTUxWWK1euoFevXkW2FRERARMTE4Xl/NVf33lOiIiIiIgAQNCQSbJUFOy003+Subk5AgICsGzZMjx79kxp+6NHj5TW1ahRA6mpqQrlT5w4AQ0NDXGSNgCoU6cOwsPDkZSUBA8PD2zcuFFlLPfu3cPGjRvRsWNHaGhoIDs7G+np6fj+++/h7+8Pd3d3PHz4UGk/T09PeHt7Y/Xq1di4cSP69eunsK2goABHjhwpss1jx46hSZMmCAsLQ506deDs7FxspvxNdevWxdWrV1G5cmU4OzsrLCYmJkXuEx4ejsePHyssntUD39kWERERERG9Gzvt9J+1fPly5Ofno0GDBti6dSuuXr2K9PR0LF68GI0bN1Yq37t3b+jq6iIoKAgXLlzA4cOHMXToUPTp0wdWVla4efMmwsPDkZycjFu3biE+Ph5XrlxRuK9dEATcvXsXWVlZSE9PR1RUFJo0aQITExP88MMPACDOyr5q1Spcu3YNCQkJGDlyZJHHEBoaih9++AH5+fno1KmTuN7BwQFBQUHo168fduzYgZs3byIxMVGcaM7Z2RlnzpzB/v37ceXKFUyYMAEpKSnvPGe9e/dGpUqV0KFDBxw7dgw3b97EkSNH8M033+D27dtF7iOXy2FsbKywaGpqv7MtIiIiIiJ6N3ba6T/L0dERv/32G/z8/DBq1Ch4eHigVatWOHToEFasWKFUXl9fH/v378eDBw9Qv359dO3aFf7+/li6dKm4/dKlS+jSpQtcXFwwcOBADBkyBF999ZVYx5MnT2BjY4MqVaqgcePGWLlyJYKCgnDu3DnY2NgAADQ0NBAbG4uzZ8/Cw8MDI0aMwJw5c4o8hp49e0JLSwu9evWCrq6uwrYVK1aga9euCAsLg5ubGwYMGCCOEhg0aBA6d+6MHj16oGHDhsjOzkZYWNg7z5m+vj6OHj2KTz75BJ07d4a7uzv69euHFy9ewNjYuGQnnoiIiIjoPRRoyiRZKgqZUDhDFhGpnT///BMODg5ISUlB3bp1pQ6nxII6/ih1CKXW9uB6qUMok70t+0odwkfJd2eM1CFQBdVnva3UIZTaj33vSB1CqVXNDJI6hDJpML3i/ju7bVWB1CF8tEIKDkkdQrHaf71dknZ3rej07kJqgI98I1JDubm5yMrKwnfffYdGjRpVqA47EREREdH7KKhAk8JJgcPjidTQiRMnYG9vj7NnzyIyMlLqcIiIiIiISCLMtBOpIV9fX/DOFSIiIiL6GFSkx69JgZl2IiIiIiIiIjXFTjsRERERERGRmuLweCIiIiIiIpIMJ6JTjZl2IiIiIiIiIjXFTDsRERERERFJpkCTmXZVmGknIiIiIiIiUlPstBMRERERERGpKQ6PJyIiIiIiIslwIjrVmGknIiIiIiIiUlPMtBMREREREZFkBGbaVWKmnYiIiIiIiEhNMdNOREREREREkuE97aox005ERERERESkpthpJyIiIiIiIlJTHB5PREREREREkuHweNWYaSciIiIiIiJSU8y0E1G5a7FrndQhlNre9kFSh1Am+VoV97fY285mUodQasERflKHUDa6OlJHUGrf3asqdQhlkrtrg9QhfJQ8zXOkDqFMjNp8InUIpdZ0ViOpQyg1rS9/kTqE/6wCTWbaVam4f90RERERERER/cex005ERERERESkpjg8noiIiIiIiCQjcCI6lZhpJyIiIiIiIlJTzLQTERERERGRZPjIN9WYaSciIiIiIiJSU8y0ExERERERkWSYaVeNmXYiIiIiIiIiNcVOOxEREREREZGa4vB4IiIiIiIikoygyeHxqjDTTkRERERERKSmmGknIiIiIiIiyXAiOtWYaSciIiIiIiJSU+y0ExEREREREakpDo8nIiIiIiIi6XB4vErMtFO5kslk2LFjh9RhkAoODg5YuHBhicvHxMTA1NT0g8VDRERERETFY6ed3svdu3cxdOhQODk5QS6Xw87ODoGBgTh06FC5txUTEwOZTAaZTAZNTU2YmZmhYcOGmDp1Kh4/flzu7Ull8uTJCsdpZ2eH0NBQ/PPPP2Wqt7jOdkpKCgYOHFimuomIiIiIyouGhiDJUlFweDyVWEZGBnx8fGBqaorZs2ejVq1ayM3Nxf79+zF48GBcunSp3Ns0NjbG5cuXIQgCHj16hKSkJERERCA6OhonTpyAra1tubdZXl69egUdHZ0Sla1ZsyYOHjyI/Px8nDt3Dv3798dff/2FvXv3lqrt3NzcYrdZWlqWqk4iIiIiIvr3MdNOJRYWFgaZTIbTp0+ja9eucHFxQc2aNTFy5EicPHmyyH3Onz+PFi1aQE9PDxYWFhg4cCCePn0qbk9MTESDBg1gYGAAU1NT+Pj44NatW+J2mUwGa2tr2NjYwN3dHf3790dSUhKePn2KMWPGiOX27duHpk2bwtTUFBYWFmjfvj2uX78ubm/RogWGDBmiEFt2djbkcjkSEhIAADk5ORgzZgzs7Owgl8tRvXp1rF27FgCQn5+P/v37w9HREXp6enB1dcWiRYsU6gsODkbHjh0REREBW1tbuLi4AAD++usv9OjRA2ZmZrCwsECHDh2QkZGhsK+Wlhasra1RpUoVtG/fHsOGDUN8fDxevHjxzmPLyMiATCZDXFwcfH19oauri59++gkhISF4/PixmMWfPHkyAOXh8fPnz4enpycMDAxgZ2eHsLAwhWtERERERETSYaedSuTBgwfYt28fBg8eDAMDA6XtRQ3Dfv78Odq0aQMzMzOkpKRg8+bNOHjwoNh5zsvLQ8eOHdG8eXP88ccfSE5OxsCBAyGTqZ6IonLlyujduzd27tyJ/Px8AMCzZ88wcuRIpKSk4NChQ9DQ0ECnTp1QUFAAAAgNDcXGjRuRk5Mj1rNhwwbY2trCz88PANC3b1/ExsZi8eLFSE9PR2RkJAwNDQEABQUFqFq1KuLi4pCWloaJEydi3LhxiIuLU4jt0KFDSE9Px4EDB7Br1y48f/4cfn5+MDQ0xNGjR3H8+HEYGhqiTZs2ePXqVbHHqKenh4KCAuTl5b3z2AqNHTsWw4YNQ3p6Ovz9/bFw4UIYGxsjKysLWVlZGD16dJFtaWhoYPHixbhw4QLWrVuHhIQEhR9EiIiIiIg+JA1NQZKlouDweCqRa9euQRAEuLm5lXifDRs24MWLF1i/fr3Y0V+6dCkCAwMxa9YsaGtr4/Hjx2jfvj2qVasGAHB3dy9R3W5ubvjf//6H7OxsVK5cGV26dFHYvnbtWlSuXBlpaWnw8PBAly5dMHToUPzyyy/o3r07ACA6OhrBwcGQyWS4cuUK4uLicODAAbRs2RIA4OTkJNanra2NKVOmiK8dHR2RlJSEuLg4sT4AMDAwwJo1a8Rh8VFRUdDQ0MCaNWvEHyOio6NhamqKxMREtG7dWunYLl26hBUrVqBBgwYwMjJ657EVGj58ODp37iy+NjExEUcqqDJ8+HCF45o2bRq+/vprLF++XOV+RERERET04THTTiUiCK9/iXpXFvxN6enp8PLyUsjM+/j4oKCgAJcvX4a5uTmCg4MREBCAwMBALFq0CFlZWaWK5/r16+jVqxecnJxgbGwMR0dHAEBmZiYAQC6X48svv0RUVBQAIDU1Fb///juCg4PF15qammjevHmxbUZGRsLb2xuWlpYwNDTE6tWrxfoLeXp6KtzHfvbsWVy7dg1GRkYwNDSEoaEhzM3N8fLlS4Uh7ufPn4ehoSH09PRQo0YN2NnZYcOGDSU6tkLe3t4lOndvO3z4MFq1aoUqVarAyMgIffv2RXZ2Np49e1ai/XNycvDkyROFJVcoePeORERERETgRHTvwk47lUj16tUhk8mQnp5e4n0EQSi2k/9m1jk5ORlNmjTBpk2b4OLiUuz98W9KT0+HsbExLCwsAACBgYHIzs7G6tWrcerUKZw6dQoAFIagh4aG4sCBA7h9+zaioqLg7+8Pe3t7AK+Ho6sSFxeHESNGoF+/foiPj0dqaipCQkKUhri/fetAQUEB6tWrh9TUVIXlypUr6NWrl1jO1dUVqampSEtLw4sXL5CQkABnZ+cSH1tRbZfErVu30K5dO3h4eGDr1q04e/Ysli1bBkD1ZHZvioiIgImJicKyS8h471iIiIiIiEgZO+1UIubm5ggICMCyZcuKzMA+evRIaV2NGjWQmpqqUP7EiRPQ0NAQJ2kDgDp16iA8PBxJSUnw8PDAxo0bVcZy7949bNy4ER07doSGhgays7ORnp6O77//Hv7+/nB3d8fDhw+V9vP09IS3tzdWr16NjRs3ol+/fgrbCgoKcOTIkSLbPHbsGJo0aYKwsDDUqVMHzs7OCpny4tStWxdXr15F5cqV4ezsrLCYmJiI5XR0dODs7AxHR0fI5XJxfUmPrSg6OjriPf/FOXPmDPLy8jBv3jw0atQILi4uuHPnTonqLxQeHo7Hjx8rLO1lDu9VBxERERF9vJhpV42ddiqx5cuXIz8/Hw0aNMDWrVtx9epVpKenY/HixWjcuLFS+d69e0NXVxdBQUG4cOECDh8+jKFDh6JPnz6wsrLCzZs3ER4ejuTkZNy6dQvx8fG4cuWKwn3tgiDg7t27yMrKQnp6OqKiotCkSROYmJjghx9+AABxVvZVq1bh2rVrSEhIwMiRI4s8htDQUPzwww/Iz89Hp06dxPUODg4ICgpCv379sGPHDty8eROJiYniRHPOzs44c+YM9u/fjytXrmDChAlISUl55znr3bs3KlWqhA4dOuDYsWO4efMmjhw5gm+++Qa3b99+5/7vc2xvc3BwwNOnT3Ho0CHcv38fz58/VypTrVo15OXlYcmSJbhx4wZ+/PFHREZGlqj+QnK5HMbGxgqLtoxfLURERERE5YF/WVOJOTo64rfffoOfnx9GjRoFDw8PtGrVCocOHcKKFSuUyuvr62P//v148OAB6tevj65du8Lf3x9Lly4Vt1+6dAldunSBi4sLBg4ciCFDhuCrr74S63jy5AlsbGxQpUoVNG7cGCtXrkRQUBDOnTsHGxsbAK9nP4+NjcXZs2fh4eGBESNGYM6cOUUeQ8+ePaGlpYVevXpBV1dXYduKFSvQtWtXhIWFwc3NDQMGDBBHCQwaNAidO3dGjx490LBhQ2RnZyMsLOyd50xfXx9Hjx7FJ598gs6dO8Pd3R39+vXDixcvYGxs/M793+fY3takSRMMGjQIPXr0gKWlJWbPnq1Upnbt2pg/fz5mzZoFDw8PbNiwARERESWqn4iIiIiIPjyZUDijF9FH4M8//4SDgwNSUlJQt25dqcP5z1qn1VLqEEotoX2Q1CGUSb5Wxf0t9razmdQhlNrhoN+kDqFsdHXeXUZNfXevqtQhlMnkXRukDqHUYme8lDqEUmv79AupQyiTyvHvnv9HXV33ayR1CKWm9eUvUodQJo6/7pI6hGJ9uny/JO0eDQuQpN33xUe+0UchNzcXWVlZ+O6779CoUSN22ImIiIiIqEJgp50+CidOnICfnx9cXFywZcsWqcMhIiIiIqL/ryJNCicFdtrpo+Dr6wveCUJERERERBVNxb35kYiIiIiIiOg/jpl2IiIiIiIikgyHx6vGTDsRERERERGRmmKmnYiIiIiIiCTDTLtqzLQTERERERERqSlm2omIiIiIiEgyGprMtKvCTDsRERERERGRmmKnnYiIiIiIiEhNcXg8ERERERERSYYT0anGTDsRERERERGRmmKmnYiIiIiIiCTDTLtqzLQTERERERERqSl22omIiIiIiIjUFIfHExERERERkWQ4PF41ZtqJiIiIiIiI1BQz7URERERERCQZTU1m2lVhp52Iyt1nfTSlDqHUPltRIHUIZTLqC6kjKD2T+y+kDqHUXm5MljqEMpFpV9yBdxETvpE6hDJ5EJkndQil1i1MJnUIpWaISlKHUDYtWksdQak55+VIHUKpvWqmLXUI9JFip52IiIiIiIgkw3vaVau4P60TERERERER/cex005ERERERESkpjg8noiIiIiIiCTD4fGqMdNOREREREREpKaYaSciIiIiIiLJaPCRbyox005ERERERESkpthpJyIiIiIiIlJTHB5PREREREREktFgKlklnh4iIiIiIiIiNcVMOxEREREREUmGj3xTjZl2IiIiIiIiIjXFTDsRERERERFJhpl21ZhpJyIiIiIiIlJT7LQTERERERERqSkOjyciIiIiIiLJaGhyeLwqzLRThSSTybBjxw5JY5g8eTJq164taQzvKyYmBqampu+1j4ODAxYuXPhB4iEiIiIiItXYaSe1dPfuXQwdOhROTk6Qy+Wws7NDYGAgDh06VO5txcTEQCaTiYuNjQ26d++Omzdvqtxv9OjR5RLPm20bGRnB29sb27ZtK3O9RXW2e/TogStXrpS5biIiIiKi8qKhIUiyVBTstJPaycjIQL169ZCQkIDZs2fj/Pnz2LdvH/z8/DB48OAP0qaxsTGysrJw584dbNy4Eampqfj888+Rn5+vVFYQBOTl5cHQ0BAWFhbl0n50dDSysrKQkpICLy8vdOvWDcnJyaWq69WrV8Vu09PTQ+XKlUsbJhERERER/cvYaSe1ExYWBplMhtOnT6Nr165wcXFBzZo1MXLkSJw8ebLIfc6fP48WLVpAT08PFhYWGDhwIJ4+fSpuT0xMRIMGDWBgYABTU1P4+Pjg1q1b4naZTAZra2vY2NjAz88PkyZNwoULF3Dt2jUkJiZCJpNh//798Pb2hlwux7Fjx5SGxwcHB6Njx46YOXMmrKysYGpqiilTpiAvLw/ffvstzM3NUbVqVURFRSnFb2pqCmtra7i5uSEyMhK6urrYuXMn8vPz0b9/fzg6OkJPTw+urq5YtGiRwr6F7UZERMDW1hYuLi7w9fXFrVu3MGLECDGLDygPj79+/To6dOgAKysrGBoaon79+jh48GBpLhsREREREX0AnIiO1MqDBw+wb98+zJgxAwYGBkrbi7of+/nz52jTpg0aNWqElJQU3Lt3D6GhoRgyZAhiYmKQl5eHjh07YsCAAfj555/x6tUrnD59WuzIFkVPTw8AkJubK64bM2YM5s6dCycnJ5iamuLIkSNK+yUkJKBq1ao4evQoTpw4gf79+yM5ORmffvopTp06hU2bNmHQoEFo1aoV7OzsimxbW1sbWlpayM3NRUFBAapWrYq4uDhUqlQJSUlJGDhwoDiEv9ChQ4dgbGyMAwcOQBAE2NrawsvLCwMHDsSAAQOKPc6nT5+iXbt2mD59OnR1dbFu3ToEBgbi8uXL+OSTT4rdj4iIiIiovFSkoepSYKed1Mq1a9cgCALc3NxKvM+GDRvw4sULrF+/XuzoL126FIGBgZg1axa0tbXx+PFjtG/fHtWqVQMAuLu7F1vf7du3MWfOHFStWhUuLi64f/8+AGDq1Klo1aqVyljMzc2xePFiaGhowNXVFbNnz8bz588xbtw4AEB4eDh++OEHnDhxAl988YXS/jk5OZgzZw6ePHkCf39/aGtrY8qUKeJ2R0dHJCUlIS4uTqHTbmBggDVr1kBHR0dcp6mpCSMjI1hbWxcbr5eXF7y8vMTX06dPx/bt27Fz504MGTJE5bESEREREdGHx047qRVBeP0rm6os+NvS09Ph5eWlkJn38fFBQUEBLl++jE8//RTBwcEICAhAq1at0LJlS3Tv3h02NjZi+cePH8PQ0BCCIOD58+eoW7cutm3bptAJ9vb2fmcsNWvWhIbG/911YmVlBQ8PD/G1pqYmLCwscO/ePYX9evbsCU1NTbx48QImJiaYO3cu2rZtCwCIjIzEmjVrcOvWLbx48QKvXr1SmrXe09NTIdaSevbsGaZMmYJdu3bhzp07yMvLw4sXL5CZmVniOnJycpCTk6O4Lr8Ack3efUNERERE78ZMu2r8q5rUSvXq1SGTyZCenl7ifQRBKLaTX7g+OjoaycnJaNKkCTZt2gQXFxeF++ONjIyQmpqK8+fP4+nTpzh79izq16+vUFdRw/Xfpq2trdR+UesKCgoU1i1YsACpqanIysrCgwcPMGrUKABAXFwcRowYgX79+iE+Ph6pqakICQlRmmyuJLEV5dtvv8XWrVsxY8YMHDt2DKmpqfD09FQ5md3bIiIiYGJiorAs+uNGqeIhIiIiIlJny5cvh6OjI3R1dVGvXj0cO3ZMZfkNGzbAy8sL+vr6sLGxQUhICLKzs9+rTXbaSa2Ym5sjICAAy5Ytw7Nnz5S2P3r0SGldjRo1kJqaqlD+xIkT0NDQgIuLi7iuTp06CA8PR1JSEjw8PLBx40Zxm4aGBpydneHk5FTqDnBZWFtbw9nZWWlm92PHjqFJkyYICwtDnTp14OzsjOvXr5eoTh0dnSJnv3+7/uDgYHTq1Amenp6wtrZGRkbGe8UeHh6Ox48fKyzf1HJ6rzqIiIiI6OOloSlIsryvTZs2Yfjw4Rg/fjzOnTuHZs2aoW3btsWOUj1+/Dj69u2L/v374+LFi9i8eTNSUlIQGhr6fufnvSMl+sCWL1+O/Px8NGjQAFu3bsXVq1eRnp6OxYsXo3Hjxkrle/fuDV1dXQQFBeHChQs4fPgwhg4dij59+sDKygo3b95EeHg4kpOTcevWLcTHx+PKlSsq72tXF87Ozjhz5gz279+PK1euYMKECUhJSSnRvg4ODjh69Cj++usv8b78ourftm0bUlNT8fvvv6NXr15KowDeRS6Xw9jYWGHh0HgiIiIi+q+ZP38++vfvj9DQULi7u2PhwoWws7PDihUriix/8uRJODg4YNiwYXB0dETTpk3x1Vdf4cyZM+/VLv+yJrXj6OiI3377DX5+fhg1ahQ8PDzQqlUrHDp0qMgPhL6+Pvbv348HDx6gfv366Nq1K/z9/bF06VJx+6VLl9ClSxe4uLhg4MCBGDJkCL766qt/+9De26BBg9C5c2f06NEDDRs2RHZ2NsLCwkq079SpU5GRkYFq1arB0tKyyDILFiyAmZkZmjRpgsDAQAQEBKBu3brleQhERERERGopJycHT548UVjenqup0KtXr3D27Fm0bt1aYX3r1q2RlJRU5D5NmjTB7du3sWfPHgiCgL///htbtmzBZ5999l5xyoTCmb+IiMrJ/ZAAqUMovRW9pI6gTEZ9UXF/i31USV/qEEot1iZK6hDKRKZdcd83OhO+kTqEMnnQb47UIZSaroHqW7DUmeHswVKHUDZ5JZ97Rt0IeUV3iCqCV2u2Sx1CmcjHqG/8Xx3b+O5CH4DNoSsKT2oCgEmTJmHy5MlKZe/cuYMqVargxIkTaNKkibh+5syZWLduHS5fvlxkG1u2bEFISAhevnyJvLw8fP7559iyZYvSvFeqVNx/pYmIiIiIiIhKqai5mcLDw1Xu8/YE2KomxU5LS8OwYcMwceJEnD17Fvv27cPNmzcxaNCg94qTj3wjIiIiIiIiyWiW/GnP5Uoul0Mul5eobKVKlaCpqYm7d+8qrL937x6srKyK3CciIgI+Pj749ttvAQC1atWCgYEBmjVrhunTpys8gloVZtqJiIiIiIiIVNDR0UG9evVw4MABhfUHDhxQGC7/pufPn0NDQ7HLrampCeB1hr6k2GknIiIiIiIieoeRI0dizZo1iIqKQnp6OkaMGIHMzExxuHt4eDj69u0rlg8MDMS2bduwYsUK3LhxAydOnMCwYcPQoEED2NralrhdDo8nIiIiIiIiyWhINDz+ffXo0QPZ2dmYOnUqsrKy4OHhgT179sDe3h4AkJWVpfDM9uDgYPzvf//D0qVLMWrUKJiamqJFixaYNWvWe7XLTjsRERERERFRCYSFhRX7COaYmBildUOHDsXQoUPL1CY77URERERERCQZqSaiqyh4TzsRERERERGRmmKmnYiIiIiIiCTDTLtqzLQTERERERERqSl22omIiIiIiIjUFIfHExERERERkWQ4PF41ZtqJiIiIiIiI1BQz7URERERERCQZDWbaVWKmnYiIiIiIiEhNsdNOREREREREpKY4PJ6IiIiIiIgkw4noVGOmnYiIiIiIiEhNMdNOROVOU0uQOoRSk2noSB1CGeVJHUCpmd5/LnUIpSb7pGL/Bi7T1pQ6hFLLLciROoQyef5IW+oQSk3PtEDqEEpPW1fqCMpGo+L+CS+TVdzvS5luxf2uVHfMtKtWcT81RERERERERP9x7LQTERERERERqamKO7aGiIiIiIiIKjwNppJV4ukhIiIiIiIiUlPMtBMREREREZFkOBGdasy0ExEREREREakpZtqJiIiIiIhIMsy0q8ZMOxEREREREZGaYqediIiIiIiISE1xeDwRERERERFJRoPD41Vipp2IiIiIiIhITTHTTkRERERERJLRlAlSh6DWmGknIiIiIiIiUlPstBMRERERERGpKQ6PJyIiIiIiIsnwOe2qMdNOREREREREpKbYaaf/HJlMhh07dkgdhtpycHDAwoULS1w+JiYGpqamHyweIiIiIvq4acqkWSoKdtqpwrl79y6GDh0KJycnyOVy2NnZITAwEIcOHSr3tvLz8xEREQE3Nzfo6enB3NwcjRo1QnR0dLm1MXnyZMhkMshkMmhqasLOzg6hoaH4559/ylRvcZ3tlJQUDBw4sEx1ExERERHRv4P3tFOFkpGRAR8fH5iammL27NmoVasWcnNzsX//fgwePBiXLl0q1/YmT56MVatWYenSpfD29saTJ09w5swZPHz4sFzbqVmzJg4ePIj8/HycO3cO/fv3x19//YW9e/eWqr7c3Nxit1laWpY2TCIiIiKicqdRgbLeUmCmnSqUsLAwyGQynD59Gl27doWLiwtq1qyJkSNH4uTJk0Xuc/78ebRo0QJ6enqwsLDAwIED8fTpU3F7YmIiGjRoAAMDA5iamsLHxwe3bt0CAPz6668ICwtDt27d4OjoCC8vL/Tv3x8jR44U9xcEAbNnz4aTkxP09PTg5eWFLVu2KMRw8eJFfPbZZzA2NoaRkRGaNWuG69evi9u1tLRgbW2NKlWqoH379hg2bBji4+Px4sUL7Nu3D02bNoWpqSksLCzQvn17hX0zMjIgk8kQFxcHX19f6Orq4qeffkJISAgeP34sZvEnT54MQHl4/Pz58+Hp6QkDAwPY2dkhLCxM4fwQEREREZF02GmnCuPBgwfYt28fBg8eDAMDA6XtRQ0Ff/78Odq0aQMzMzOkpKRg8+bNOHjwIIYMGQIAyMvLQ8eOHdG8eXP88ccfSE5OxsCBAyGTvf65z9raGgkJCSqHqn///feIjo7GihUrcPHiRYwYMQJffvkljhw5AgD466+/8Omnn0JXVxcJCQk4e/Ys+vXrh7y8vGLr1NPTQ0FBAfLy8vDs2TOMHDkSKSkpOHToEDQ0NNCpUycUFBQo7DN27FgMGzYM6enp8Pf3x8KFC2FsbIysrCxkZWVh9OjRRbaloaGBxYsX48KFC1i3bh0SEhIwZsyYYmMjIiIiIqJ/D4fHU4Vx7do1CIIANze3Eu+zYcMGvHjxAuvXrxc7+kuXLkVgYCBmzZoFbW1tPH78GO3bt0e1atUAAO7u7uL+8+fPR9euXWFtbY2aNWuiSZMm6NChA9q2bQsAePbsGebPn4+EhAQ0btwYAODk5ITjx49j5cqVaN68OZYtWwYTExPExsZCW1sbAODi4lJszJcuXcKKFSvQoEEDGBkZoUuXLgrb165di8qVKyMtLQ0eHh7i+uHDh6Nz587iaxMTE8hkMlhbW6s8R8OHDxf/39HREdOmTcPXX3+N5cuXq9yPiIiIiKg8VKRJ4aTATDtVGIIgAICYBS+J9PR0eHl5KWTmfXx8UFBQgMuXL8Pc3BzBwcEICAhAYGAgFi1ahKysLLFsjRo1cOHCBZw8eRIhISH4+++/ERgYiNDQUABAWloaXr58iVatWsHQ0FBc1q9fLw5hT01NRbNmzcQOe1HOnz8PQ0ND6OnpoUaNGrCzs8OGDRsAANevX0evXr3g5OQEY2NjODo6AgAyMzMV6vD29i7xeXnT4cOH0apVK1SpUgVGRkbo27cvsrOz8ezZsxLtn5OTgydPnigsOfkF796RiIiIiIjeiZ12qjCqV68OmUyG9PT0Eu8jCEKxnfzC9dHR0UhOTkaTJk2wadMmuLi4KNwfr6Ghgfr162PEiBHYvn07YmJisHbtWty8eVMcor57926kpqaKS1pamnhfu56e3jvjdHV1Ffd78eIFEhIS4OzsDAAIDAxEdnY2Vq9ejVOnTuHUqVMAgFevXinUUdQtA+9y69YttGvXDh4eHti6dSvOnj2LZcuWAVA9md2bIiIiYGJiorAsSL353rEQERER0ceJj3xTjZ12qjDMzc0REBCAZcuWFZkFfvTokdK6GjVqIDU1VaH8iRMnoKGhoTBEvU6dOggPD0dSUhI8PDywcePGYuOoUaMGgNdD42vUqAG5XI7MzEw4OzsrLHZ2dgCAWrVq4dixYyo7wTo6OnB2doajoyPkcrm4Pjs7G+np6fj+++/h7+8Pd3f3Es9cr6Ojg/z8fJVlzpw5g7y8PMybNw+NGjWCi4sL7ty5U6L6C4WHh+Px48cKy4jaju9VBxERERERFY2ddqpQli9fjvz8fDRo0ABbt27F1atXkZ6ejsWLF4v3lL+pd+/e0NXVRVBQEC5cuIDDhw9j6NCh6NOnD6ysrHDz5k2Eh4cjOTkZt27dQnx8PK5cuSLe1961a1csWLAAp06dwq1bt5CYmIjBgwfDxcUFbm5uMDIywujRozFixAisW7cO169fx7lz57Bs2TKsW7cOADBkyBA8efIEX3zxBc6cOYOrV6/ixx9/xOXLl995vGZmZrCwsMCqVatw7do1JCQkKMxcr4qDgwOePn2KQ4cO4f79+3j+/LlSmWrVqiEvLw9LlizBjRs38OOPPyIyMrJE9ReSy+UwNjZWWOSa/GohIiIiIioP/MuaKhRHR0f89ttv8PPzw6hRo+Dh4YFWrVrh0KFDWLFihVJ5fX197N+/Hw8ePED9+vXRtWtX+Pv7Y+nSpeL2S5cuoUuXLnBxccHAgQMxZMgQfPXVVwCAgIAA/PrrrwgMDISLiwuCgoLg5uaG+Ph4aGm9nsdx2rRpmDhxIiIiIuDu7i7uU3jvuYWFBRISEvD06VM0b94c9erVw+rVq1Xe415IQ0MDsbGxOHv2LDw8PDBixAjMmTOnROeqSZMmGDRoEHr06AFLS0vMnj1bqUzt2rUxf/58zJo1Cx4eHtiwYQMiIiJKVD8RERERUXnQkEmzVBQyoXB2LyKicvJwQGupQyg12bIQqUMok2+6F/8oQfpwVtaNkzqEMpFpa0odQumNGSB1BGXyd1flH5wrCguHHKlDKDWD2SUbtaa28ivwd33uS6kjKLVX0ZukDqFMdIZtkTqEYq1K3yBJuwPde0vS7vviI9+IiIiIiIhIMhVpUjgpcHg8ERERERERkZpipp2IiIiIiIgkw0y7asy0ExEREREREakpdtqJiIiIiIiI1BSHxxMREREREZFkODxeNWbaiYiIiIiIiNQUM+1EREREREQkGQ1m2lVipp2IiIiIiIhITbHTTkRERERERKSmODyeiIiIiIiIJMOJ6FRjpp2IiIiIiIhITTHTTkRERERERJJhpl01ZtqJiIiIiIiI1BQz7URERERERCQZPvJNNWbaiYiIiIiIiNQUO+1EREREREREaorD44mIiIiIiEgyGjJB6hDUGjPtRERERERERGqKmXYiKnc71uZLHUKpuU3PkTqEMhm0UuoIPk5ffdVd6hDKpOXedVKHUGoHTz2QOoQyabn3pdQhlFpebsXNjCXevC91CGVSkT+zX/7hJ3UIpZb/93OpQ/jP4iPfVGOmnYiIiIiIiEhNsdNOREREREREpKY4PJ6IiIiIiIgkw4noVGOmnYiIiIiIiEhNMdNOREREREREktHgRHQqMdNOREREREREpKaYaSciIiIiIiLJaPKedpWYaSciIiIiIiJSU+y0ExEREREREakpDo8nIiIiIiIiyXAiOtWYaSciIiIiIiJSU8y0ExERERERkWQ0OBGdSsy0ExEREREREakpdtqJiIiIiIiI1BSHxxMREREREZFkNDkRnUrMtBMRERERERGpKWbaiYiIiIiISDJ85JtqzLSTkrt37+Kbb76Bs7MzdHV1YWVlhaZNmyIyMhLPnz+XLK7Dhw/Dz88P5ubm0NfXR/Xq1REUFIS8vLwP3nZiYiJkMhkePXr0Xvs9efIE48ePh5ubG3R1dWFtbY2WLVti27ZtEITymyUzODgYHTt2LLf6iIiIiIhIPTDTTgpu3LgBHx8fmJqaYubMmfD09EReXh6uXLmCqKgo2Nra4vPPP//X47p48SLatm2LYcOGYcmSJdDT08PVq1exZcsWFBQUfNC2c3NzS7Xfo0eP0LRpUzx+/BjTp09H/fr1oaWlhSNHjmDMmDFo0aIFTE1NyzfYd8jNzYW2tva/2iYRERERkSp85JtqzLSTgrCwMGhpaeHMmTPo3r073N3d4enpiS5dumD37t0IDAxEv3790L59e4X98vLyYG1tjaioKACAr68vhg4diuHDh8PMzAxWVlZYtWoVnj17hpCQEBgZGaFatWrYu3evWMfDhw/Ru3dvWFpaQk9PD9WrV0d0dDQA4MCBA7CxscHs2bPh4eGBatWqoU2bNlizZg10dHQAADExMTA1NcWOHTvg4uICXV1dtGrVCn/++adCrCtWrEC1atWgo6MDV1dX/PjjjwrbZTIZIiMj0aFDBxgYGCA0NBR+fn4AADMzM8hkMgQHBwMAtmzZAk9PT+jp6cHCwgItW7bEs2fPAADjxo1DRkYGTp06haCgINSoUQMuLi4YMGAAUlNTYWhoCAB49eoVxowZgypVqsDAwAANGzZEYmKiGE/hce3fvx/u7u4wNDREmzZtkJWVBQCYPHky1q1bh19++QUymQwymQyJiYnIyMiATCZDXFwcfH19oauri59++gkAEB0dDXd3d+jq6sLNzQ3Lly8X23v16hWGDBkCGxsb6OrqwsHBAREREe/5TiIiIiIiovLATjuJsrOzER8fj8GDB8PAwKDIMjKZDKGhodi3b5/YaQSAPXv24OnTp+jevbu4bt26dahUqRJOnz6NoUOH4uuvv0a3bt3QpEkT/PbbbwgICECfPn3EIfcTJkxAWloa9u7di/T0dKxYsQKVKlUCAFhbWyMrKwtHjx5VeQzPnz/HjBkzsG7dOpw4cQJPnjzBF198IW7fvn07vvnmG4waNQoXLlzAV199hZCQEBw+fFihnkmTJqFDhw44f/48pk6diq1btwIALl++jKysLCxatAhZWVno2bMn+vXrh/T0dCQmJqJz584QBAEFBQWIjY1F7969YWtrqxSnoaEhtLReD3QJCQnBiRMnEBsbiz/++APdunVDmzZtcPXqVYXjmjt3Ln788UccPXoUmZmZGD16NABg9OjR6N69u9iRz8rKQpMmTcR9x44di2HDhiE9PR0BAQFYvXo1xo8fjxkzZiA9PR0zZ87EhAkTsG7dOgDA4sWLsXPnTsTFxeHy5cv46aef4ODgoPK8ExERERHRh8Hh8SS6du0aBEGAq6urwvpKlSrh5cuXAIDBgwdj1qxZYoZ6zJgxAF5nbrt16yZmjwHAy8sL33//PQAgPDwcP/zwAypVqoQBAwYAACZOnIgVK1bgjz/+QKNGjZCZmYk6derA29sbABQ6it26dcP+/fvRvHlzWFtbo1GjRvD390ffvn1hbGwslsvNzcXSpUvRsGFDAK9/OHB3d8fp06fRoEEDzJ07F8HBwQgLCwMAjBw5EidPnsTcuXPFbDoA9OrVC/369RNf37x5EwBQuXJlcUj79evXkZeXh86dO8Pe3h4A4OnpCQC4d+8eHj58CDc3N5Xn/Pr16/j5559x+/ZtsXM/evRo7Nu3D9HR0Zg5c6Z4XJGRkahWrRoAYMiQIZg6dSqA1z8A6OnpIScnB9bW1kptDB8+HJ07dxZfT5s2DfPmzRPXOTo6Ii0tDStXrkRQUBAyMzNRvXp1NG3aFDKZTDy24uTk5CAnJ0dhXa5QAG0ZfxMkIiIionfjI99U41/VpEQmU/zUnD59GqmpqahZs6bYOQsNDRWHrt+7dw+7d+9W6OQCQK1atcT/19TUhIWFhdipBQArKytxfwD4+uuvERsbi9q1a2PMmDFISkpS2D86Ohq3b9/G7NmzYWtrixkzZqBmzZoKGX8tLS2x0w8Abm5uMDU1RXp6OgAgPT0dPj4+CnH6+PiI2wu9WUdxvLy84O/vD09PT3Tr1g2rV6/Gw4cPAUCcZO7tc/m23377DYIgwMXFBYaGhuJy5MgRXL9+XSynr68vdtgBwMbGRjxv7/Lmsfzzzz/4888/0b9/f4X2pk+fLrYXHByM1NRUuLq6YtiwYYiPj1dZf0REBExMTBSW3cgoUWxERERERKQaO+0kcnZ2hkwmw6VLlxTWOzk5wdnZGXp6euK6vn374saNG0hOThaHTzdr1kxhv7cnPJPJZArrCju0hRPJtW3bFrdu3cLw4cNx584d+Pv7i0PAC1WpUgV9+vTBsmXLkJaWhpcvXyIyMlKpnbe9ue7t7YIgKK0r7vaAN2lqauLAgQPYu3cvatSogSVLlsDV1RU3b96EpaUlzMzMlH4MeFtBQQE0NTVx9uxZpKamikt6ejoWLVoklivqXJZ09vk3j6XwXK9evVqhvQsXLuDkyZMAgLp16+LmzZuYNm0aXrx4ge7du6Nr167F1h8eHo7Hjx8rLJ/BoUSxERERERFpyARJloqCnXYSWVhYoFWrVli6dKk4mZqqsh07dkR0dDSio6MREhJSLjFYWloiODgYP/30ExYuXIhVq1YVW9bMzAw2NjYKsebl5eHMmTPi68uXL+PRo0fiMHV3d3ccP35coZ6kpCS4u7urjKtwsrv8/HyF9TKZDD4+PpgyZQrOnTsHHR0dbN++HRoaGujRowc2bNiAO3fuKNX37Nkz5OXloU6dOsjPz8e9e/fg7OyssBQ11F1VfG/HVhQrKytUqVIFN27cUGrP0dFRLGdsbIwePXpg9erV2LRpE7Zu3YoHDx4UWadcLoexsbHCwqHxRERERETlg/e0k4Lly5fDx8cH3t7emDx5MmrVqgUNDQ2kpKTg0qVLqFevnlg2NDQU7du3R35+PoKCgsrc9sSJE1GvXj1xGP6uXbvEzvTKlSuRmpqKTp06oVq1anj58iXWr1+PixcvYsmSJWId2traGDp0KBYvXgxtbW0MGTIEjRo1QoMGDQAA3377Lbp37466devC398fv/76K7Zt24aDBw+qjM3e3h4ymQy7du1Cu3btoKenh4sXL+LQoUNo3bo1KleujFOnTuGff/4RY545cyYSExPRsGFDzJgxA97e3tDW1saxY8cQERGBlJQUuLi4oHfv3ujbty/mzZuHOnXq4P79+0hISICnpyfatWtXonPn4OCA/fv34/Lly7CwsICJiUmxZSdPnoxhw4bB2NgYbdu2RU5ODs6cOYOHDx9i5MiRWLBgAWxsbFC7dm1oaGhg8+bNsLa2/tcfT0dEREREROy001uqVauGc+fOYebMmQgPD8ft27chl8tRo0YNjB49WpzADQBatmwJGxsb1KxZs8gZ0t+Xjo4OwsPDkZGRAT09PTRr1gyxsbEAgAYNGuD48eMYNGgQ7ty5A0NDQ9SsWRM7duxA8+bNxTr09fUxduxY9OrVC7dv30bTpk3Fx9ABQMeOHbFo0SLMmTMHw4YNg6OjI6Kjo+Hr66sytipVqmDKlCn47rvvEBISgr59+2Ls2LE4evQoFi5ciCdPnsDe3h7z5s1D27ZtAbweCXDy5En88MMPmD59Om7dugUzMzN4enpizpw5Ysc6Ojoa06dPx6hRo/DXX3/BwsICjRs3LnGHHQAGDBiAxMREeHt74+nTpzh8+HCxM76HhoZCX18fc+bMwZgxY2BgYABPT08MHz4cwOuJ7WbNmoWrV69CU1MT9evXx549e6Chwew5EREREZU/DU5Ep5JMKOmNsURvef78OWxtbREVFaUwO7lUYmJiMHz4cDx69EjqUD560Rr+UodQam5ZfaQOgSqgyK80pQ6hTFruXSd1CKV2sG3ZR3pJqSKf+7zcivsnZOLnwVKHUCYV+X3z5R9+7y6kpl6uPyF1CGWiN2OP1CEUK+WfaEnarW9ZPrf4fmjMtNN7KygowN27dzFv3jyYmJjg888/lzokIiIiIiKqoDQr0KRwUmCnnd5bZmYmHB0dUbVqVcTExEBLi28jIiIiIiKiD4G9LXpvDg4OJX7c2L8pODgYwcHBUodBRERERERUbthpJyIiIiIiIslwIjrVOB00ERERERERkZpipp2IiIiIiIgko8GJ6FRipp2IiIiIiIhITTHTTkRERERERJJhJlk1nh8iIiIiIiIiNcVOOxEREREREZGa4vB4IiIiIiIikowmJ6JTiZl2IiIiIiIiIjXFTDsRERERERFJRkMmdQTqjZl2IiIiIiIiIjXFTjsRERERERGRmuLweCIiIiIiIpKMBieiU4mZdiIiIiIiIiI1xUw7ERERERERSUaTE9GpxE47EdEbIr/SlDoEqoBa7l0ndQhlcrBtkNQhfLTycjkkVArLNxtIHUKZGOQOljqEUgvq9VTqEErNd2eC1CGUScgMqSOg0mKnnYiIiIiIiCTDe9pV4z3tRERERERERGqKnXYiIiIiIiIiNcXh8URERERERCQZDU5EpxIz7UREREREREQlsHz5cjg6OkJXVxf16tXDsWPHVJbPycnB+PHjYW9vD7lcjmrVqiEqKuq92mSmnYiIiIiIiCSjWUEmotu0aROGDx+O5cuXw8fHBytXrkTbtm2RlpaGTz75pMh9unfvjr///htr166Fs7Mz7t27h7y8vPdql512IiIiIiIioneYP38++vfvj9DQUADAwoULsX//fqxYsQIRERFK5fft24cjR47gxo0bMDc3BwA4ODi8d7scHk9ERERERESkwqtXr3D27Fm0bt1aYX3r1q2RlJRU5D47d+6Et7c3Zs+ejSpVqsDFxQWjR4/Gixcv3qttZtqJiIiIiIhIMlJNRJeTk4OcnByFdXK5HHK5XKns/fv3kZ+fDysrK4X1VlZWuHv3bpH137hxA8ePH4euri62b9+O+/fvIywsDA8ePHiv+9qZaSciIiIiIqKPTkREBExMTBSWooa5v0kmU/yFQRAEpXWFCgoKIJPJsGHDBjRo0ADt2rXD/PnzERMT817ZdmbaiYiIiIiISDIyiXLJ4eHhGDlypMK6orLsAFCpUiVoamoqZdXv3bunlH0vZGNjgypVqsDExERc5+7uDkEQcPv2bVSvXr1EcTLTTkRERERERB8duVwOY2NjhaW4TruOjg7q1auHAwcOKKw/cOAAmjRpUuQ+Pj4+uHPnDp4+fSquu3LlCjQ0NFC1atUSx8lOOxEREREREUlGJpNJsryvkSNHYs2aNYiKikJ6ejpGjBiBzMxMDBo0CMDrzH3fvn3F8r169YKFhQVCQkKQlpaGo0eP4ttvv0W/fv2gp6dX4nY5PJ6IiIiIiIjoHXr06IHs7GxMnToVWVlZ8PDwwJ49e2Bvbw8AyMrKQmZmplje0NAQBw4cwNChQ+Ht7Q0LCwt0794d06dPf6922WknIiIiIiIiKoGwsDCEhYUVuS0mJkZpnZubm9KQ+vfFTjsRERERERFJRqqJ6CoKnh2ij0hiYiJkMhkePXpU4n18fX0xfPjwDxYTEREREREVj532f8Hdu3fxzTffwNnZGbq6urCyskLTpk0RGRmJ58+fSxbX4cOH4efnB3Nzc+jr66N69eoICgpCXl7eB2+7NJ1HAHjy5AnGjx8PNzc36OrqwtraGi1btsS2bdsgCEK5xRccHIyOHTuWW32qODg4iJNh6Ovrw8PDAytXrixzvUV1tps0aYKsrCyFx04QEREREUmpokxEJxUOj//Abty4AR8fH5iammLmzJnw9PREXl4erly5gqioKNja2uLzzz//1+O6ePEi2rZti2HDhmHJkiXQ09PD1atXsWXLFhQUFHzQtnNzc0u136NHj9C0aVM8fvwY06dPR/369aGlpYUjR45gzJgxaNGiBUxNTcs32HfIzc2FtrZ2meuZOnUqBgwYgKdPnyImJgaDBg2CqakpevToUa4x6ejowNrauqzhEhERERHRv4SZ9g8sLCwMWlpaOHPmDLp37w53d3d4enqiS5cu2L17NwIDA9GvXz+0b99eYb+8vDxYW1sjKioKwOus6dChQzF8+HCYmZnBysoKq1atwrNnzxASEgIjIyNUq1YNe/fuFet4+PAhevfuDUtLS+jp6aF69eqIjo4G8Pp5gjY2Npg9ezY8PDxQrVo1tGnTBmvWrIGOjg6A1xMpmJqaYseOHXBxcYGuri5atWqFP//8UyHWFStWoFq1atDR0YGrqyt+/PFHhe0ymQyRkZHo0KEDDAwMEBoaCj8/PwCAmZkZZDIZgoODAQBbtmyBp6cn9PT0YGFhgZYtW+LZs2cAgHHjxiEjIwOnTp1CUFAQatSoARcXFwwYMACpqakwNDQEALx69QpjxoxBlSpVYGBggIYNGyIxMVGMp/C49u/fD3d3dxgaGqJNmzbIysoCAEyePBnr1q3DL7/8Iv4Kl5iYiIyMDMhkMsTFxcHX1xe6urr46aefAADR0dFwd3eHrq4u3NzcsHz5crG9V69eYciQIbCxsYGuri4cHBwQERGhcI6MjIxgbW0NZ2dnTJ8+HdWrV8eOHTsAAGPHjoWLiwv09fXh5OSECRMmKPzwMXnyZNSuXRtRUVFwcnKCXC5HUFAQjhw5gkWLFonHkJGRoTTCITs7Gz179kTVqlWhr68PT09P/Pzzz0W+l4mIiIiI6N/HTPsHlJ2djfj4eMycORMGBgZFlpHJZAgNDcWnn36KrKws2NjYAAD27NmDp0+fonv37mLZdevWYcyYMTh9+jQ2bdqEr7/+Gjt27ECnTp0wbtw4LFiwAH369EFmZib09fUxYcIEpKWlYe/evahUqRKuXbuGFy9eAACsra2RlZWFo0eP4tNPPy32GJ4/f44ZM2Zg3bp10NHRQVhYGL744gucOHECALB9+3Z88803WLhwIVq2bIldu3YhJCQEVatWFTvmADBp0iRERERgwYIF0NTURIcOHdClSxdcvnwZxsbG0NPTQ1ZWFnr27InZs2ejU6dO+N///odjx45BEAQUFBQgNjYWvXv3hq2trVKchR12AAgJCUFGRgZiY2Nha2uL7du3o02bNjh//jyqV68uHtfcuXPx448/QkNDA19++SVGjx6NDRs2YPTo0UhPT8eTJ0/EHznMzc1x584dAK870fPmzUN0dDTkcjlWr16NSZMmYenSpahTpw7OnTuHAQMGwMDAAEFBQVi8eDF27tyJuLg4fPLJJ/jzzz+Vfvh4m66urtgxNzIyQkxMDGxtbXH+/HkMGDAARkZGGDNmjFj+2rVriIuLw9atW6GpqQl7e3tcvXoVHh4emDp1KgDA0tISGRkZCu28fPkS9erVw9ixY2FsbIzdu3ejT58+cHJyQsOGDVXGSERERERUHjgRnWrstH9A165dgyAIcHV1VVhfqVIlvHz5EgAwePBgzJo1S8xQF3bEoqOj0a1bN4XOqJeXF77//nsAQHh4OH744QdUqlQJAwYMAABMnDgRK1aswB9//IFGjRohMzMTderUgbe3N4DX904X6tatG/bv34/mzZvD2toajRo1gr+/P/r27QtjY2OxXG5uLpYuXSp24NatWwd3d3ecPn0aDRo0wNy5cxEcHCw+9mDkyJE4efIk5s6dq9Bp79WrF/r16ye+vnnzJgCgcuXK4pD269evIy8vD507dxafdejp6QkAuHfvHh4+fAg3NzeV5/z69ev4+eefcfv2bbFzP3r0aOzbtw/R0dGYOXOmeFyRkZGoVq0aAGDIkCFi59bQ0BB6enrIyckpcij58OHD0blzZ/H1tGnTMG/ePHGdo6Mj0tLSsHLlSgQFBSEzMxPVq1dH06ZNIZPJxGMrSl5eHn766SecP38eX3/9NQCI1xx4fQ1HjRqFTZs2KXTaX716hR9//BGWlpbiOh0dHejr66scDl+lShWMHj1afD106FDs27cPmzdvZqediIiIiEgN8CeNf8HbkxycPn0aqampqFmzJnJycgAAoaGhYlb33r172L17t0InFwBq1aol/r+mpiYsLCzETi0AWFlZifsDwNdff43Y2FjUrl0bY8aMQVJSksL+0dHRuH37NmbPng1bW1vMmDEDNWvWFIeJA4CWlpbY6QdeP2fQ1NQU6enpAID09HT4+PgoxOnj4yNuL/RmHcXx8vKCv78/PD090a1bN6xevRoPHz4EAHGSuXdNGPHbb79BEAS4uLjA0NBQXI4cOYLr16+L5fT19cUOOwDY2NiI5+1d3jyWf/75B3/++Sf69++v0N706dPF9oKDg5GamgpXV1cMGzYM8fHxSnWOHTtW/LFg8ODB+Pbbb/HVV18BeH3LQNOmTWFtbQ1DQ0NMmDABmZmZCvvb29srdNhLKj8/HzNmzECtWrVgYWEBQ0NDxMfHK9WvSk5ODp48eaKw5Aofdl4EIiIiIvrvkEn0X0XBTvsH5OzsDJlMhkuXLimsd3JygrOzM/T09MR1ffv2xY0bN5CcnIyffvoJDg4OaNasmcJ+b08uJpPJFNYVdmgLJ5Jr27Ytbt26heHDh+POnTvw9/dXyKoCrzOtffr0wbJly5CWloaXL18iMjJSqZ23vbnu7e2CICitK+72gDdpamriwIED2Lt3L2rUqIElS5bA1dUVN2/ehKWlJczMzJR+DHhbQUEBNDU1cfbsWaSmpopLeno6Fi1aJJYr6lyWdPb5N4+l8FyvXr1aob0LFy7g5MmTAIC6devi5s2bmDZtGl68eIHu3buja9euCnV+++23SE1Nxa1bt/D06VPMnj0bGhoaOHnyJL744gu0bdsWu3btwrlz5zB+/Hi8evWq2Jjex7x587BgwQKMGTMGCQkJSE1NRUBAgFL9qkRERMDExERh2Y2MUsVDRERERESK2Gn/gCwsLNCqVSssXbpUnExNVdmOHTsiOjoa0dHRCAkJKZcYLC0tERwcjJ9++gkLFy7EqlWrii1rZmYGGxsbhVjz8vJw5swZ8fXly5fx6NEjcZi6u7s7jh8/rlBPUlIS3N3dVcZVONldfn6+wnqZTAYfHx9MmTIF586dg46ODrZv3w4NDQ306NEDGzZsEO8tf9OzZ8+Ql5eHOnXqID8/H/fu3YOzs7PC8j6zpuvo6CjFVhQrKytUqVIFN27cUGrP0dFRLGdsbIwePXpg9erV2LRpE7Zu3YoHDx6I2ytVqgRnZ2fY2toq/OBx4sQJ2NvbY/z48fD29kb16tVx69atcjuGY8eOoUOHDvjyyy/h5eUFJycnXL16tUT1FwoPD8fjx48Vls/g8F51EBEREdHHSybTkGSpKHhP+we2fPly+Pj4wNvbG5MnT0atWrWgoaGBlJQUXLp0CfXq1RPLhoaGon379sjPz0dQUFCZ2544cSLq1asnDsPftWuX2JleuXIlUlNT0alTJ1SrVg0vX77E+vXrcfHiRSxZskSsQ1tbG0OHDsXixYuhra2NIUOGoFGjRmjQoAGA1xni7t27o27duvD398evv/6Kbdu24eDBgypjs7e3h0wmw65du9CuXTvo6enh4sWLOHToEFq3bo3KlSvj1KlT+Oeff8SYZ86cicTERDRs2BAzZsyAt7c3tLW1cezYMURERCAlJQUuLi7o3bs3+vbti3nz5qFOnTq4f/8+EhIS4OnpiXbt2pXo3Dk4OGD//v24fPkyLCwsVD7XfPLkyRg2bBiMjY3Rtm1b5OTk4MyZM3j48CFGjhyJBQsWwMbGBrVr14aGhgY2b94Ma2vrEj2eztnZGZmZmYiNjUX9+vWxe/dubN++vcTHcOrUKWRkZMDQ0BDm5uZF1r9161YkJSXBzMwM8+fPx927d9/5o8ub5HI55HK5wjrtCvQlSERERESkzviX9QdWrVo1nDt3Di1btkR4eDi8vLzg7e2NJUuWYPTo0Zg2bZpYtmXLlrCxsUFAQECRM6S/Lx0dHYSHh6NWrVr49NNPoampidjYWABAgwYN8PTpUwwaNAg1a9ZE8+bNcfLkSezYsQPNmzcX69DX18fYsWPRq1cvNG7cGHp6emIdANCxY0csWrQIc+bMQc2aNbFy5UpER0fD19dXZWxVqlTBlClT8N1338HKygpDhgyBsbExjh49inbt2sHFxQXff/895s2bh7Zt2wJ4PRLg5MmT+PLLLzF9+nTUqVMHzZo1w88//4w5c+aIHevo6Gj07dsXo0aNgqurKz7//HOcOnUKdnZ2JT53AwYMgKurK7y9vWFpaSnOll+U0NBQrFmzBjExMfD09ETz5s0RExMjZtoNDQ0xa9YseHt7o379+sjIyMCePXugofHuj1+HDh0wYsQIDBkyBLVr10ZSUhImTJhQomMYPXo0NDU1UaNGDVhaWhZ5n/qECRNQt25dBAQEwNfXF9bW1ujYsWOJ6iciIiIiog9PJpT0Rl764J4/fw5bW1tERUUpzE4ulZiYGAwfPlx8pjdRSUVr+EsdQqklfh4sdQhUAbXcu07qEMrkYNuyj+6i0vHdGSN1CB+l7jmDpQ6hTAxyK84EWm8L6vVU6hBKraJ/XkMKDkkdQrEe5myQpF0zeW9J2n1fHB6vBgoKCnD37l3MmzcPJiYm+Pzzz6UOiYiIiIiIiNQAO+1qIDMzE46OjqhatSpiYmKgpcXLQkREREREH4eKNCmcFNg7VAMODg4lftzYvyk4OBjBwcFSh0FERERERPTR4k8aRERERERERGqKmXYiIiIiIiKSjAwVd3LFfwMz7URERERERERqipl2IiIiIiIikoyMuWSVeHaIiIiIiIiI1BQz7URERERERCQZmYz3tKvCTDsRERERERGRmmKnnYiIiIiIiEhNcXg8ERERERERSYYT0anGs0NERERERESkpphpJyIiIiIiIsnIwInoVGGmnYiIiIiIiEhNsdNOREREREREpKY4PJ6IiIiIiIgkI5Mxl6wKzw4RERERERGRmmKmnYjoDT4RFfu3zOS/+LUuhU6bv5Y6hDL5Mu0PqUMoteBJzlKHUCYaGpx8SQqR6S+kDqFMhp3YKXUIpdZ/RTupQyg1mxcGUofwn8WJ6FSr2H+dEhEREREREf2HMSVDREREREREkuE97arx7BARERERERGpKXbaiYiIiIiIiNQUh8cTERERERGRZGTMJavEs0NERERERESkpphpJyIiIiIiIsnwkW+qMdNOREREREREpKbYaSciIiIiIiJSUxweT0RERERERJLhc9pV49khIiIiIiIiUlPMtBMREREREZFkOBGdasy0ExEREREREakpdtqJiIiIiIiI1BSHxxMREREREZFkOBGdajw7RERERERERGqKnfa3yGQy7NixQ+owyiQmJgampqZSh1Fmbx/H5MmTUbt2bcni+S8ozXvDwcEBCxcu/CDxEBERERHJJPqvoqgQnfbg4GDIZDIMGjRIaVtYWBhkMhmCg4P//cDeUlHiLIpUHbONGzdCU1OzyHP2Ls+ePcPYsWPh5OQEXV1dWFpawtfXF7t27foAkX44MplMXIyMjODt7Y1t27aVud6irmmPHj1w5cqVMtdNRERERET/jgrRaQcAOzs7xMbG4sWLF+K6ly9f4ueff8Ynn3wiYWSKKkqcH8qrV6/eq3xUVBTGjBmD2NhYPH/+/L32HTRoEHbs2IGlS5fi0qVL2LdvH7p06YLs7Oz3qkcdREdHIysrCykpKfDy8kK3bt2QnJxcqrpUXQM9PT1Urly5tGESEREREZU7GTQkWSqKChNp3bp18cknnyhkILdt2wY7OzvUqVNHXLdv3z40bdoUpqamsLCwQPv27XH9+nVx+6tXrzBkyBDY2NhAV1cXDg4OiIiIKLbdqVOnwsrKCqmpqQCA5cuXo3r16tDV1YWVlRW6du1aqjhLEmtGRgZkMhm2bdsGPz8/6Ovrw8vLS6kzFxMTg08++QT6+vro1KmTUqf1+vXr6NChA6ysrGBoaIj69evj4MGD4nZfX1/cunULI0aMEDO+hbZu3YqaNWtCLpfDwcEB8+bNU6jbwcEB06dPR3BwMExMTDBgwAC0aNECQ4YMUSiXnZ0NuVyOhIQEheNLSkrCd999Bzc3N2zZsqXY61CUX3/9FePGjUO7du3g4OCAevXqYejQoQgKClKIb9q0aejVqxcMDQ1ha2uLJUuWKNQzf/58eHp6wsDAAHZ2dggLC8PTp08Vypw4cQLNmzeHvr4+zMzMEBAQgIcPHwIABEHA7Nmz4eTkBD09PXh5eSkcy8OHD9G7d29YWlpCT08P1atXR3R0tEL9pqamsLa2hpubGyIjI6Grq4udO3ciPz8f/fv3h6OjI/T09ODq6opFixYp7BscHIyOHTsiIiICtra2cHFxKfaavj08/l3vDSIiIiIiklaF6bQDQEhIiEJnJyoqCv369VMo8+zZM4wcORIpKSk4dOgQNDQ00KlTJxQUFAAAFi9ejJ07dyIuLg6XL1/GTz/9BAcHB6W2BEHAN998g7Vr1+L48eOoXbs2zpw5g2HDhmHq1Km4fPky9u3bh08//bRUcZYk1kLjx4/H6NGjkZqaChcXF/Ts2RN5eXkAgFOnTqFfv34ICwtDamoq/Pz8MH36dIX9nz59inbt2uHgwYM4d+4cAgICEBgYiMzMTACvf1SoWrUqpk6diqysLGRlZQEAzp49i+7du+OLL77A+fPnMXnyZEyYMAExMTEK9c+ZMwceHh44e/YsJkyYgNDQUGzcuBE5OTlimQ0bNsDW1hZ+fn4K5+Wzzz6DiYkJvvzyS6xdu1bpHKlibW2NPXv24H//+5/KcnPmzEGtWrXw22+/ITw8HCNGjMCBAwfE7RoaGli8eDEuXLiAdevWISEhAWPGjBG3p6amwt/fHzVr1kRycjKOHz+OwMBA5OfnAwC+//57REdHY8WKFbh48SJGjBiBL7/8EkeOHAEATJgwAWlpadi7dy/S09OxYsUKVKpUqdh4tbW1oaWlhdzcXBQUFKBq1aqIi4tDWloaJk6ciHHjxiEuLk5hn0OHDiE9PR0HDhzArl27ir2mb3vXe4OIiIiIiKRVoR751qdPH4SHh4sZ6BMnTiA2NhaJiYlimS5duijss3btWlSuXBlpaWnw8PBAZmYmqlevjqZNm0Imk8He3l6pnby8PPTt2xdnzpzBiRMnULVqVQBAZmYmDAwM0L59exgZGcHe3l4pe17SOEsSa6HRo0fjs88+AwBMmTIFNWvWxLVr1+Dm5oZFixYhICAA3333HQDAxcUFSUlJ2Ldvn7i/l5cXvLy8xNfTp0/H9u3bsXPnTgwZMgTm5ubQ1NSEkZERrK2txXLz58+Hv78/JkyYINadlpaGOXPmKNyb36JFC4wePVp8bWdnh6FDh+KXX35B9+7dAbwe/l14zz8AFBQUICYmRsx6f/HFFxg5ciSuXbsGZ2dnpXNalFWrVqF3796wsLCAl5cXmjZtiq5du8LHx0ehnI+Pj8L5OXHiBBYsWIBWrVoBAIYPHy6WdXR0xLRp0/D1119j+fLlAIDZs2fD29tbfA0ANWvWBPD6h5f58+cjISEBjRs3BgA4OTnh+PHjWLlyJZo3b47MzEzUqVMH3t7eAFDkj0SFcnJyMGfOHDx58gT+/v7Q1tbGlClTFOJLSkpCXFyceG4BwMDAAGvWrIGOjo64rqhr+rZ3vTeIiIiIiD60N0f6krIKlWmvVKkSPvvsM6xbtw7R0dH47LPPlDKW169fR69eveDk5ARjY2M4OjoCgJg5DA4ORmpqKlxdXTFs2DDEx8crtTNixAgkJyfj2LFjYocdAFq1agV7e3s4OTmhT58+2LBhQ5H3YZckzpLEWqhWrVri/9vY2AAA7t27BwBIT08XO4uF3n797NkzjBkzBjVq1ICpqSkMDQ1x6dKld2ZT09PTi+wAX716VcwyAxA7o4Xkcjm+/PJLREVFAXidqf79998VOvrx8fF49uwZ2rZtC+D1OWvdurW4T0l8+umnuHHjBg4dOoQuXbrg4sWLaNasGaZNm6ZQrqjzk56eLr4+fPgwWrVqhSpVqsDIyAh9+/ZFdnY2nj17Jsbv7+9fZAxpaWl4+fIlWrVqBUNDQ3FZv369eKvD119/jdjYWNSuXRtjxoxBUlKSUj09e/aEoaEh9PX1MX/+fMydO1c8N5GRkfD29oalpSUMDQ2xevVqpWvn6emp0GEvqdK+N96Uk5ODJ0+eKCy5QsG7dyQiIiIioneqUJ12AOjXrx9iYmKwbt26IoecBwYGIjs7G6tXr8apU6dw6tQpAP83OVfdunVx8+ZNTJs2DS9evED37t2V7ktv1aoV/vrrL+zfv19hvZGREX777Tf8/PPPsLGxwcSJE+Hl5YVHjx69d5wlibWQtra2+P9vZqqB18P43+Xbb7/F1q1bMWPGDBw7dgypqanw9PR856RxgiAo/epVVHsGBgZK60JDQ3HgwAHcvn0bUVFR8Pf3VxjVEBUVhQcPHkBfXx9aWlrQ0tLCnj17sG7dOoUfBN5FW1sbzZo1w3fffYf4+HhMnToV06ZNe+exFR7XrVu30K5dO3h4eGDr1q04e/Ysli1bBgDIzc0F8HrytuIUXofdu3cjNTVVXNLS0sT72tu2bYtbt25h+PDhuHPnDvz9/RVGJgDAggULkJqaiqysLDx48ACjRo0CAMTFxWHEiBHo168f4uPjkZqaipCQEKXjK+oalERp3xtvioiIgImJicKyGxmlioeIiIiIPkKCREsFUaGGxwNAmzZtxA5FQECAwrbs7Gykp6dj5cqVaNasGQDg+PHjSnUYGxujR48e6NGjB7p27Yo2bdrgwYMHMDc3BwB8/vnnCAwMRK9evaCpqYkvvvhC3FdLSwstW7ZEy5YtMWnSJJiamiIhIQGdO3cucZzvE+u71KhRAydPnlRY9/brY8eOITg4GJ06dQLw+j7mjIwMhTI6OjpKneUaNWooxZSUlAQXFxdoamqqjMvT0xPe3t5YvXo1Nm7cqDD5W3Z2Nn755RfExsaKw8yB1x3gZs2aYe/evWjfvr3qAy9GjRo1kJeXh5cvX4qZ56LOj5ubGwDgzJkzyMvLw7x586Ch8fo3rLfvF69VqxYOHTqkMEz9zfbkcjkyMzPRvHnzYuOytLREcHAwgoOD0axZM3z77beYO3euuN3a2rrI2wKOHTuGJk2aICwsTFz35mSFqhR1TYuq/13vjXcJDw/HyJEjFdbFmnR4rzqIiIiIiKhoFa7TrqmpKQ5tfrvjaGZmBgsLC6xatQo2NjbIzMwU72UutGDBAtjY2KB27drQ0NDA5s2bYW1trTCjNgB06tQJP/74I/r06QMtLS107doVu3btwo0bN/Dpp5/CzMwMe/bsQUFBAVxdXd8rzpLGWhLDhg1DkyZNMHv2bHTs2BHx8fEK97MDgLOzM7Zt24bAwEDIZDJMmDBBabI7BwcHHD16FF988QXkcjkqVaqEUaNGoX79+pg2bRp69OiB5ORkLF26VOHeblVCQ0MxZMgQcVb7Qj/++CMsLCzQrVs3saNcqH379li7dm2JOu2+vr7o2bMnvL29YWFhgbS0NIwbNw5+fn4wNjYWy504cUI8PwcOHMDmzZuxe/duAEC1atWQl5eHJUuWIDAwECdOnEBkZKRCO+Hh4fD09ERYWBgGDRoEHR0dHD58GN26dUOlSpUwevRojBgxAgUFBWjatCmePHmCpKQkGBoaIigoCBMnTkS9evVQs2ZN5OTkYNeuXXB3dy/ROXR2dsb69euxf/9+ODo64scff0RKSop4K4UqRV3Toup/13vjXeRyOeRyucI6bVmFG8RDRERERKSWKuRf1sbGxgqdskIaGhqIjY3F2bNn4eHhgREjRmDOnDkKZQwNDTFr1ix4e3ujfv36yMjIwJ49e5Q6jwDQtWtXrFu3Dn369MG2bdtgamqKbdu2oUWLFnB3d0dkZCR+/vlnhWxxSeIsaawl0ahRI6xZswZLlixB7dq1ER8fj++//16hzIIFC2BmZoYmTZogMDAQAQEBqFu3rkKZqVOnIiMjA9WqVYOlpSWA17cSxMXFITY2Fh4eHpg4cSKmTp2qcG+6Kj179oSWlhZ69eoFXV1dcX1UVBQ6depU5Dnv0qULdu3ahb///vud9QcEBGDdunVo3bo13N3dMXToUAQEBChlykeNGoWzZ8+iTp06mDZtGubNmyeOfqhduzbmz5+PWbNmwcPDAxs2bFB6BKCLiwvi4+Px+++/o0GDBmjcuDF++eUXaGm9/s1r2rRpmDhxIiIiIuDu7o6AgAD8+uuvYsdaR0cH4eHhqFWrFj799FNoamoiNja2ROdw0KBB6Ny5M3r06IGGDRsiOztbIeuuSlHX9G0leW8QEREREX1QQoE0SwUhE0pyUzRRKfz5559wcHBASkqKZB1BBwcHDB8+XGGGePrwojWKnrivIsi9WPQcFBVF8l8VbgDVf8KS5hX7vBuk/SF1CKUWPKlkTxxRVy12rZM6hI/S/d9CpA6hTIad2Cl1CKWW3LGd1CGUmk3wVqlDKJPq+9X4fVNwSJp2K8jfrBX7rwxSS7m5ucjKysJ3332HRo0aMXNLRERERETFq0BZbylUyOHxpN5OnDgBe3t7nD17Vun+cCIiIiIiIio5Ztqp3Pn6+pboUXT/hvedCZ2IiIiIiP5lzLSrxEw7ERERERERkZpip52IiIiIiIhITXF4PBEREREREUmHw+NVYqadiIiIiIiISE0x005ERERERETSKWCmXRVm2omIiIiIiIjUFDvtRERERERERGqKw+OJiIiIiIhIOpyITiVm2omIiIiIiIjUFDPtREREREREJB1m2lVipp2IiIiIiIhITTHTTkRERERERNJhpl0lZtqJiIiIiIiI1BQ77URERERERERqisPjiYiIiIiISDoFHB6vCjPtRERERERERGqKmXYiKnefOMqlDqHU3CZtkDqEMulV+ZXUIZTak/s6UodQaptb50gdwkfLF8elDqFMEj4PljqEUvPdGSN1CKVm/+k6qUMokxf3QqUOodSu666UOoRSa3bRT+oQ/rs4EZ1KzLQTERERERERqSl22omIiIiIiIjUFIfHExERERERkXQ4PF4lZtqJiIiIiIiI1BQz7URERERERCQdZtpVYqadiIiIiIiISE0x005ERERERESSEYR8SdqVSdLq+2Om/f+xd+dxOaX//8Bfd6J9MS2ypEUrJVKWsWZLWZJdBtlmjCUjyzBEJWMGkeWDbNVgyJJ1jP2DaFBRlhKiiZEPGluWos7vD7/O1609xrnv8Xo+Hvdjus+57nNe9+me3Nd5X+c6RERERERERAqKnXYiIiIiIiIiBcXh8URERERERCSdAk5EVxpW2omIiIiIiIgUFCvtREREREREJB3e8q1UrLQTERERERERKSh22omIiIiIiIgUFIfHExERERERkXQ4PL5UrLQTERERERERKSh22j8imUyGXbt2SR3jg0RGRkJfX1/qGB8sIyMDMpkMSUlJn3UGIiIiIiKFJxRI81AS//pOu6+vL2QyGUaPHl1k3ZgxYyCTyeDr6/vpg71HWXIWx9zcHGFhYZ90nzdu3MCwYcNQp04dqKmpwcLCAgMHDkRCQsInzVFRO3bsQLNmzaCnpwcdHR00aNAAkyZNkjoWEREREREpqH99px0ATE1NsWXLFrx8+VJc9urVK2zevBl169aVMJk8Zcn5T8nLyytXu4SEBDRp0gTXrl1DeHg4UlJSsHPnTtjZ2Sl0B/jIkSMYMGAA+vTpg3PnziExMRFz584t9/smIiIiIvpXYqW9VJ9Fp93Z2Rl169ZFTEyMuCwmJgampqZo3LixuOzAgQNo1aoV9PX1YWBggG7duiE9PV1cn5eXh3HjxqFmzZpQV1eHubk55s2bV+J+g4ODUaNGDXF49IoVK2BtbQ11dXXUqFEDffr0qVTO8mQtHJodExMDNzc3aGpqwsnJCX/88YfcdiIjI1G3bl1oamrC29sb2dnZcuvT09Ph5eWFGjVqQFtbG66urjhy5Ii4vl27dvjzzz8xceJEyGQyyGQycd2OHTvQoEEDqKmpwdzcHKGhoXLbNjc3R0hICHx9faGnp4dRo0ahffv2GDdunFy77OxsqKmp4dixYxAEAb6+vrC2tkZsbCy6du2KevXqoVGjRpg9ezZ2795d4u/jxIkTaNq0KdTU1FCzZk1MmzYNb968Eddv374djo6O0NDQgIGBATp27Ijnz5+L6yMiImBvbw91dXXY2dlhxYoVcts/d+4cGjduDHV1dbi4uODChQty6/ft24dWrVphypQpsLW1hY2NDXr27Illy5aJbQIDA9GoUSOEh4fD1NQUmpqa6Nu3Lx4/fiy2iY+PR6dOnWBoaAg9PT20bdsW58+fl9vX48eP8fXXX6NGjRpQV1eHg4MD9u3bJ66Pi4tDmzZtoKGhAVNTU/j5+cm917I+q0RERERE9Gl8Fp12ABg2bBgiIiLE5+vXr8fw4cPl2jx//hz+/v6Ij4/H0aNHoaKiAm9vbxQUvD0Ls3TpUuzZswdbt25FWloaNm7cCHNz8yL7EgQBEyZMwLp163Dq1Ck0atQICQkJ8PPzQ3BwMNLS0nDgwAG0adOmUjnLk7XQjBkzMHnyZCQlJcHGxgYDBw4UO6pnz57F8OHDMWbMGCQlJcHNzQ0hISFyr8/JyYGnpyeOHDmCCxcuwN3dHd27d0dmZiaAtycV6tSpg+DgYGRlZSErKwsAkJiYiH79+mHAgAG4dOkSAgMDERAQgMjISLntL1iwAA4ODkhMTERAQABGjhyJX3/9Fbm5uWKbTZs2oVatWnBzc0NSUhKuXLmCSZMmQUWl6Me3pOvx//rrL3h6esLV1RXJyclYuXIl1q1bJ77frKwsDBw4EMOHD0dqaiqOHz+OXr16QRAEAMCaNWswY8YMzJ07F6mpqfjxxx8REBCAqKgo8ffRrVs32NraIjExEYGBgZg8ebJcBhMTE1y5cgWXL18uNmOhGzduYOvWrdi7dy8OHDiApKQkjB07Vlz/7NkzDB06FLGxsThz5gysra3h6emJZ8+eAQAKCgrg4eGBuLg4bNy4ESkpKfjpp59QpUoVAMClS5fg7u6OXr164eLFi4iOjsapU6fEkyXl/awSEREREdE/77O55dvgwYMxffp0sQJ9+vRpbNmyBcePHxfb9O7dW+4169atg7GxMVJSUuDg4IDMzExYW1ujVatWkMlkMDMzK7KfN2/eYMiQIUhISMDp06dRp04dAEBmZia0tLTQrVs36OjowMzMrEj1vLw5y5O10OTJk9G1a1cAQFBQEBo0aIAbN27Azs4OS5Ysgbu7O6ZNmwYAsLGxQVxcHA4cOCC+3snJCU5OTuLzkJAQ7Ny5E3v27MG4cePwxRdfoEqVKtDR0YGJiYnYbtGiRejQoQMCAgLEbaekpGDBggVy1+a3b99ernNramqK8ePHY/fu3ejXrx+AtxXuwmv+r1+/DgCws7MrcuxKs2LFCpiammL58uWQyWSws7PD3bt38f3332PWrFnIysrCmzdv0KtXL/H36ujoKL5+zpw5CA0NRa9evQAAFhYWSElJQXh4OIYOHYpNmzYhPz8f69evh6amJho0aIA7d+7g22+/Fbcxfvx4xMbGwtHREWZmZmjevDk6d+6MQYMGQU1NTWz36tUrREVFiZ+dZcuWoWvXrggNDYWJiQnat28v997Cw8NRvXp1nDhxAt26dcORI0dw7tw5pKamwsbGBgBgaWkptl+wYAF8fHzw3XffAQCsra2xdOlStG3bFitXriz3Z5WIiIiI6KMoUJ6h6lL4bCrthoaG6Nq1K6KiohAREYGuXbvC0NBQrk16ejp8fHxgaWkJXV1dWFhYAIBYVfb19UVSUhJsbW3h5+eHQ4cOFdnPxIkT8ccffyA2NlbsdAFAp06dYGZmBktLSwwePBibNm3CixcvKpWzPFkLNWzYUPy5Zs2aAID79+8DAFJTU9GiRQu59u8/f/78OaZOnYr69etDX18f2trauHr1apH9vC81NRUtW7aUW9ayZUtcv34d+fn54jIXFxe5Nmpqavjqq6+wfv16AEBSUhKSk5PFjn5h5fvdYfjlUfhe331dy5YtkZOTgzt37sDJyQkdOnSAo6Mj+vbtizVr1uDRo0cAgAcPHuD27dsYMWIEtLW1xUdISIh4SUJqaiqcnJygqakpbv/9Y6mlpYXffvsNN27cwMyZM6GtrY1JkyahadOmcp+FunXryn12WrRogYKCAqSlpQF4+/sbPXo0bGxsoKenBz09PeTk5Ii/k6SkJNSpU0fssL8vMTERkZGRcu/F3d0dBQUFuHXrVrk/q4Vyc3Px9OlTuUeekF9ieyIiIiIiKr/PptMOAMOHD0dkZCSioqKKHXLevXt3ZGdnY82aNTh79izOnj0L4P8mSHN2dsatW7cwZ84cvHz5Ev369StyrW+nTp3w119/4eDBg3LLdXR0cP78eWzevBk1a9bErFmz4OTkJHetcnlzlidroapVq4o/F3ZYC4fQF3aASzNlyhTs2LEDc+fORWxsLJKSkuDo6Fjm5GmCIBTpWBe3Py0trSLLRo4cicOHD+POnTtYv349OnToIFa/CzuiqampZWYvbx6ZTIYqVarg8OHD+P3331G/fn0sW7YMtra2uHXrlni81qxZg6SkJPFx+fJlnDlzpsT3VpJ69eph5MiRWLt2Lc6fP4+UlBRER0eX2L4wd+F/fX19kZiYiLCwMMTFxSEpKQkGBgbi70RDQ6PU/RcUFOCbb76Rey/Jycm4fv066tWrV6HPKgDMmzdPPHlQ+Nj86Ga5jwcRERERfeY4EV2pPqtOe5cuXZCXl4e8vDy4u7vLrcvOzkZqaipmzpyJDh06wN7eXqy0vktXVxf9+/fHmjVrEB0djR07duDvv/8W1/fo0QO//vorRo4ciS1btsi9VlVVFR07dsT8+fNx8eJFZGRk4NixYxXKWZGsZalfv77Y6Sz0/vPY2Fj4+vrC29sbjo6OMDExQUZGhlybatWqyVXPC7d96tQpuWVxcXGwsbERr60uiaOjI1xcXLBmzRr8+uuvcicuGjVqhPr16yM0NLTI9fsASuxY1q9fH3FxcXKd67i4OOjo6KB27doA3naKW7ZsiaCgIFy4cAHVqlXDzp07UaNGDdSuXRs3b96ElZWV3KNwhEP9+vWRnJwsN/P/+8eyOObm5tDU1JSbBC4zMxN3794Vn//xxx9QUVERT1jExsbCz88Pnp6e4kR/Dx8+FNs3bNgQd+7cwbVr14rdp7OzM65cuVLkvVhZWaFatWoAyv9ZBYDp06fjyZMnco+B1S2LbUtERERERBXz2VzTDgBVqlQRK7TvdxyrV68OAwMDrF69GjVr1kRmZqZ4rXehxYsXo2bNmmjUqBFUVFSwbds2mJiYFJn8zNvbGxs2bMDgwYOhqqqKPn36YN++fbh58ybatGmD6tWrY//+/SgoKICtrW2FcpY3a3n4+fnhyy+/xPz589GzZ08cOnRI7np2ALCyskJMTAy6d+8OmUyGgICAIp1lc3NznDx5EgMGDICamhoMDQ0xadIkuLq6Ys6cOejfvz/++OMPLF++vMiM6yUZOXIkxo0bJ85qX0gmkyEiIgIdO3ZEmzZt8MMPP8DOzg45OTnYu3cvDh06hBMnThTZ3pgxYxAWFobx48dj3LhxSEtLw+zZs+Hv7w8VFRWcPXsWR48eRefOnWFsbIyzZ8/iwYMHsLe3B/B2Vnc/Pz/o6urCw8MDubm5SEhIwKNHj+Dv7w8fHx/MmDEDI0aMwMyZM5GRkYGFCxfKZQgMDMSLFy/g6ekJMzMzPH78GEuXLsXr16/RqVMnsZ26ujqGDh2KhQsX4unTp/Dz80O/fv3EOQOsrKywYcMGuLi44OnTp5gyZYpcdb1t27Zo06YNevfujUWLFsHKygpXr16FTCZDly5d8P3336N58+YYO3YsRo0aBS0tLaSmpuLw4cNYtmxZhT6rwNtLGt69Jh8AqslKPzFDRERERETl81lV2oG3lXJdXd0iy1VUVLBlyxYkJibCwcEBEydOxIIFC+TaaGtr4+eff4aLiwtcXV2RkZGB/fv3FzuLeZ8+fRAVFYXBgwcjJiYG+vr6iImJQfv27WFvb49Vq1Zh8+bNaNCgQYVyljdreTRv3hxr167FsmXL0KhRIxw6dAgzZ86Ua7N48WJUr14dX375Jbp37w53d3c4OzvLtQkODkZGRgbq1asHIyMjAG+ruVu3bsWWLVvg4OCAWbNmITg4WG4SutIMHDgQqqqq8PHxgbq6uty6pk2bIiEhAfXq1cOoUaNgb2+PHj164MqVKwgLCyt2e7Vr18b+/ftx7tw5ODk5YfTo0WIHG3h7vE+ePAlPT0/Y2Nhg5syZCA0NhYeHBwCIw9kjIyPh6OiItm3bIjIyUqy0a2trY+/evUhJSUHjxo0xY8YM/Pzzz3IZ2rZti5s3b2LIkCGws7ODh4cH7t27h0OHDsl1iK2srNCrVy94enqic+fOcHBwkDvZsX79ejx69AiNGzfG4MGD4efnB2NjY7l97dixA66urhg4cCDq16+PqVOniqMhGjZsiBMnTuD69eto3bo1GjdujICAAHHOg4p+VomIiIiIPgiHx5dKJlTkYlyiT+T27dswNzdHfHx8kZME/2aBgYHYtWsXkpKSpI7yQY7W85Q6QqXZNZE6wYfRMy59vglF9vRhNakjVNrBrbllNyIqxvEevlJHqLR2eyKljlBpOrrKPSKs8/2RUkeotB3q4VJHqDTfK25SR/ggMvuZZTeSiHB3uST7ldUaJ8l+K+qzGh5Piu/169fIysrCtGnT0Lx588+qw05ERERE9FlSoqq3FD674fGk2E6fPg0zMzMkJiZi1apVUschIiIiIiKSFCvtpFDatWtXodun/dsEBgYiMDBQ6hhERERERJ9OMXeFov/DSjsRERERERGRgmKnnYiIiIiIiKgcVqxYAQsLC6irq6NJkyaIjY0t1+tOnz4NVVVVNGrUqML7ZKediIiIiIiIpKMkt3yLjo7Gd999hxkzZuDChQto3bo1PDw8kJmZWerrnjx5giFDhqBDhw6VOjzstBMRERERERGVYdGiRRgxYgRGjhwJe3t7hIWFwdTUFCtXriz1dd988w18fHzQokWLSu2XnXYiIiIiIiKSjhJU2vPy8pCYmIjOnTvLLe/cuTPi4uJKfF1ERATS09Mxe/bsSh0agLPHExERERER0WcoNzcXubm5csvU1NSgpqZWpO3Dhw+Rn5+PGjVqyC2vUaMG7t27V+z2r1+/jmnTpiE2NhaqqpXverPSTkRERERERJ+defPmQU9PT+4xb968Ul8jk8nknguCUGQZAOTn58PHxwdBQUGwsbH5oJystBMREREREZF0JLpP+/Tp0+Hv7y+3rLgqOwAYGhqiSpUqRarq9+/fL1J9B4Bnz54hISEBFy5cwLhx4wAABQUFEAQBqqqqOHToENq3b1+unOy0ExERERER0WenpKHwxalWrRqaNGmCw4cPw9vbW1x++PBheHl5FWmvq6uLS5cuyS1bsWIFjh07hu3bt8PCwqLcOdlpJyIiIiIiIukUCFInKBd/f38MHjwYLi4uaNGiBVavXo3MzEyMHj0awNvK/V9//YVffvkFKioqcHBwkHu9sbEx1NXViywvCzvtRERERERERGXo378/srOzERwcjKysLDg4OGD//v0wMzMDAGRlZZV5z/bKYKediIiIiIiIqBzGjBmDMWPGFLsuMjKy1NcGBgYiMDCwwvtkp52IiIiIiIikI9FEdMqCt3wjIiIiIiIiUlCstBMREREREZF0WGkvFTvtRPTRZd7KlTpCpWXekjrBhxmWO1nqCJWmLXWAD7F1odQJPlsqKjKpI3yQ9vuipI5Qacd6+EododLa7YmUOsIHGd9Pef+d/aaBhtQRKq3jukZSR/ggR/lPldJip52IiIiIiIikoyS3fJMKr2knIiIiIiIiUlDstBMREREREREpKA6PJyIiIiIiIulwIrpSsdJOREREREREpKBYaSciIiIiIiLpsNJeKlbaiYiIiIiIiBQUO+1ERERERERECorD44mIiIiIiEg6vE97qVhpJyIiIiIiIlJQrLQTERERERGRdDgRXalYaSciIiIiIiJSUKy0ExERERERkXR4TXupWGknIiIiIiIiUlDstBMREREREREpKA6PJyIiIiIiIulwIrpSKWylXSaTYdeuXVLH+CCRkZHQ19eXOsYHy8jIgEwmQ1JS0med4d+gov9fBQYGolGjRv9YHiIiIiIiKl2FOu2+vr6QyWQYPXp0kXVjxoyBTCaDr6/vx8pWacqSszjm5uYICwv7pPu8ceMGhg0bhjp16kBNTQ0WFhYYOHAgEhISPmmOitqxYweaNWsGPT096OjooEGDBpg0aZLUsSqk8LMqk8lQtWpVWFpaYvLkyXj+/PkHbbekznZWVhY8PDw+aNtERERERB9VQYE0DyVR4Uq7qakptmzZgpcvX4rLXr16hc2bN6Nu3bofNdyHUJac/5S8vLxytUtISECTJk1w7do1hIeHIyUlBTt37oSdnZ1Cd4CPHDmCAQMGoE+fPjh37hwSExMxd+7ccr9vRdKlSxdkZWXh5s2bCAkJwYoVKzB58uRKbUsQBLx586bE9SYmJlBTU6tsVCIiIiIi+sQq3Gl3dnZG3bp1ERMTIy6LiYmBqakpGjduLC47cOAAWrVqBX19fRgYGKBbt25IT08X1+fl5WHcuHGoWbMm1NXVYW5ujnnz5pW43+DgYNSoUUMcHr1ixQpYW1tDXV0dNWrUQJ8+fSqVszxZC4dmx8TEwM3NDZqamnBycsIff/wht53IyEjUrVsXmpqa8Pb2RnZ2ttz69PR0eHl5oUaNGtDW1oarqyuOHDkirm/Xrh3+/PNPTJw4Uay+FtqxYwcaNGgANTU1mJubIzQ0VG7b5ubmCAkJga+vL/T09DBq1Ci0b98e48aNk2uXnZ0NNTU1HDt2DIIgwNfXF9bW1oiNjUXXrl1Rr149NGrUCLNnz8bu3btL/H2cOHECTZs2hZqaGmrWrIlp06bJdRa3b98OR0dHaGhowMDAAB07dpSrHkdERMDe3h7q6uqws7PDihUr5LZ/7tw5NG7cGOrq6nBxccGFCxfk1u/btw+tWrXClClTYGtrCxsbG/Ts2RPLli0T2xRWm8PDw2FqagpNTU307dsXjx8/FtvEx8ejU6dOMDQ0hJ6eHtq2bYvz58/L7evx48f4+uuvUaNGDairq8PBwQH79u0T18fFxaFNmzbQ0NCAqakp/Pz85N5rWZ9VNTU1mJiYwNTUFD4+Phg0aJA4hH3jxo1wcXGBjo4OTExM4OPjg/v374uvPX78OGQyGQ4ePAgXFxeoqalhw4YNCAoKQnJysvg5ioyMBFB0ePz3338PGxsbaGpqwtLSEgEBAXj9+nVxv3IiIiIiIpJApa5pHzZsGCIiIsTn69evx/Dhw+XaPH/+HP7+/oiPj8fRo0ehoqICb29vFPz/YQhLly7Fnj17sHXrVqSlpWHjxo0wNzcvsi9BEDBhwgSsW7cOp06dQqNGjZCQkAA/Pz8EBwcjLS0NBw4cQJs2bSqVszxZC82YMQOTJ09GUlISbGxsMHDgQLGjevbsWQwfPhxjxoxBUlIS3NzcEBISIvf6nJwceHp64siRI7hw4QLc3d3RvXt3ZGZmAnh7UqFOnToIDg5GVlYWsrKyAACJiYno168fBgwYgEuXLiEwMBABAQFiR6zQggUL4ODggMTERAQEBGDkyJH49ddfkZubK7bZtGkTatWqBTc3NyQlJeHKlSuYNGkSVFSKfhRKuh7/r7/+gqenJ1xdXZGcnIyVK1di3bp14vvNysrCwIEDMXz4cKSmpuL48ePo1asXBOHt/RfXrFmDGTNmYO7cuUhNTcWPP/6IgIAAREVFib+Pbt26wdbWFomJiQgMDCxSeTYxMcGVK1dw+fLlYjMWunHjBrZu3Yq9e/fiwIEDSEpKwtixY8X1z549w9ChQxEbG4szZ87A2toanp6eePbsGQCgoKAAHh4eiIuLw8aNG5GSkoKffvoJVapUAQBcunQJ7u7u6NWrFy5evIjo6GicOnVKPFlS3s/quzQ0NMSOc15eHubMmYPk5GTs2rULt27dKvbSjqlTp2LevHlITU1F586dMWnSJDRo0ED8HPXv37/Yfeno6CAyMhIpKSlYsmQJ1qxZg8WLF5eaj4iIiIjoYxIEQZKHsqjU7PGDBw/G9OnTxQr06dOnsWXLFhw/flxs07t3b7nXrFu3DsbGxkhJSYGDgwMyMzNhbW2NVq1aQSaTwczMrMh+3rx5gyFDhiAhIQGnT59GnTp1AACZmZnQ0tJCt27doKOjAzMzsyLV8/LmLE/WQpMnT0bXrl0BAEFBQWjQoAFu3LgBOzs7LFmyBO7u7pg2bRoAwMbGBnFxcThw4ID4eicnJzg5OYnPQ0JCsHPnTuzZswfjxo3DF198gSpVqohV1UKLFi1Chw4dEBAQIG47JSUFCxYskOvAtW/fXq5za2pqivHjx2P37t3o168fgLcV7sLrqK9fvw4AsLOzK3LsSrNixQqYmppi+fLlkMlksLOzw927d/H9999j1qxZyMrKwps3b9CrVy/x9+ro6Ci+fs6cOQgNDUWvXr0AABYWFkhJSUF4eDiGDh2KTZs2IT8/H+vXr4empiYaNGiAO3fu4NtvvxW3MX78eMTGxsLR0RFmZmZo3rw5OnfujEGDBskN/3716hWioqLEz86yZcvQtWtXhIaGwsTEBO3bt5d7b+Hh4ahevTpOnDiBbt264ciRIzh37hxSU1NhY2MDALC0tBTbL1iwAD4+Pvjuu+8AANbW1li6dCnatm2LlStXlvuzWujcuXP49ddf0aFDBwCQO8lkaWmJpUuXomnTpsjJyYG2tra4Ljg4GJ06dRKfa2trQ1VVVe5zVJyZM2eKP5ubm2PSpEmIjo7G1KlTS30dERERERF9GpWqtBsaGqJr166IiopCREQEunbtCkNDQ7k26enp8PHxgaWlJXR1dWFhYQEAYlXZ19cXSUlJsLW1hZ+fHw4dOlRkPxMnTsQff/yB2NhYsdMFAJ06dYKZmRksLS0xePBgbNq0CS9evKhUzvJkLdSwYUPx55o1awKAOFQ5NTUVLVq0kGv//vPnz59j6tSpqF+/PvT19aGtrY2rV68W2c/7UlNT0bJlS7llLVu2xPXr15Gfny8uc3FxkWujpqaGr776CuvXrwcAJCUlITk5WezoF55dencYfnkUvtd3X9eyZUvk5OTgzp07cHJyQocOHeDo6Ii+fftizZo1ePToEQDgwYMHuH37NkaMGAFtbW3xERISIl6SkJqaCicnJ2hqaorbf/9Yamlp4bfffsONGzcwc+ZMaGtrY9KkSWjatKncZ6Fu3bpyn50WLVqgoKAAaWlpAN7+/kaPHg0bGxvo6elBT08POTk54u8kKSkJderUETvs70tMTERkZKTce3F3d0dBQQFu3bpVrs/qvn37oK2tDXV1dbRo0QJt2rQRh/lfuHABXl5eMDMzg46ODtq1aweg6Gfz/d99eW3fvh2tWrWCiYkJtLW1ERAQUObn8X25ubl4+vSp3OO1oDwTexARERGRxDgRXakqfcu34cOHIzIyElFRUcUOOe/evTuys7OxZs0anD17FmfPngXwfxOkOTs749atW5gzZw5evnyJfv36FbnWt1OnTvjrr79w8OBBueU6Ojo4f/48Nm/ejJo1a2LWrFlwcnKSu1a5vDnLk7VQ1apVxZ8LO6yFQ+jLM7xiypQp2LFjB+bOnYvY2FgkJSXB0dGxzMnTBEEo0rEubn9aWlpFlo0cORKHDx/GnTt3sH79enTo0EGsfhd2RFNTU8vMXt48MpkMVapUweHDh/H777+jfv36WLZsGWxtbXHr1i3xeK1ZswZJSUni4/Llyzhz5kyJ760k9erVw8iRI7F27VqcP38eKSkpiI6OLrF9Ye7C//r6+iIxMRFhYWGIi4tDUlISDAwMxN+JhoZGqfsvKCjAN998I/dekpOTcf36ddSrV69cn9XCSxXS0tLw6tUrxMTEwNjYGM+fP0fnzp2hra2NjRs3Ij4+Hjt37gRQ9LNZ3O++LGfOnMGAAQPg4eGBffv24cKFC5gxY0aFJ/ObN2+eeMKj8PEbMiqch4iIiIiIiqp0p71Lly7Iy8tDXl4e3N3d5dZlZ2cjNTUVM2fORIcOHWBvby9WWt+lq6uL/v37Y82aNYiOjsaOHTvw999/i+t79OiBX3/9FSNHjsSWLVvkXquqqoqOHTti/vz5uHjxIjIyMnDs2LEK5axI1rLUr19f7HQWev95bGwsfH194e3tDUdHR5iYmCAjI0OuTbVq1eSq54XbPnXqlNyyuLg42NjYiNdWl8TR0REuLi5Ys2YNfv31V7kTF40aNUL9+vURGhpa5Pp9AMWeBCnMExcXJ9e5jouLg46ODmrXrg3gbae4ZcuWCAoKwoULF1CtWjXs3LkTNWrUQO3atXHz5k1YWVnJPQpHONSvXx/JyclyM/+/fyyLY25uDk1NTblJ4DIzM3H37l3x+R9//AEVFRXxhEVsbCz8/Pzg6ekpTvT38OFDsX3Dhg1x584dXLt2rdh9Ojs748qVK0Xei5WVFapVqwag7M+qlpYWrKysYGZmJndi6OrVq3j48CF++ukntG7dGnZ2dnKT0JWmuM/R+06fPg0zMzPMmDEDLi4usLa2xp9//lmu7b9r+vTpePLkidyjK8wrvB0iIiIi+kyx0l6qSl3TDgBVqlQRK7TvdxyrV68OAwMDrF69GjVr1kRmZqZ4rXehxYsXo2bNmmjUqBFUVFSwbds2mJiYFJn8zNvbGxs2bMDgwYOhqqqKPn36YN++fbh58ybatGmD6tWrY//+/SgoKICtrW2FcpY3a3n4+fnhyy+/xPz589GzZ08cOnRI7np2ALCyskJMTAy6d+8OmUyGgICAIp1lc3NznDx5EgMGDICamhoMDQ0xadIkuLq6Ys6cOejfvz/++OMPLF++vMiM6yUZOXIkxo0bJ85qX0gmkyEiIgIdO3ZEmzZt8MMPP8DOzg45OTnYu3cvDh06hBMnThTZ3pgxYxAWFobx48dj3LhxSEtLw+zZs+Hv7w8VFRWcPXsWR48eRefOnWFsbIyzZ8/iwYMHsLe3B/B2Vnc/Pz/o6urCw8MDubm5SEhIwKNHj+Dv7w8fHx/MmDEDI0aMwMyZM5GRkYGFCxfKZQgMDMSLFy/g6ekJMzMzPH78GEuXLsXr16/lru1WV1fH0KFDsXDhQjx9+hR+fn7o16+feK23lZUVNmzYABcXFzx9+hRTpkyRq663bdsWbdq0Qe/evbFo0SJYWVnh6tWrkMlk6NKlC77//ns0b94cY8eOxahRo6ClpYXU1FQcPnwYy5Ytq9Bn9X1169ZFtWrVsGzZMowePRqXL1/GnDlzyvU7Nzc3x61bt8Th/To6OkVu9WZlZYXMzExs2bIFrq6u+O2338RKfkWoqakV2XZVWaXPBxIRERER0Ts+6Ju1rq4udHV1i25URQVbtmxBYmIiHBwcMHHiRCxYsECujba2Nn7++We4uLjA1dUVGRkZ2L9/f7GzmPfp0wdRUVEYPHgwYmJioK+vj5iYGLRv3x729vZYtWoVNm/ejAYNGlQoZ3mzlkfz5s2xdu1aLFu2DI0aNcKhQ4fkJvkC3p6oqF69Or788kt0794d7u7ucHZ2lmsTHByMjIwM1KtXD0ZGRgDeVnO3bt2KLVu2wMHBAbNmzUJwcHCxs4gXZ+DAgVBVVYWPjw/U1dXl1jVt2hQJCQmoV68eRo0aBXt7e/To0QNXrlxBWFhYsdurXbs29u/fj3PnzsHJyQmjR48WO9jA2+N98uRJeHp6wsbGBjNnzkRoaCg8PDwAQBzOHhkZCUdHR7Rt2xaRkZFipV1bWxt79+5FSkoKGjdujBkzZuDnn3+Wy9C2bVvcvHkTQ4YMgZ2dHTw8PHDv3j0cOnRIrkNsZWWFXr16wdPTE507d4aDg4PcyY7169fj0aNHaNy4MQYPHgw/Pz8YGxvL7WvHjh1wdXXFwIEDUb9+fUydOlWsYjds2BAnTpzA9evX0bp1azRu3BgBAQHinAcV/ay+y8jICJGRkdi2bRvq16+Pn376qcjJi5L07t0bXbp0gZubG4yMjLB58+Yibby8vDBx4kSMGzcOjRo1QlxcnDjZIRERERERKQaZoExz3VOl3L59G+bm5oiPjy9ykuDfLDAwELt27UJSUpLUUT47ESodpI7w2RqWO7nsRvTRRaiV74QafXwqKhWbTJU+nmPdhkododLa7YmUOsIHOd7DV+oIlfZNeslzDym6APfRUkf4IEcXdpM6QokKTvpLsl+VNosk2W9FVXp4PCm+169fIysrC9OmTUPz5s0/qw47ERERERHRvwE77f9ip0+fhpubG2xsbLB9+3ap4xARERERERWlRJPCSYGd9n+xdu3aVej2af82gYGBCAwMlDoGERERERFRpXGKZyIiIiIiIiIFxUo7ERERERERSYfD40vFSjsRERERERGRgmKlnYiIiIiIiKRT8PnOw1UerLQTERERERERKShW2omIiIiIiEg6vKa9VKy0ExERERERESkodtqJiIiIiIiIFBSHxxMREREREZF0ODy+VKy0ExERERERESkoVtqJiIiIiIhIOrzlW6lYaSciIiIiIiJSUOy0ExERERERESkoDo8nIiIiIiIi6XAiulKx0k5ERERERESkoFhpJyIiIiIiIumw0l4qdtqJ6KPrO0YmdYRKy5nfX+oIH2TM2UdSR/gsBT4fJHWED6IdtE3qCJU2wWOI1BE+SPf+UVJHqLR2eyKljlBpx3v4Sh3hg3Q++IvUESqtxR3l/Xu51neV1BE+UDepA1AlsdNORERERERE0uEt30rFa9qJiIiIiIiIFBQ77UREREREREQKisPjiYiIiIiISDqciK5UrLQTERERERERKShW2omIiIiIiEgyQj4noisNK+1ERERERERECoqddiIiIiIiIiIFxeHxREREREREJB3ep71UrLQTERERERERKShW2omIiIiIiEg6nIiuVKy0ExERERERESkoVtqJiIiIiIhIMgKvaS8VK+1ERERERERECoqddiIiIiIiIiIFxU470b/YvXv30KlTJ2hpaUFfX1/qOEREREREReUL0jyUBDvt9NH4+vpCJpNBJpNBVVUVdevWxbfffotHjx59lO3LZDLs2rXro2zrU6pMbkEQsHr1ajRr1gza2trQ19eHi4sLwsLC8OLFi3JvZ/HixcjKykJSUhKuXbtWweRERERERCQ1TkRHH1WXLl0QERGBN2/eICUlBcOHD8fjx4+xefNmqaNVyOvXr1G1alXJ9j948GDExMRg5syZWL58OYyMjJCcnIywsDCYm5ujZ8+e5dpOeno6mjRpAmtr6382MBERERFRZeUXSJ1AobHSTh+VmpoaTExMUKdOHXTu3Bn9+/fHoUOHxPURERGwt7eHuro67OzssGLFCnFdXl4exo0bh5o1a0JdXR3m5uaYN28eAMDc3BwA4O3tDZlMJj5PT0+Hl5cXatSoAW1tbbi6uuLIkSNymYqrdOvr6yMyMhIAkJGRAZlMhq1bt6Jdu3ZQV1fHxo0bkZ2djYEDB6JOnTrQ1NSEo6NjkZMP7dq1g5+fH6ZOnYovvvgCJiYmCAwMFNeXlDs5ORlubm7Q0dGBrq4umjRpgoSEBADA1q1bsWnTJmzevBk//PADXF1dYW5uDi8vLxw7dgxubm4AgPj4eHTq1AmGhobQ09ND27Ztcf78ebl979ixA7/88gtkMhl8fX0BAE+ePMHXX38NY2Nj6Orqon379khOThZfV1o2IiIiIiL6tNhpp3/MzZs3ceDAAbFivWbNGsyYMQNz585FamoqfvzxRwQEBCAqKgoAsHTpUuzZswdbt25FWloaNm7cKHZy4+PjAbzt9GdlZYnPc3Jy4OnpiSNHjuDChQtwd3dH9+7dkZmZWeG833//Pfz8/JCamgp3d3e8evUKTZo0wb59+3D58mV8/fXXGDx4MM6ePSv3uqioKGhpaeHs2bOYP38+goODcfjw4VJzDxo0CHXq1EF8fDwSExMxbdo08Tht2rQJtra28PLyKpJRJpNBT08PAPDs2TMMHToUsbGxOHPmDKytreHp6Ylnz56J++7SpQv69euHrKwsLFmyBIIgoGvXrrh37x7279+PxMREODs7o0OHDvj777/LzEZERERERJ8Wh8fTR7Vv3z5oa2sjPz8fr169AgAsWrQIADBnzhyEhoaiV69eAAALCwukpKQgPDwcQ4cORWZmJqytrdGqVSvIZDKYmZmJ2zUyMgLwtkJuYmIiLndycoKTk5P4PCQkBDt37sSePXswbty4CmX/7rvvxGyFJk+eLP48fvx4HDhwANu2bUOzZs3E5Q0bNsTs2bMBANbW1li+fDmOHj2KTp06lZg7MzMTU6ZMgZ2dnfi6QtevX4etrW2Zedu3by/3PDw8HNWrV8eJEyfQrVs3GBkZQU1NDRoaGuK+jx07hkuXLuH+/ftQU1MDACxcuBC7du3C9u3b8fXXX5eajYiIiIjoY+N92kvHTjt9VG5ubli5ciVevHiBtWvX4tq1axg/fjwePHiA27dvY8SIERg1apTY/s2bN2Ll2NfXF506dYKtrS26dOmCbt26oXPnzqXu7/nz5wgKCsK+fftw9+5dvHnzBi9fvqxUpd3FxUXueX5+Pn766SdER0fjr7/+Qm5uLnJzc6GlpSXXrmHDhnLPa9asifv375e6L39/f4wcORIbNmxAx44d0bdvX9SrVw/A20noZDJZmXnv37+PWbNm4dixY/jf//6H/Px8vHjxotT3npiYiJycHBgYGMgtf/nyJdLT08vMVpzC4/Ku1/kFUKvCgTxERERERB+K36rpo9LS0oKVlRUaNmyIpUuXIjc3F0FBQSgoeDu5xJo1a5CUlCQ+Ll++jDNnzgAAnJ2dcevWLcyZMwcvX75Ev3790KdPn1L3N2XKFOzYsQNz585FbGwskpKS4OjoiLy8PLGNTCaDIMifvXv9+nWx2d8VGhqKxYsXY+rUqTh27BiSkpLg7u4ut20ARYaOy2Qy8f2WJDAwEFeuXEHXrl1x7Ngx1K9fHzt37gQA2NjYIDU1tdTXA29PciQmJiIsLAxxcXFISkqCgYFBkXzvKigoQM2aNeV+B0lJSUhLS8OUKVPKzFacefPmQU9PT+4RmphRZn4iIiIiIgC85VsZ2Gmnf9Ts2bOxcOFC5Ofno3bt2rh58yasrKzkHhYWFmJ7XV1d9O/fH2vWrEF0dDR27NghXmtdtWpV5Ofny20/NjYWvr6+8Pb2hqOjI0xMTJCRkSHXxsjICFlZWeLz69evl+u2abGxsfDy8sJXX30FJycnWFpa4vr16xU+BsXlBt52zidOnIhDhw6hV69eiIiIAAD4+Pjg2rVr2L17d5HXCIKAJ0+eiPn8/Pzg6emJBg0aQE1NDQ8fPiw1i7OzM+7duwdVVdUivwdDQ8MysxVn+vTpePLkidxjUhPz8hwaIiIiIiIqAzvt9I9q164dGjRogB9//BGBgYGYN28elixZgmvXruHSpUuIiIgQr3lfvHgxtmzZgqtXr+LatWvYtm0bTExMoK+vD+DtbOhHjx7FvXv3xHu/W1lZISYmBklJSUhOToaPj0+RKnf79u2xfPlynD9/HgkJCRg9enS5JlazsrLC4cOHERcXh9TUVHzzzTe4d+9ehY/B+7lfvnyJcePG4fjx4/jzzz9x+vRpxMfHw97eHgDQr18/9O/fHwMHDsS8efOQkJCAP//8E/v27UPHjh3x3//+V8y3YcMGpKam4uzZsxg0aBA0NDRKzdKxY0e0aNECPXv2xMGDB5GRkYG4uDjMnDkTCQkJZWYrjpqaGnR1deUeHBpPRERERPRx8Js1/eP8/f2xZs0auLu7Y+3atYiMjISjoyPatm2LyMhIsdKura2Nn3/+GS4uLnB1dUVGRgb2798PFZW3H9PQ0FAcPnwYpqamaNy4MYC3Hf3q1avjyy+/RPfu3eHu7g5nZ2e5/YeGhsLU1BRt2rSBj48PJk+eDE1NzTJzBwQEwNnZGe7u7mjXrh1MTEzKfX/09/f/bu4qVaogOzsbQ4YMgY2NDfr16wcPDw8EBQUBeDu8/tdff8WiRYuwc+dOtG3bFg0bNkRgYCC8vLzg7u4OAFi/fj0ePXqExo0bY/DgwfDz84OxsXGpWWQyGfbv3482bdpg+PDhsLGxwYABA5CRkYEaNWqUmY2IiIiI6KMrEKR5KAmZ8P7FvkREHyhnXEepI1Razvz+Ukf4IMHntcpuRB9dYJNXUkf4INpB26SOUGkTPIZIHeGDdO8fJXWESsu+X3R+GGVxvIev1BE+SOeDv0gdodJ87gySOkKlZfhulzrCB7HYu0/qCCV6vVKa719Vv42WZL8VxdnjiYiIiIiISDKCEk0KJwUOjyciIiIiIiJSUKy0ExERERERkXTKuF3y546VdiIiIiIiIiIFxU47ERERERERkYLi8HgiIiIiIiKSDieiKxUr7UREREREREQKipV2IiIiIiIikoxQwEp7aVhpJyIiIiIiIlJQ7LQTERERERERKSgOjyciIiIiIiLpcCK6UrHSTkRERERERKSgWGknIiIiIiIi6bDSXipW2omIiIiIiIgUFCvtREREREREJBne8q10rLQTERERERERKSh22omIiIiIiIgUFIfHExERERERkXTyC6ROoNBYaSciIiIiIiJSUKy0E9FHd2hzFakjVFrrZzukjvBB/hPaT+oIn6VIrU1SR/ggzdvoSB2h0uZk/iJ1hA9icmOU1BEqTci6JnWESlOxj5I6wgc51G2o1BEqzXPaBqkjVNq1FV9JHeGDWEgdoBSciK50rLQTERERERERKSh22omIiIiIiIgUFIfHExERERERkXTyOTy+NKy0ExERERERESkoVtqJiIiIiIhIOpyIrlSstBMREREREREpKFbaiYiIiIiISDICr2kvFSvtRERERERERAqKnXYiIiIiIiIiBcXh8URERERERCQdTkRXKlbaiYiIiIiIiBQUK+1EREREREQknfwCqRMoNFbaiYiIiIiIiBQUO+1ERERERERECoqddiIiIiIiIpKMUCBI8qiMFStWwMLCAurq6mjSpAliY2NLbBsTE4NOnTrByMgIurq6aNGiBQ4ePFjhfbLTTkRERERERFSG6OhofPfdd5gxYwYuXLiA1q1bw8PDA5mZmcW2P3nyJDp16oT9+/cjMTERbm5u6N69Oy5cuFCh/bLTTlQB9+7dQ6dOnaClpQV9fX2p41SYr68vevbsWe72GRkZkMlkSEpK+scyEREREdFnLl+Q5lFBixYtwogRIzBy5EjY29sjLCwMpqamWLlyZbHtw8LCMHXqVLi6usLa2ho//vgjrK2tsXfv3grtl512Bebr6wuZTAaZTAZVVVXUrVsX3377LR49evRRti+TybBr166Psq1PqTK5BUHA6tWr0axZM2hra0NfXx8uLi4ICwvDixcvyr2dxYsXIysrC0lJSbh27VoFkxd1/Phx8Xcsk8lgZGQEDw8PJCcnf9B2S+psL1myBJGRkR+0bSIiIiKif4Pc3Fw8ffpU7pGbm1ts27y8PCQmJqJz585yyzt37oy4uLhy7a+goADPnj3DF198UaGc7LQruC5duiArKwsZGRlYu3Yt9u7dizFjxkgdq8Jev34t6f4HDx6M7777Dl5eXvjvf/+LpKQkBAQEYPfu3Th06FC5t5Oeno4mTZrA2toaxsbGHy1fWloasrKy8Ntvv+HRo0fo0qULnjx5Uqlt5eXllbhOT09PKUcIEBEREdG/l1AgzWPevHnQ09OTe8ybN6/YjA8fPkR+fj5q1Kght7xGjRq4d+9eud5naGgonj9/jn79+lXo+LDTruDU1NRgYmKCOnXqoHPnzujfv79cJzMiIgL29vZQV1eHnZ0dVqxYIa7Ly8vDuHHjULNmTairq8Pc3Fz8EJqbmwMAvL29IZPJxOfp6enw8vJCjRo1oK2tDVdXVxw5ckQuU3GVbn19fbGCW1jl3bp1K9q1awd1dXVs3LgR2dnZGDhwIOrUqQNNTU04Ojpi8+bNcttp164d/Pz8MHXqVHzxxRcwMTFBYGCguL6k3MnJyXBzc4OOjg50dXXRpEkTJCQkAAC2bt2KTZs2YfPmzfjhhx/g6uoKc3NzeHl54dixY3BzcwMAxMfHo1OnTjA0NISenh7atm2L8+fPy+17x44d+OWXXyCTyeDr6wsAePLkCb7++msYGxtDV1cX7du3l6uUl5atkLGxMUxMTNC0aVOEhobi3r17OHPmTLl+H+bm5ggJCYGvry/09PQwatQoWFhYAAAaN24MmUyGdu3aASg6PP7AgQNo1aoV9PX1YWBggG7duiE9PR1ERERERP9206dPx5MnT+Qe06dPL/U1MplM7rkgCEWWFWfz5s0IDAxEdHR0hYt/7LQrkZs3b+LAgQOoWrUqAGDNmjWYMWMG5s6di9TUVPz4448ICAhAVFQUAGDp0qXYs2cPtm7dirS0NGzcuFHs5MbHxwN42+nPysoSn+fk5MDT0xNHjhzBhQsX4O7uju7du5c4uUJpvv/+e/j5+SE1NRXu7u549eoVmjRpgn379uHy5cv4+uuvMXjwYJw9e1budVFRUdDS0sLZs2cxf/58BAcH4/Dhw6XmHjRoEOrUqYP4+HgkJiZi2rRp4nHatGkTbG1t4eXlVSSjTCaDnp4eAODZs2cYOnQoYmNjcebMGVhbW8PT0xPPnj0T992lSxf069cPWVlZWLJkCQRBQNeuXXHv3j1xgglnZ2d06NABf//9d5nZiqOhoQHg7eiE8v4+FixYAAcHByQmJiIgIADnzp0DABw5cgRZWVmIiYkpdl/Pnz+Hv78/4uPjcfToUaioqMDb2xsFBQUl5iMiIiIi+jdQU1ODrq6u3ENNTa3YtoaGhqhSpUqRqvr9+/eLVN/fFx0djREjRmDr1q3o2LFjhXOqVvgV9Ent27cP2trayM/Px6tXrwC8nQABAObMmYPQ0FD06tULAGBhYYGUlBSEh4dj6NChyMzMhLW1NVq1agWZTAYzMzNxu0ZGRgDeVshNTEzE5U5OTnBychKfh4SEYOfOndizZw/GjRtXoezfffedmK3Q5MmTxZ/Hjx+PAwcOYNu2bWjWrJm4vGHDhpg9ezYAwNraGsuXL8fRo0fF2yUUlzszMxNTpkyBnZ2d+LpC169fh62tbZl527dvL/c8PDwc1atXx4kTJ9CtWzcYGRlBTU0NGhoa4r6PHTuGS5cu4f79++L/4AsXLsSuXbuwfft2fP3116Vme192djaCgoKgo6ODpk2bwtjYuFy/j/bt28sd24yMDACAgYGB3HF6X+/eveWer1u3DsbGxkhJSYGDg0Nph4uIiIiI6KMQCsquVEutWrVqaNKkCQ4fPgxvb29x+eHDh4stDhbavHkzhg8fjs2bN6Nr166V2jcr7QrOzc0NSUlJOHv2LMaPHw93d3eMHz8eDx48wO3btzFixAhoa2uLj5CQEHF4s6+vL5KSkmBraws/P79yXbv9/PlzTJ06FfXr14e+vj60tbVx9erVSlXaXVxc5J7n5+dj7ty5aNiwIQwMDKCtrY1Dhw4V2XbDhg3lntesWRP3798vdV/+/v4YOXIkOnbsiJ9++kluiHd5h6zcv38fo0ePho2NjXhNS05OTqnvPTExETk5OeL7KXzcunVLzFBatkJ16tSBtrY2DA0NkZqaim3btsHY2Ljcv4/3j3V5paenw8fHB5aWltDV1RWH1Vfk913cBB6vBVbqiYiIiOjfxd/fH2vXrsX69euRmpqKiRMnIjMzE6NHjwbwdrj9kCFDxPabN2/GkCFDEBoaiubNm+PevXu4d+9eheeuYqVdwWlpacHKygrA2+Hubm5uCAoKEqusa9askatSA0CVKlUAAM7Ozrh16xZ+//13HDlyBP369UPHjh2xffv2Evc3ZcoUHDx4EAsXLoSVlRU0NDTQp08fucnNZDIZBEH+FgnFTTSnpaUl9zw0NBSLFy9GWFgYHB0doaWlhe+++67IxGnvDx2XyWRlDtcODAyEj48PfvvtN/z++++YPXs2tmzZAm9vb9jY2CA1NbXU1wNvT3I8ePAAYWFhMDMzg5qaGlq0aFHqxG4FBQWoWbMmjh8/XmRd4YRvpWUrFBsbC11dXRgZGUFXV1dcXp7fB1D0WJdX9+7dYWpqijVr1qBWrVooKCiAg4NDqe/5ffPmzUNQUJDcsn7qluivaVWpTERERET0eVGWKzP79++P7OxsBAcHIysrCw4ODti/f784ojkrK0uu+BUeHo43b95g7NixGDt2rLh86NChFbqjEzvtSmb27Nnw8PDAt99+i9q1a+PmzZsYNGhQie11dXXRv39/9O/fH3369EGXLl3w999/44svvkDVqlWRn58v1z42Nha+vr5ihzInJ0ccal3IyMgIWVlZ4vPr16+X67ZpsbGx8PLywldffQXgbYf3+vXrsLe3L+/bB4BicwOAjY0NbGxsMHHiRAwcOBARERHw9vaGj48PBgwYgN27dxcZuiIIAp4+fQo9PT3ExsZixYoV8PT0BADcvn0bDx8+LDWLs7Mz7t27B1VVVXG+gOKUlK2QhYVFsbO6l+f3UZxq1aoBQLHHqVB2djZSU1MRHh6O1q1bAwBOnTpV5rbfN336dPj7+8st+928dwmtiYiIiIiU15gxY0q8m9f7HfHiCnuVweHxSqZdu3Zo0KABfvzxRwQGBmLevHlYsmQJrl27hkuXLiEiIkK85n3x4sXYsmULrl69imvXrmHbtm0wMTERO4fm5uY4evQo7t27J9773crKCjExMUhKSkJycjJ8fHyKVLnbt2+P5cuX4/z580hISMDo0aNLnVitkJWVFQ4fPoy4uDikpqbim2++KfftEd71fu6XL19i3LhxOH78OP7880+cPn0a8fHx4smAfv36oX///hg4cCDmzZuHhIQE/Pnnn9i3bx86duyI//73v2K+DRs2IDU1FWfPnsWgQYPESeFK0rFjR7Ro0QI9e/bEwYMHkZGRgbi4OMycORMJCQllZivPMSvr91EcY2NjaGho4MCBA/jf//5X7BCc6tWrw8DAAKtXr8aNGzdw7NixIp3v8ihuAo+qMv5pISIiIiL6GPjNWgn5+/tjzZo1cHd3x9q1axEZGQlHR0e0bdsWkZGR4nXJ2tra+Pnnn+Hi4gJXV1dkZGRg//79UFF5+2sPDQ3F4cOHYWpqisaNGwN429GvXr06vvzyS3Tv3h3u7u5wdnaW239oaChMTU3Rpk0b+Pj4YPLkydDU1Cwzd0BAAJydneHu7o527drBxMRE7vZj5fV+7ipVqiA7OxtDhgyBjY0N+vXrBw8PD3HItkwmw6+//opFixZh586daNu2LRo2bIjAwEB4eXnB3d0dALB+/Xo8evQIjRs3xuDBg+Hn51fm7RhkMhn279+PNm3aYPjw4bCxscGAAQOQkZGBGjVqlJmtLOX5fRRHVVUVS5cuRXh4OGrVqlXs5BgqKirYsmULEhMT4eDggIkTJ2LBggXlykVERERE9LEIgkySh7KQCe9fnExE9IFiDNyljlBprbspzx/w4hiG9pM6wmcp0niT1BE+SPM2OlJHqLTqtXKljvBBTFaPlDpCpQlZ16SOUGm/2B+VOsIHOdZtqNQRKi3MaIPUESrt3KyvpI7wQdxNh5TdSCKPv+ksyX71w8ueqFsR8Jp2IiIiIiIikgxvPFQ6Do8nIiIiIiIiUlCstBMREREREZFkhALlvjzxn8ZKOxEREREREZGCYqediIiIiIiISEFxeDwRERERERFJpoAT0ZWKlXYiIiIiIiIiBcVKOxEREREREUmGE9GVjpV2IiIiIiIiIgXFTjsRERERERGRguLweCIiIiIiIpKMwInoSsVKOxEREREREZGCYqWdiIiIiIiIJCMInIiuNKy0ExERERERESkoVtqJiIiIiIhIMrymvXSstBMREREREREpKHbaiYiIiIiIiBQUh8cTERERERGRZAoKOBFdadhpJ6KP7smjN1JHqDT/gaOljvBBVEa+kjrCZylie12pI3yQN159pY5QaV2n5Esd4YP46IZJHaHSrO01pI5QaV1zBksd4YMMefpS6giV5vu18h77zja/SB3hw7wcInUCqiR22omIiIiIiEgynIiudLymnYiIiIiIiEhBsdNOREREREREpKA4PJ6IiIiIiIgkI3AiulKx0k5ERERERESkoFhpJyIiIiIiIslwIrrSsdJOREREREREpKDYaSciIiIiIiJSUBweT0RERERERJIRBE5EVxpW2omIiIiIiIgUFCvtREREREREJJkCTkRXKlbaiYiIiIiIiBQUK+1EREREREQkGd7yrXSstBMREREREREpKHbaiYiIiIiIiBQUh8cTERERERGRZIQC3vKtNKy0E5WDTCbDrl27pI5RRFm5zM3NERYW9snyEBERERHRx8VKO30WZLLSz94NHToUkZGRnybMJxQfHw8tLS2pYxARERERlYgT0ZWOnXb6LGRlZYk/R0dHY9asWUhLSxOXaWhoSBGr0vLy8lCtWrUy2xkZGX2CNERERERE9E/h8Hj6LJiYmIgPPT09yGQyuWUnT55EkyZNoK6uDktLSwQFBeHNmzclbu+vv/5C//79Ub16dRgYGMDLywsZGRkAgEuXLkFFRQUPHz4EADx69AgqKiro27ev+Pp58+ahRYsW4vMTJ06gadOmUFNTQ82aNTFt2jS5/bdr1w7jxo2Dv78/DA0N0alTp2JzBQcHo0aNGkhKSgJQdHi8TCbD2rVr4e3tDU1NTVhbW2PPnj1y29izZw+sra2hoaEBNzc3REVFQSaT4fHjx+U51ERERERE9BGx006fvYMHD+Krr76Cn58fUlJSEB4ejsjISMydO7fY9i9evICbmxu0tbVx8uRJnDp1Ctra2ujSpQvy8vLg4OAAAwMDnDhxAgBw8uRJGBgY4OTJk+I2jh8/jrZt2wJ4ewLA09MTrq6uSE5OxsqVK7Fu3TqEhITI7TcqKgqqqqo4ffo0wsPD5dYJgoAJEyZg3bp1OHXqFBo1alTi+w0KCkK/fv1w8eJFeHp6YtCgQfj7778BABkZGejTpw969uyJpKQkfPPNN5gxY0aFjykRERERUXkVFMgkeSgLdtrpszd37lxMmzYNQ4cOhaWlJTp16oQ5c+YU6RgX2rJlC1RUVLB27Vo4OjrC3t4eERERyMzMxPHjxyGTydCmTRscP34cwNsO+tChQ1FQUICUlBS8efMGcXFxaNeuHQBgxYoVMDU1xfLly2FnZ4eePXsiKCgIoaGhKCj4vwt8rKysMH/+fNja2sLOzk5c/ubNGwwZMgSHDh3C6dOnYW1tXer79fX1xcCBA2FlZYUff/wRz58/x7lz5wAAq1atgq2tLRYsWABbW1sMGDAAvr6+lT+4RERERET0QXhNO332EhMTER8fL1dZz8/Px6tXr/DixQtoamoWaX/jxg3o6OjILX/16hXS09MBvB3Ovnr1agBvh77PmTMHt27dwokTJ/DkyRO8fPkSLVu2BACkpqaiRYsWcpPltWzZEjk5Obhz5w7q1q0LAHBxcSk2/8SJE6GmpoYzZ87A0NCwzPfbsGFD8WctLS3o6Ojg/v37AIC0tDS4urrKtW/atGmp28vNzUVubq7cstdCAarKeE6QiIiIiMrGiehKx047ffYKCgoQFBSEXr16FVmnrq5ebPsmTZpg06ZNRdYVTvzWrl07TJgwATdu3MDly5fRunVrpKen48SJE3j8+DGaNGkidvoFQSgyu70gCADkZ70vaRb4Tp06YfPmzTh48CAGDRpU5vutWrWq3HOZTCZW9EvLUpJ58+YhKChIblkPmKMnLMvMQkREREREpWOnnT57zs7OSEtLg5WVVbnbR0dHw9jYGLq6usW2KbyuPSQkBE5OTtDV1UXbtm0xb948PHr0SLyeHQDq16+PHTt2yHWY4+LioKOjg9q1a5eZp0ePHujevTt8fHxQpUoVDBgwoFzvozh2dnbYv3+/3LKEhIRSXzN9+nT4+/vLLdui51XpDERERET0eREE5bm+XAocv0qfvVmzZuGXX35BYGAgrly5gtTUVERHR2PmzJnFth80aBAMDQ3h5eWF2NhYcdj7hAkTcOfOHQAQr2vfuHGjeO16w4YNkZeXh6NHj4rLAGDMmDG4ffs2xo8fj6tXr2L37t2YPXs2/P39oaJSvv9Fvb29sWHDBgwbNgzbt2+v9LH45ptvcPXqVXz//fe4du0atm7dKt6/vqR73aupqUFXV1fuwaHxREREREQfB79Z02fP3d0d+/btw+HDh+Hq6ormzZtj0aJFMDMzK7a9pqYmTp48ibp166JXr16wt7fH8OHD8fLlS7nKu5ubG/Lz88UOukwmQ+vWrQEArVq1EtvVrl0b+/fvx7lz5+Dk5ITRo0djxIgRJZ40KEmfPn0QFRWFwYMHIyYmpoJH4S0LCwts374dMTExaNiwIVauXCnOHq+mplapbRIRERERUeXJhLIuWCWiz9rcuXOxatUq3L59u9yviVDp8A8m+mcd2z9a6ggfRGXVK6kjfJYihhyTOsIHeePVV+oIldZ1Sr7UET6IT1iY1BEqzdpeQ+oIlWaXqLyfeQAweJpbdiMF5fu18n5uOh/8ReoIH2TQy8NSRyjR1fbSXFppd2y3JPutKF7TTkRyVqxYAVdXVxgYGOD06dNYsGABxo0bJ3UsIiIiIqLPEjvtRCTn+vXrCAkJwd9//426deti0qRJmD59utSxiIiIiOhfSijgRHSlYaediOQsXrwYixcvljoGERERERGBE9ERERERERERKSxW2omIiIiIiEgyBQVSJ1BsrLQTERERERERKShW2omIiIiIiEgyBfm8C3lpWGknIiIiIiIiUlCstBMREREREZFkeE176VhpJyIiIiIiIlJQ7LQTERERERERKSgOjyciIiIiIiLJ5BdwIrrSsNJOREREREREpKBYaSciIiIiIiLJFORLnUCxsdJOREREREREpKDYaSciIiIiIiJSUBweT0RERERERJIp4ER0pWKlnYiIiIiIiEhBsdJOREREREREkuFEdKVjp52I6B1T52yUOsIHaTCjptQRPktX5v4tdYQPktAnVOoIlbaohbbUET6Iw92+UkeoNJmhhdQRKu1S2xVSR/ggnl3HSx2h0sbu+0nqCJV2qNtQqSN8kEFSB6BKY6ediIiIiIiIJMNr2kvHa9qJiIiIiIiIFBQ77UREREREREQKisPjiYiIiIiISDIFBVInUGystBMREREREREpKFbaiYiIiIiISDIF+ZyIrjSstBMREREREREpKHbaiYiIiIiIiBQUh8cTERERERGRZPI5EV2pWGknIiIiIiIiUlCstBMREREREZFkOBFd6VhpJyIiIiIiIlJQrLQTERERERGRZAp4TXupWGknIiIiIiIiUlDstBMREREREREpKA6PJyIiIiIiIskUFHAiutKw0k6SkMlk2LVrl9Qxiigrl7m5OcLCwj5Znn+Cr68vevbsWe72GRkZkMlkSEpK+scyERERERFR8dhpp0qRyWSlPnx9faWO+I+Ij4/H119//VG3efz4cbljZ2RkBA8PDyQnJ3/QdkvqbC9ZsgSRkZEftG0iIiIioo+lIF+ah7Lg8HiqlKysLPHn6OhozJo1C2lpaeIyDQ0NKWJVWl5eHqpVq1ZmOyMjo38sQ1paGnR1dZGZmQk/Pz906dIFV69ehZ6eXoW3lZeXV+K6ymyPiIiIiIikwUo7VYqJiYn40NPTg0wmk1t28uRJNGnSBOrq6rC0tERQUBDevHlT4vb++usv9O/fH9WrV4eBgQG8vLyQkZEBALh06RJUVFTw8OFDAMCjR4+goqKCvn37iq+fN28eWrRoIT4/ceIEmjZtCjU1NdSsWRPTpk2T23+7du0wbtw4+Pv7w9DQEJ06dSo2V3BwMGrUqCFWq98fHi+TybB27Vp4e3tDU1MT1tbW2LNnj9w29uzZA2tra2hoaMDNzQ1RUVGQyWR4/PixXDtjY2OYmJigadOmCA0Nxb1793DmzBmkp6fDy8sLNWrUgLa2NlxdXXHkyBG515qbmyMkJAS+vr7Q09PDqFGjYGFhAQBo3LgxZDIZ2rVrB6Do8PgDBw6gVatW0NfXh4GBAbp164b09PTif1FERERERPRJsdNOH93Bgwfx1Vdfwc/PDykpKQgPD0dkZCTmzp1bbPsXL17Azc0N2traOHnyJE6dOgVtbW106dIFeXl5cHBwgIGBAU6cOAEAOHnyJAwMDHDy5ElxG8ePH0fbtm0BvD0B4OnpCVdXVyQnJ2PlypVYt24dQkJC5PYbFRUFVVVVnD59GuHh4XLrBEHAhAkTsG7dOpw6dQqNGjUq8f0GBQWhX79+uHjxIjw9PTFo0CD8/fffAN4OUe/Tpw969uyJpKQkfPPNN5gxY0aZx7BwpMLr16+Rk5MDT09PHDlyBBcuXIC7uzu6d++OzMxMudcsWLAADg4OSExMREBAAM6dOwcAOHLkCLKyshATE1Psvp4/fw5/f3/Ex8fj6NGjUFFRgbe3Nwp4w0wiIiIi+gQKCgRJHsqCw+Ppo5s7dy6mTZuGoUOHAgAsLS0xZ84cTJ06FbNnzy7SfsuWLVBRUcHatWshk8kAABEREdDX18fx48fRuXNntGnTBsePH0fv3r1x/PhxDB06FFFRUUhJSYGNjQ3i4uIwceJEAMCKFStgamqK5cuXQyaTwc7ODnfv3sX333+PWbNmQUXl7bkqKysrzJ8/v0ieN2/eYMiQIUhISMDp06dRp06dUt+vr68vBg4cCAD48ccfsWzZMpw7dw5dunTBqlWrYGtriwULFgAAbG1tcfny5RJPYABAdnY2goKCoKOjg6ZNm8LY2BhOTk7i+pCQEOzcuRN79uzBuHHjxOXt27fH5MmTxeeFIxUMDAxgYmJS4v569+4t93zdunUwNjZGSkoKHBwcSn3vAJCbm4vc3Fy5Za+FAlSV8ZwgEREREdGHYqedPrrExETEx8fLdUzz8/Px6tUrvHjxApqamkXa37hxAzo6OnLLX716JQ7TbteuHVavXg3g7dD3OXPm4NatWzhx4gSePHmCly9fomXLlgCA1NRUtGjRQjwBAAAtW7ZETk4O7ty5g7p16wIAXFxcis0/ceJEqKmp4cyZMzA0NCzz/TZs2FD8WUtLCzo6Orh//z6At9epu7q6yrVv2rRpsdspPDnw/PlzWFtbY9u2bTA2Nsbz588RFBSEffv24e7du3jz5g1evnxZpNJe0vspS3p6OgICAnDmzBk8fPhQrLBnZmaWq9M+b948BAUFyS3rAXP0hGWl8hARERHR5yWfAzxLxU47fXQFBQUICgpCr169iqxTV1cvtn2TJk2wadOmIusKJ35r164dJkyYgBs3buDy5cto3bo10tPTceLECTx+/BhNmjQRO/2CIMh12AuXAZBbrqWlVWz+Tp06YfPmzTh48CAGDRpU5vutWrWq3HOZTCZ2fEvL8r7Y2Fjo6urCyMgIurq64vIpU6bg4MGDWLhwIaysrKChoYE+ffoUmWyupPdTlu7du8PU1BRr1qxBrVq1UFBQAAcHh1Ins3vX9OnT4e/vL7dsi55XpbIQEREREZE8dtrpo3N2dkZaWhqsrKzK3T46OhrGxsZyndV3FV7XHhISAicnJ+jq6qJt27aYN28eHj16JF7PDgD169fHjh075DrMcXFx0NHRQe3atcvM06NHD3Tv3h0+Pj6oUqUKBgwYUK73URw7Ozvs379fbllCQkKxbS0sLKCvr19keWxsLHx9feHt7Q0AyMnJEYe+l6ZwNvz8/JLvZ5GdnY3U1FSEh4ejdevWAIBTp06Vue13qampQU1NTW4Zh8YTERERUXkV5CvP9eVS4Ddr+uhmzZqFX375BYGBgbhy5QpSU1MRHR2NmTNnFtt+0KBBMDQ0hJeXF2JjY8Vh7xMmTMCdO3cAvK1et2nTBhs3bhRnQW/YsCHy8vJw9OhRcRkAjBkzBrdv38b48eNx9epV7N69G7Nnz4a/v794PXtZvL29sWHDBgwbNgzbt2+v9LH45ptvcPXqVXz//fe4du0atm7dKt4j/f0KfEmsrKwQExODpKQkJCcnw8fHp1yTxBkbG0NDQwMHDhzA//73Pzx58qRIm8LZ+levXo0bN27g2LFjRarmREREREQkHXba6aNzd3fHvn37cPjwYbi6uqJ58+ZYtGgRzMzMim2vqamJkydPom7duujVqxfs7e0xfPhwvHz5Uq7y7ubmhvz8fLGDLpPJxOpwq1atxHa1a9fG/v37ce7cOTg5OWH06NEYMWJEiScNStKnTx9ERUVh8ODBJc68XhYLCwts374dMTExaNiwIVauXCnOHv9+dbokixcvRvXq1fHll1+ie/fucHd3h7Ozc5mvU1VVxdKlSxEeHo5atWrBy6vokHUVFRVs2bIFiYmJcHBwwMSJE8VJ84iIiIiISHoyoaQLbInoHzF37lysWrUKt2/fljrKPyZCpYPUESrNpYW21BE+SIMZNaWO8Fm6MjdL6ggfJOGPHKkjVJqy/z/rsMND6giVJjO0kDpCpV1qu0LqCB9kRNfxUkeotLGzfpI6QqUd6zZU6ggfJGrXYKkjlCjGwF2S/fbKPijJfiuK17QT/cNWrFgBV1dXGBgY4PTp01iwYIHcrdqIiIiIiIhKwk470T/s+vXrCAkJwd9//426deti0qRJmD59utSxiIiIiIgUAieiKx077UT/sMWLF2Px4sVSxyAiIiIiIiXEieiIiIiIiIiIFBQr7URERERERCSZctzN+LPGSjsRERERERGRgmKlnYiIiIiIiCRTUMCJ6ErDSjsRERERERGRgmKnnYiIiIiIiEhBcXg8ERERERERSSY/X+oEio2VdiIiIiIiIiIFxUo7ERERERERSYYT0ZWOlXYiIiIiIiIiBcVKOxEREREREUmmgNe0l4qVdiIiIiIiIqJyWLFiBSwsLKCuro4mTZogNja21PYnTpxAkyZNoK6uDktLS6xatarC+2SnnYiIiIiIiKgM0dHR+O677zBjxgxcuHABrVu3hoeHBzIzM4ttf+vWLXh6eqJ169a4cOECfvjhB/j5+WHHjh0V2i877URERERERCSZggJBkkdFLVq0CCNGjMDIkSNhb2+PsLAwmJqaYuXKlcW2X7VqFerWrYuwsDDY29tj5MiRGD58OBYuXFih/bLTTkRERERERJ+d3NxcPH36VO6Rm5tbbNu8vDwkJiaic+fOcss7d+6MuLi4Yl/zxx9/FGnv7u6OhIQEvH79uvxBBSIiJfLq1Sth9uzZwqtXr6SOUmHMLh1lzs/s0lHm/MqcXRCUOz+zS0eZ8ytzdmU2e/ZsAYDcY/bs2cW2/euvvwQAwunTp+WWz507V7CxsSn2NdbW1sLcuXPllp0+fVoAINy9e7fcOWWCIPCmeESkNJ4+fQo9PT08efIEurq6UsepEGaXjjLnZ3bpKHN+Zc4OKHd+ZpeOMudX5uzKLDc3t0hlXU1NDWpqakXa3r17F7Vr10ZcXBxatGghLp87dy42bNiAq1evFnmNjY0Nhg0bhunTp4vLTp8+jVatWiErKwsmJiblyslbvhEREREREdFnp6QOenEMDQ1RpUoV3Lt3T275/fv3UaNGjWJfY2JiUmx7VVVVGBgYlDsnr2knIiIiIiIiKkW1atXQpEkTHD58WG754cOH8eWXXxb7mhYtWhRpf+jQIbi4uKBq1arl3jc77URERERERERl8Pf3x9q1a7F+/XqkpqZi4sSJyMzMxOjRowEA06dPx5AhQ8T2o0ePxp9//gl/f3+kpqZi/fr1WLduHSZPnlyh/XJ4PBEpFTU1NcyePbvcQ5kUCbNLR5nzM7t0lDm/MmcHlDs/s0tHmfMrc/bPSf/+/ZGdnY3g4GBkZWXBwcEB+/fvh5mZGQAgKytL7p7tFhYW2L9/PyZOnIj//Oc/qFWrFpYuXYrevXtXaL+ciI6IiIiIiIhIQXF4PBEREREREZGCYqediIiIiIiISEGx005ERERERESkoNhpJyIiIiIiIlJQnD2eiIiIiIiUztOnT4tdLpPJoKamhmrVqn3iRET/DM4eT0QK782bNzh+/DjS09Ph4+MDHR0d3L17F7q6utDW1pY6HtEn8fjxY+jr60sdg4hIYaioqEAmk5W4vk6dOvD19cXs2bOhoiL9AOOLFy+Wu23Dhg3/wSSkbFhpJyKF9ueff6JLly7IzMxEbm4uOnXqBB0dHcyfPx+vXr3CqlWrpI5YRPXq1Uv9EvGuv//++x9OUzFLly4td1s/P79/MEnFKfNxf9/PP/8Mc3Nz9O/fHwDQr18/7NixAyYmJti/fz+cnJwkTijP39+/3G0XLVr0Dyah9z19+hTHjh2Dra0t7O3tpY7zr3X+/HlUrVoVjo6OAIDdu3cjIiIC9evXR2BgICu+/5DIyEjMmDEDvr6+aNq0KQRBQHx8PKKiojBz5kw8ePAACxcuhJqaGn744Qep46JRo0aQyWQoqWZauE4mkyE/P/8TpyNFxk47ESm0CRMmwMXFBcnJyTAwMBCXe3t7Y+TIkRImK1lYWJjUESpt8eLF5Wonk8kUrtOuzMf9feHh4di4cSMA4PDhwzh8+DB+//13bN26FVOmTMGhQ4ckTijvwoUL5WpX3pMqn5oyn6x6X79+/dCmTRuMGzcOL1++hIuLCzIyMiAIArZs2YLevXtLHVFO48aNy/25OH/+/D+cpvK++eYbTJs2DY6Ojrh58yYGDBgAb29vbNu2DS9evFDIv0//hqpvVFQUQkND0a9fP3FZjx494OjoiPDwcBw9ehR169bF3LlzFaLTfuvWLakjkJLi8HgiUmiGhoY4ffo0bG1toaOjg+TkZFhaWiIjIwP169fHixcvpI5I9NFpaGjg2rVrMDU1xYQJE/Dq1SuEh4fj2rVraNasGR49eiR1xH8VCwuLcrWTyWS4efPmP5zmw5iYmODgwYNwcnLCr7/+itmzZyM5ORlRUVFYvXp1uU+wfCpBQUHlbjt79ux/MMmH0dPTw/nz51GvXj38/PPPOHbsGA4ePIjTp09jwIABuH37ttQRiygcWq7MVV9NTU0kJyfD2tpabvn169fh5OSEFy9e4NatW2jQoAG/L5BSY6WdiBRaQUFBsV8W7ty5Ax0dHQkSVd7Lly/x+vVruWW6uroSpfl8KONxr169Om7fvg1TU1McOHAAISEhAABBEBT2y7My+zdVv548eYIvvvgCAHDgwAH07t0bmpqa6Nq1K6ZMmSJxuqIUuSNeEYIgoKCgAABw5MgRdOvWDQBgamqKhw8fShmtRP+Gz32dOnWwbt06/PTTT3LL161bB1NTUwBAdnY2qlevLkW8cklJSUFmZiby8vLklvfo0UOiRKSI2GknIoXWqVMnhIWFYfXq1QDenvnPycnB7Nmz4enpKXG6sj1//hzff/89tm7diuzs7CLrFb0DdufOHezZs6fYLxSKfG2ysh/3Xr16wcfHB9bW1sjOzoaHhwcAICkpCVZWVhKnK1t8fDy2bdtW7OcmJiZGolSfB1NTU/zxxx/44osvcODAAWzZsgUA8OjRI6irq0uc7t/LxcUFISEh6NixI06cOIGVK1cCeNsxrlGjhsTpimdmZiZ1hA+2cOFC9O3bF7///jtcXV0hk8kQHx+Pq1evYvv27QDe/j0qnB9Ekdy8eRPe3t64dOmS3IiHwstFFP3fKfq02GknIoW2aNEitG/fHvXr18erV6/g4+OD69evw9DQEJs3b5Y6XpmmTp2K//73v1ixYgWGDBmC//znP/jrr78QHh5epDKgaI4ePYoePXrAwsICaWlpcHBwEK+NdXZ2ljpeqZT5uANv5xYwNzfH7du3MX/+fPEuCVlZWRgzZozE6Uq3ZcsWDBkyBJ07d8bhw4fRuXNnXL9+Hffu3YO3t7fU8cpFWU9WAcB3332HQYMGQVtbG3Xr1kW7du0AACdPnhQnSVNU+fn5WLx4MbZu3VrssVfkCSTDwsIwaNAg7Nq1CzNmzBBPrm3fvh1ffvmlxOnKT9mqvj169EBaWhpWrVqFa9euQRAEeHh4YNeuXTA3NwcAfPvtt9KGLMGECRNgYWGBI0eOwNLSEufOnUN2djYmTZqEhQsXSh2PFI1ARKTgXrx4Iaxfv14YO3as8O233wpr1qwRXrx4IXWscjE1NRX++9//CoIgCDo6OsL169cFQRCEX375RfDw8JAwWdlcXV2FgIAAQRAEQVtbW0hPTxeePXsm9OjRQ1ixYoXE6UqnzMdd2Tk6OgrLly8XBOH/PjcFBQXCqFGjhFmzZkmcrmxHjhwRNDU1hQYNGgiqqqpCo0aNBH19fUFPT09wc3OTOl65xMfHCzExMcKzZ8/EZfv27RNOnTolYaqyBQQECDVr1hQWLFggqKurC3PmzBFGjBghGBgYCEuWLJE6XqW8fPlSyMvLkzpGmdLT04WGDRsKMplMUFFREWQymfizioqK1PH+lQwMDITk5GRBEARBV1dXuHr1qiAIgnD06FGhUaNGUkYjBcROOxEprLy8PMHCwkK4cuWK1FEqTUtLS8jIyBAEQRBq164tnD17VhAEQbh586agpaUlZbQyaWtrCzdu3BAEQRD09fWFy5cvC4IgCElJSYKZmZmEycqmzMe90C+//CK0bNlSqFmzpvheFi9eLOzatUviZKXT1NQUbt26JQjC2y+lFy9eFARBEFJSUgQTExMJk5WPMp+seldubq5w9epV4fXr11JHKTdLS0th3759giDI//1ZsmSJMHDgQCmjlcujR4+ENWvWCNOmTROys7MFQRCExMRE4c6dOxInK1u3bt0ELy8v4f79+4K2traQkpIixMbGCk2bNhVOnjwpdbxSPXr0SDh48KCwYcMGISoqSu6hyPT19YX09HRBEN5+9o8dOyYIgiDcuHFD0NDQkDIaKSAVqSv9REQlqVq1KnJzcxX2NlHlUTjTPQDUr18fW7duBQDs3bsX+vr60gUrBy0tLeTm5gIAatWqhfT0dHGdok6sVEiZjzsArFy5Ev7+/vDw8MDjx4/Faxv19fUV8tZR7/riiy/w7NkzAEDt2rVx+fJlAMDjx4+VYvbm1NRUDB06FACgqqqKly9fQltbG8HBwfj5558lTle2Fy9eYMSIEdDU1ESDBg2QmZkJ4O2t6hT90pB79+6JQ/i1tbXx5MkTAEC3bt3w22+/SRmtTBcvXoS1tTV+/vlnLFy4EI8fPwYA7Ny5E9OnT5c2XDn88ccfCA4OhpGREVRUVKCiooJWrVph3rx5Cn2bw71796Ju3brw8PDAuHHjMGHCBPHx3XffSR2vVA4ODuJt95o1a4b58+fj9OnTCA4OhqWlpcTpSNGw005ECm38+PH4+eef8ebNG6mjVMqwYcOQnJwMAJg+fTpWrFgBNTU1TJw4USFncn5X8+bNcfr0aQBA165dMWnSJMydOxfDhw9H8+bNJU5XOmU+7gCwbNkyrFmzBjNmzECVKlXE5S4uLrh06ZKEycrWunVrHD58GMDbe4ZPmDABo0aNwsCBA9GhQweJ05VNmU9WAW8/78nJyTh+/LjcxHMdO3ZEdHS0hMnKVqdOHWRlZQEArKyscOjQIQBvJxJTU1OTMlqZ/P39MWzYMFy/fl3uuHt4eODkyZMSJiuf/Px8ce4MQ0ND3L17F8DbyerS0tKkjFaqSZMmYfjw4Xj27BkeP36MR48eiQ9FngMBAGbOnCnecSAkJAR//vknWrdujf3792Pp0qUSpyNFw4noiEihnT17FkePHsWhQ4fg6OgILS0tufWKPhP1xIkTxZ/d3Nxw9epVJCQkoF69enBycpIwWdkWLVqEnJwcAEBgYCBycnIQHR0NKysrLF68WOJ0pVPm4w68nXG6cePGRZarqanh+fPnEiQqv+XLl+PVq1cA3nYgq1atilOnTqFXr14ICAiQOF3ZCk9W1a9fXzxZdenSJcTExCj8ySoA2LVrF6Kjo9G8eXO5UUr169eXOwGhiLy9vXH06FE0a9YMEyZMwMCBA7Fu3TpkZmbK/T+tiOLj4xEeHl5kee3atXHv3j0JElVMYdXX0tJSrPpWq1YNq1evVuiq719//QU/Pz9oampKHaXC3N3dxZ8tLS2RkpKCv//+G9WrV1fqEYb0z2CnnYgUmr6+Pnr37i11jI+mbt26qFu3rtQxyuXdL2qamppYsWKFhGk+jDIddwCwsLBAUlJSkVsy/f7776hfv75Eqcqn8B7hAKCiooKpU6di6tSpEiaqGGU+WQUADx48gLGxcZHlz58/V/iOwLvD9/v06YM6deogLi4OVlZWCjt7eSF1dXU8ffq0yPK0tDQYGRlJkKhiZs6cKZ4QDAkJQbdu3dC6dWsYGBgo9AgNd3d3JCQkKPSJhYp49+8n0bvYaScihRYRESF1hApbunQpvv76a6irq5c5xE2RrxVUNv+m4z5lyhSMHTsWr169giAIOHfuHDZv3ox58+Zh7dq1Uscr4unTp9DV1RV/Lk1hO0Wl7CerXF1d8dtvv2H8+PEA/u+ez2vWrEGLFi2kjFZhzZs3V4rRDQDg5eWF4OBgcf4MmUyGzMxMTJs2TSlOPCtr1bdr166YMmUKUlJS4OjoiKpVq8qtV7STPb169UJkZCR0dXXRq1evUtsq+khC+rRkgiAIUocgIvo3sbCwQEJCAgwMDGBhYVFiO5lMhps3b37CZGX74osvcO3aNRgaGpb5ZU3RrhdU5uNenDVr1iAkJAS3b98G8HaYbWBgIEaMGCFxsqKqVKmCrKwsGBsbQ0VFpdjPjSAIkMlk4qR69M+Ii4tDly5dMGjQIERGRuKbb77BlStX8Mcff+DEiRNo0qSJ1BHl7NmzBx4eHqhatSr27NlTaltF64C96+nTp/D09MSVK1fw7Nkz1KpVC/fu3UOLFi2wf//+Ipd20ceholLy9FyK+Pdm2LBhWLp0KXR0dODr61vqv7HKWLSgfw477USk8LZv346tW7ciMzMTeXl5cuvOnz8vUap/p6ioKAwYMABqamqIjIws9QtF4Qzb9HG9efMGmzZtgru7O0xMTPDw4UMUFBQUO+RZUZw4cQItW7aEqqoqTpw4UWrbtm3bfqJU5afMJ6uKc+nSJSxcuBCJiYkoKCiAs7Mzvv/+e3FmdkWioqKCe/fuiSd8SqKIHbDiHDt2DOfPnxePe8eOHaWOVCJWfYmUB4fHE5FCW7p0KWbMmIGhQ4di9+7dGDZsGNLT0xEfH4+xY8dKHa9MwcHBmDx5cpFJcl6+fIkFCxZg1qxZEiUr3rsdcV9fX+mCfCBlO+7vUlVVxbfffovU1FQAb2dyVnTvdsQtLCxgampapOMrCII4akDRLF68GDo6OuLPijwcuDwcHR0RFRUldYxyKZw9+/2flcG7J3uGDx+OJUuWoH379mjfvr3U0cpFT09P/Kzr6uoq/ede2bRv3x4xMTFFbkP69OlT9OzZE8eOHZMmGCkkVtqJSKHZ2dlh9uzZGDhwIHR0dJCcnAxLS0vMmjULf//9N5YvXy51xFK9O2z4XdnZ2TA2NlboyhGzS8fNzQ0TJkxAz549pY5SYcp+7JXd/v37UaVKFblrlAHg4MGDKCgogIeHh0TJyvbLL7+gf//+RW7vlpeXhy1btmDIkCESJSuetra2OON6lSpVcO/ePaWYdE7Z/VvmL3l3lMm77t+/j9q1a+P169cSJSNFxEo7ESm0zMxMfPnllwAADQ0NPHv2DAAwePBgNG/eXOE77YXX8b4vOTlZ4WeJLemcbm5uLqpVq/aJ01SMMh93ABgzZgwmTZqEO3fuoEmTJkWuh23YsKFEycpW0rHPycmRu3+1olL2kw7Tpk2Tm4W9kCAImDZtmkJ32ocNG4YuXboUOfbPnj3DsGHDFK7T3qJFC/Ts2RNNmjSBIAjw8/ODhoZGsW3Xr1//idNVjDJVfRcvXoxBgwZBXV291Ds6yGQyhey0X7x4Ufw5JSVF7paA+fn5OHDgAGrXri1FNFJg7LQTkUIzMTFBdnY2zMzMYGZmhjNnzsDJyQm3bt0qsVOpCAqvi5XJZLCxsZHrxOTn5yMnJwejR4+WMGHJCisXMpkMa9euhba2trguPz8fJ0+ehJ2dnVTxSqXMx/1d/fv3ByBfJZLJZAo9mZu/vz+AtzkDAgLkLk3Iz8/H2bNn0ahRI4nSlZ8yn6wCgOvXrxd7W0A7OzvcuHFDgkTlV9IJnzt37kBPT0+CRKXbuHEjFi9ejPT0dMhkMjx58gSvXr2SOlalHD9+vMicMQDw6tUrxMbGSpCoZLdu3Sr2Z2XRqFEj8d+p4i6l0NDQwLJlyyRIRoqMnXYiUmjt27fH3r174ezsjBEjRmDixInYvn07EhISypw4R0phYWEQBAHDhw9HUFCQ3BfOatWqwdzcXGFvv1RYuRAEAatWrUKVKlXEdYXZV61aJVW8UinzcX+XMn4RvXDhAoC3n5tLly7JdXCrVasGJycnTJ48Wap4ZVLmk1Xv0tPTw82bN2Fubi63/MaNGwo7g3njxo3FTkyHDh2gqvp/X0/z8/Nx69YtdOnSRcKExatRo4Y4qsHCwgIbNmyAgYGBxKkqRtmrvhcvXixx5NGuXbsU8hKjwqKDpaUlzp07J3dJRbVq1WBsbCz37y4RwGvaiUjBFRQUoKCgQPwSt3XrVpw6dQpWVlYYPXq0Qle+3rx5g40bN6Jjx46oU6eO1HEqzM3NDTt37iwyXFLRKftxB4CTJ0/iyy+/lOu8AG/fW1xcHNq0aSNRsrL5+vpi2bJl4sRuyqLwNoF//vkn6tSpU+zJquDgYDRr1kyqiOXy9ddf48yZM9i5cyfq1asH4G2HvXfv3nB1dcXatWslTlhUUFCQ+N9JkybJnTApPPa9e/dW6L/3yurdWzQW1yUorPoOHz78U0crl5o1a+L06dOwtLSUW75jxw4MGTIEz58/lyhZ6V6/fo1Ro0Zh1qxZRbITFYeddiKif5CmpiZSU1NhZmYmdZQKef36NWxtbbFv375ih9oqOmU97oWU9brqN2/eQF1dHUlJSXBwcJA6TqUo68mqQk+ePEGXLl2QkJAgnrS6c+cOWrduXew1y4oiPz8fGzZsgLu7O2rWrCl1nEp5/vw5Tpw4UeztSRXx2mrg7UkqZa76BgcHIyIiAnFxceLnJjo6GsOHD0dkZCT69u0rccKSVa9eHYmJiey0U7lweDwRKbSIiAhoa2sX+Yd327ZtePHihcLfK7xZs2a4cOGC0nUeq1atitzcXKW9BZCyHvdCJV3bm52drbBDnIG3t6szMzNT2JMKZXn9+jX+/PNP3L17V2E7t2XR09NDXFwcDh8+jOTkZGhoaKBhw4YKPToDeHuiavTo0eKtDpXNhQsX4OnpiRcvXuD58+f44osv8PDhQ2hqasLY2FhhO+1mZmZ4/fo1hgwZgi+++ELp/mbOmjUL2dnZ6NixI2JjY3HgwAGMHDkSGzZsQO/evaWOV6qePXti165d4nwgRKVhp52IFNpPP/1U7PXTxsbG+PrrrxW+067Ms4CPHz8eP//8M9auXVtkmLaiU9bjXjhPg0wmg6+vr9ytr/Lz83Hx4kXxbgqKaubMmZg+fTo2btyoFDP1v0vZT1YVkslk6Ny5Mzp37ix1lApxdHTEzZs3xUsVlMnEiRPRvXt3rFy5Evr6+jhz5gyqVq2Kr776ChMmTJA6XqmqVq2K3bt3Y9asWVJHqZQlS5aId5T566+/sHnzZnh5eUkdq0xWVlaYM2cO4uLiiv13SlFP9JA0ODyeiBSauro6rl69WmRSpYyMDNjb2+Ply5fSBCsnFRWVIssUfRbwQt7e3jh69Ci0tbXh6OhY5AtFTEyMRMnKpqzHfdiwYQCAqKgo9OvXT+72UYXX9o4aNQqGhoZSRSxT48aNcePGDbx+/RpmZmZFPjfnz5+XKFn5/PTTT7h69apSnqwqpIzDtAHg0KFD+P777zFnzpxiOzG6uroSJSubvr4+zp49C1tbW+jr6+OPP/6Avb09zp49i6FDh+Lq1atSRyzVsGHD4OjoqBRV3z179hRZ9vr1a0ycOBGdO3dGjx49xOXv/qxoSjs5JZPJcPPmzU+YhhSdcv5rRESfDWNjY1y8eLFIpz05OVkpZulVxlnAC+nr6yv88MKSKOtxj4iIAACYm5tj8uTJCj0UviSKOFtzRZw9exZHjx7FoUOHlO5kFaC8w7QBiDPE9+jRQ260g6KfbAPeVqsLM9eoUQOZmZmwt7eHnp4eMjMzJU5XNmWq+pb2N2b9+vVYv349ACj8Z0ZZ/50iabDSTkQKberUqdi6dSsiIiLEazJPnDiB4cOHo0+fPli4cKHECYno36RwtENJCk+sKKp27drBxsZGHKadnJwsN0xbkW+VeeLEiVLXt23b9hMlqbjOnTvD19cXPj4+GD16NC5cuAA/Pz9s2LABjx49wtmzZ6WOWCpWfYkUGzvtRKTQ8vLyMHjwYGzbtk0cqlpQUIAhQ4Zg1apVSnMLoJSUlGKHqiry0L1/A2U97v/73/8wefJkHD16FPfv3y9yKyZFrh6RtJR9mLaySkhIwLNnz+Dm5oYHDx5g6NCh4u1JIyIi4OTkJHXEf53Xr1+jc+fOCA8Ph42NjdRxKuXOnTvYs2dPsf9OLVq0SKJUpIg4PJ6IFFq1atUQHR2NOXPmiDMhOzo6Ks0Mtzdv3oS3tzcuXbokXlMNQBxGqeidr+3bt2Pr1q3FfqFQ5GuTlf24+/r6IjMzEwEBAahZs6ZSTYyWn5+PxYsXl/i5+fvvvyVK9nlQ9mHaAPDixYtiPzuKOoEkALi4uIg/GxkZYf/+/RKm+TxUrVoVly9fVqq/j+86evQoevToAQsLC6SlpcHBwQEZGRkQBAHOzs5SxyMFw047ESm048ePi8M9lfFM+oQJE2BhYYEjR46I98HNzs7GpEmTFH5o/9KlSzFjxgwMHToUu3fvxrBhw5Ceno74+HiMHTtW6nilUubjDgCnTp1CbGwsGjVqJHWUCgsKCsLatWvh7++PgIAAzJgxAxkZGdi1a5fSzE6trCergLcTASYkJMDGxgZubm6YNWsWHj58iA0bNsDR0VHqeKV68OABhg0bht9//73Y9Yp4su3ly5c4fPgw3NzcoKOjI7fu6dOnOH78ONzd3eXuBKGolLHqO2TIEKxbtw4//fST1FEqbPr06Zg0aRKCg4Oho6ODHTt2wNjYGIMGDRLndyASCURECkxNTU2wtLQU5syZI9y+fVvqOBVmYGAgJCcnC4IgCLq6usLVq1cFQRCEo0ePCo0aNZIyWplsbW2FX3/9VRAEQdDW1hbS09MFQRCEgIAAYezYsVJGK5MyH3dBEAR7e3vh/PnzUseoFEtLS2Hfvn2CILz93Ny4cUMQBEFYsmSJMHDgQCmjlcuSJUsEbW1tYezYsUK1atWEb775RujYsaOgp6cn/PDDD1LHK1N8fLxw7NgxQRAE4f79+4KHh4ego6MjNG7cWEhKSpI4Xel8fHyEL7/8Ujh37pygpaUlHDp0SNiwYYNga2srfqYUTVhYmNC+ffsS13fo0EFYvnz5J0xUOUeOHBE0NTWFBg0aCKqqqkKjRo0EfX19QU9PT3Bzc5M6XonGjRsn6OrqCs7OzsLXX38tTJw4Ue6hyN79+6ivry9cvnxZEARBSEpKEszMzCRMRoqo6D1xiIgUyN27dzFhwgTExMTA3Nwc7u7u2Lp1a5EqgKLKz8+HtrY2AMDQ0BB3794FAJiZmSEtLU3KaGXKzMwU7wmuoaGBZ8+eAQAGDx6MzZs3SxmtTMp83AEgLCwM06ZNQ0ZGhtRRKuzevXtiRVdbWxtPnjwBAHTr1g2//fablNHKZcWKFVi9ejWWL1+OatWqYerUqTh8+DD8/PzE96LIXFxc4ObmBuD/hmk/ffoU58+fV/jrqo8dO4bFixfD1dUVKioqMDMzw1dffYX58+dj3rx5Uscr1qZNm/Ddd9+VuP67775DVFTUpwtUSYVV38uXL0NdXR07duzA7du30bZtW/Tt21fqeCW6fPkynJ2doauri2vXruHChQviIykpSep4pdLS0kJubi4AoFatWkhPTxfXPXz4UKpYpKA4PJ6IFNoXX3wBPz8/+Pn5ISkpCevXr8fYsWPx7bffYtCgQRgxYoRCfxF1cHDAxYsXYWlpiWbNmmH+/PmoVq0aVq9eDUtLS6njlcrExATZ2dkwMzODmZkZzpw5AycnJ9y6davIxGiKRpmPOwD0798fL168QL169aCpqYmqVavKrVfk68Lr1KmDrKws1K1bF1ZWVjh06BCcnZ0RHx+vFEOESztZ1bx5cyxfvlzKeOV2//59pKWlQSaTwdbWFkZGRlJHKtPz589hbGwM4O3f/gcPHsDGxgaOjo4Ke1nC9evXS/03qGHDhrh+/fonTFQ5qamp4slYVVVVvHz5Etra2ggODoaXlxe+/fZbiRMW77///a/UESqtefPmOH36NOrXr4+uXbti0qRJuHTpEmJiYtC8eXOp45GCYaediJRGo0aNMG3aNHzxxRf46aefsH79eqxYsQItWrTAqlWr0KBBA6kjFjFz5kw8f/4cABASEoJu3bqhdevWMDAwQHR0tMTpSte+fXvs3bsXzs7OGDFiBCZOnIjt27cjISFBoW8bBSj3cQfeVtqVlbe3N44ePYpmzZphwoQJGDhwINatW4fMzExMnDhR6nhlUuaTVcDb66jHjh2LLVu2iNeAV6lSBf3798d//vMf6OnpSZywZLa2tkhLS4O5uTkaNWqE8PBwmJubY9WqVahZs6bU8Yr15s0bPHjwAHXr1i12/YMHD/DmzZtPnKriiqv6Fv6bqixV3zt37kAmk6F27dpSRymXRYsWIScnBwAQGBiInJwcREdHw8rKCosXL5Y4HSkcqcfnExGVJS8vT9i2bZvg4eEhqKqqCs2bNxfWrFkj5OTkCJmZmcLAgQMFe3t7qWMW69WrV0JOTo7csuzsbKGgoECiROWXn58vvH79WnweHR0tjB8/XliyZImQm5srYbKyKfNx/7c5c+aMEBoaKuzevVvqKOUyYsQIITAwUBAEQVi5cqWgoaEhdOzYUdDX1xeGDx8ucbqy9e3bV7C2thYOHDggPHnyRHj69Klw4MABwdbWVujbt6/U8Uq1ceNGYf369YIgCML58+cFIyMjQUVFRVBXVxe2bNkicbriNWvWTPjpp59KXD9v3jyhWbNmnzBR5Xh5eQmrV68WBEEQpkyZIlhZWQkhISGCs7Oz0KFDB4nTlSw/P18ICgoSdHV1BRUVFUFFRUXQ09MTgoODhfz8fKnjlejp06fCoUOHhN9++0148OCB1HFICbDTTkQKbdy4cYKBgYFgYGAgTJgwQbh06VKRNn/++acgk8kkSFeyBw8eCJ6enoKqqqqgoqIitGjRQpzITRmcOXNG+OGHH4QpU6YIBw8elDpOuSn7cX/XjRs3hBkzZggDBgwQ/ve//wmCIAi///67OFmRItq6davg4+Mj9O3bVwgPD5c6TqUo88kqQRAETU1NITY2tsjykydPCpqamhIkqrznz58LiYmJCt2pCQ8PF7S0tIS9e/cWWbdnzx5BS0tLKf5fSE9PFyfvfP78ufDtt98Kjo6Ogre3t5CRkSFxupJNmzZNMDIyElasWCEkJycLSUlJwn/+8x/ByMhIYSeOTE5OFmrVqiWoqKgIMplM0NPTEw4fPix1LFJw7LQTkUJr37698Ouvv5b6Zfn169fC8ePHP2Gqso0cOVKoUaOGMHfuXCE0NFSwtrYWOnbsKHWscomJiRGqVKkiaGlpCXp6eoKKioqwePFiqWOVizIf93cdP35crPBWq1ZNPPHw888/C71795Y4XfHCw8MFmUwm2NjYCA0bNhRUVFSEadOmSR2rQpT1ZNW7TE1NhYsXLxZZnpycLNSuXVuCRGV7/vy5MGbMGKFWrVqCkZGRMHDgQIXuqL9v0KBBgkwmE+zt7YWePXsK3t7egp2dnaCioiIMGDBA6nhlUuaqb82aNYsdxbNr1y6hVq1aEiQqm4eHh9C8eXPh9OnTQmJiotCjRw/B1tZW6lik4NhpJyL6B5iamgq//fab+Dw1NVWoUqWKkJeXJ2Gq8nFxcRFGjBghVhvnzJkjGBgYSJyqfJT5uL+refPmQmhoqCAI8rfbO3funMJ+EXVwcBBmzpwpPo+IiBC0tbUlTFQxynyy6l3h4eFCx44dhbt374rLsrKyhM6dOwurVq2SMFnJJk+eLGhqagqjRo0Sxo8fLxgaGgp9+vSROlaFREdHC15eXkL9+vUFe3t7wcvLS4iOjpY6VpmUveqrpqYmpKWlFVl+9epVQV1dXYJEZTMyMhLi4+PF5w8fPhRUVFSEZ8+eSZiKFJ1MEJRgVhUi+uylpKQgMzOzyK3eevToIVGi0qmqquL27dtykydpamoiNTUVZmZmEiYrm66uLhISEmBjYwMAyM3NhZaWFu7duwdDQ0OJ05VOmY/7u7S1tXHp0iVYWFhAR0cHycnJsLS0REZGBuzs7PDq1SupIxahpaWFS5cuibPz5+fnQ0NDA5mZmTAxMZE4XdlcXV3h5OSEVatWQVVVFSEhIQgLC1OaSbgKNW7cGDdu3EBubq44OVpmZibU1NRgbW0t11ZRZmSvV68e5s6diwEDBgAAzp07h5YtW+LVq1eoUqWKxOn+3Tw9PfHo0SOEhoZCXV0dQUFBSEtLw9WrV6WOVi7NmjVDs2bNsHTpUrnl48ePR3x8PM6cOSNRspKpqKjg3r174p0SAEBHRwcXL16EhYWFhMlITLtaTwAAfnFJREFUkXH2eCJSaDdv3oS3tzcuXboEmUwmzt4sk8kAQJwdWdEIggBVVfk/saqqqigoKJAoUfnl5ORAX19ffK6mpgYNDQ08ffpU4Tvtynzc36Wvr4+srKwiX+AuXLigsDMjF94iqlCVKlWgpqaGFy9eSJiq/NLS0rBp0ybx8zNlyhQEBgbi4cOHCv+5f1fPnj2ljlBht2/fRuvWrcXnTZs2haqqKu7evQtTU1MJk5Xf+fPnUbVqVTg6OgIAdu/ejYiICNSvXx+BgYGoVq2axAmLl5CQgP3798PFxQUAsH79ehgbGyMnJ0fu/2dFNX/+fHTt2hVHjhxBixYtIJPJEBcXh9u3b2P//v1SxyuWTCbDs2fPoK6uDuDtv1uFy54+fSq209XVlSoiKSB22olIoU2YMAEWFhY4cuQILC0tce7cOWRnZ2PSpElYuHCh1PFKJAgCOnToINeBfPHiBbp37y735U1RKl3vO3jwoNytoQoKCnD06FFcvnxZXKaIoxyU/bgX8vHxwffff49t27ZBJpOhoKAAp0+fxuTJkzFkyBCp45Vo7dq1cl/037x5g8jISLlOr5+fnxTRyqTMJ6veNXv2bKkjVFh+fn6RTq2qqqpS3Cqt0DfffINp06bB0dERN2/eRP/+/dGrVy9s27YNL168UNjbOD58+FDudnUGBgbQ1NTEgwcPlKLT3rZtW6SlpWHFihW4evUqBEFAr169MGbMGNSqVUvqeMUSBEEcyfbussaNG4s/y2QyhS1KkDQ4PJ6IFJqhoSGOHTuGhg0bQk9PD+fOnYOtrS2OHTuGSZMm4cKFC1JHLFZQUFC52iniF2wVFZUy2yjqFwplPu7vev36NXx9fbFlyxZx9EB+fj58fHwQGRmpkEOGzc3NxREwJZHJZLh58+YnSlQxKioqiIqKkjtZNXDgQISFhaFGjRriMkU8WVWSV69eITo6Gs+fP0enTp2KDI9XFCoqKvDw8ICampq4bO/evWjfvj20tLTEZTExMVLEKxc9PT2cP38e9erVw88//4xjx47h4MGDOH36NAYMGIDbt29LHbFYVapUwbVr12BkZATgbYfR1NQUp06dgrm5udiOVd+P58SJE+Vq17Zt2384CSkTdtqJSKFVr14diYmJsLS0RL169bB27Vq4ubkhPT0djo6OSjP09v+1d+dxNabvH8A/50QqpdVSpEWKJMIUNYxCsitjC1GWsaTQYIzdZBlbsq9JGspS9ikU0mJQKUmKKEuhkqVNy/P7w9f5OdPKqPs5XO/Xq9fLeZ7zx2ea5FzPfd/XRciXSE1NRUxMDMrKymBiYsLboutbIMkPq4AP2/nfv38PT09PAMD79+9hamqKxMREyMnJoaSkBOfPn4e5uTnjpOU5OjrW6H379++v5SRfrlGjRoiOjkbr1q3Rp08fDBw4EK6urkhPT4eBgQEKCgpYR6yQUCgs97Dt40rvp3/m68+9hYUFfvrpJ1haWsLc3FzsIQ8h3xLaHk8I4TUjIyPEx8dDV1cXZmZmWLt2LaSlpbF7925Rwyu+KykpweXLl/HgwQPY29tDQUEBz549Q6NGjSRi+6EkevjwIUpKSsoVuSkpKahfv77YChLfvHnzBvLy8hAKhdDV1RX9nJeVleHNmzcSueKVm5srtvWcjySt78G//f3331i1apXo9V9//YX09HSkpKSgZcuWcHJywsqVK3H27FmGKSvG52K8prp06QJ3d3f07t0bV65cwY4dOwB8+F306U4Nvrl06RLrCP/JwIEDceXKFWzduhWFhYXo3LkzfvrpJ/Ts2RM//vgjr/+N/fT8+qcEAgEaNGjA2z4IhA1aaSeE8FpwcDDy8vJgZ2eH1NRUDBw4EElJSVBVVYW/vz+srKxYR6xSWloabGxskJ6ejqKiIiQnJ0NXVxezZs1CYWEhdu7cyTpilZ4+fYqIiAi8ePGiXFHD17PJwIdthU5OThg/frzYdV9fX+zduxeXL19mE6wagYGBmD9/Pm7dugU5OTmxe/n5+TAxMcH69esxaNAgRgmr9+eff0JbWxsjR44EAAwfPhzHjx+Huro6zp07hw4dOjBO+G1q1KgRYmJioKenB+DD1n4FBQXs3r0bAHDr1i30798fz549Yxnzs7x58wahoaFo06YN2rRpwzpOleLi4jB27Fikp6djzpw5oiM4M2fORHZ2Ng4dOsQ44bettLQUN27cwOXLl3H58mWEhoZCIBCgqKiIdbRKVbTL4VMtWrTAhAkTsHTp0hrtBCLfuLqcL0cIIV9DdnY2V1ZWxjpGjQwZMoQbO3YsV1RUJDZv+/Lly5yenh7jdFXz8vLipKWlOXl5eU5LS4vT1tYWfeno6LCOVyUFBQUuJSWl3PWUlBROUVGx7gPVUJ8+fbg9e/ZUen/fvn2ctbV1HSb6fDo6OlxERATHcRx3/vx5TklJiQsODuYmTpzI9enTh3G66nl7e3NnzpwRvZ47dy6nqKjIdevWjXv06BHDZFVTVFTkkpOTRa+1tbW5ffv2iV4/fPiQt3OrPxo+fDi3ZcsWjuM4Lj8/n2vdujVXv359rl69etyxY8cYp/syBQUFXHFxMesY1YqOjubi4+NFr0+cOMENGTKEW7BgAVdUVMQwWc3cvXuX27lzJzdq1ChOXV2dU1VV5YYOHco6VpUOHDjAtWjRglu0aBF36tQp7uTJk9yiRYs4TU1NbteuXZy7uzunpKTErVy5knVUwgNUtBNCeK+srIx7+fIll5WVxTrKZ1NVVeWSkpI4juPEivaHDx9ysrKyLKNVq0WLFpy7uztXWlrKOspna9SoERcTE1Pu+s2bNzl5eXkGiWpGXV29wocNH6WkpHDq6up1mOjzycjIcOnp6RzHcZyLiws3ZcoUjuM47t69e5ySkhLLaDWir6/PhYSEcBzHcZGRkZysrCy3a9cubtCgQZytrS3jdJUzMzPjNmzYwHEcxyUkJHBCoZBLTU0V3b98+TKnpaXFKF3NNG3alLt16xbHcRz3119/cXp6elxeXh63fft2rmPHjozTVU1HR6fCf6NevXrF+4ecHMdxXbp0ET0YefDgAScjI8ONHj2a09PT41xdXdmGq8KIESO4Zs2acU2aNOF+/vlnbvPmzVxcXBzrWDViZWXF+fv7l7vu7+/PWVlZcRzHcT4+PpyBgUFdRyM8RHstCCG8lZmZCQcHBygrK6Np06Zo0qQJlJWV4eTkhOfPn7OOVyNlZWUVNvB58uQJFBQUGCSqufz8fIwaNUoit+V1794dq1evFvvel5aWYvXq1fjxxx8ZJqvaq1evqhxzVVxcjFevXtVhos+nrKws6pQdFBSE3r17A/jQ0Iqvzaw+9fjxY9EW8xMnTuDnn3/GlClTsHr1aly9epVxusrNnTsXv/32G3r16oVevXqhf//+0NHREd0/d+4cTE1NGSas3uvXr6GiogLgw8/OsGHDICcnhwEDBiAlJYVxuqo9evSowp/voqIiPHnyhEGiz5OcnIyOHTsCAI4ePYoePXrg0KFD8Pb2xvHjx9mGq8LRo0dRWlqK8ePHw8nJCY6OjjA2NmYdq0aioqJEY94+ZWJigqioKADAjz/+iPT09LqORniIGtERQnjpzZs3MDc3x7t37+Do6Ig2bdqA4zgkJibi8OHDCA8PR0xMDK+bzABAnz59sGnTJtG5UoFAgHfv3mHp0qXo378/43RVmzhxIo4ePYrffvuNdZTPtnbtWvTo0QMGBgbo3r07AODq1auiM7J8pa2tjZs3b1Z6fvfmzZvQ0tKq41Sfx87ODvb29mjdujWys7PRr18/AB/OVH8shvlMXl4e2dnZaNmyJc6fP4/Zs2cDAGRkZHjbARwAhg0bhnPnzuHs2bOwtrbGzJkzxe7Lyclh+vTpjNLVjKamJqKioqCiooKgoCD4+fkB+PAwS0ZGhnG6ip06dUr05+DgYLGRgaWlpQgJCRF7eMJXHMeJ+pZcvHgRAwcOBPDh/0lWVhbLaFXKyclBWFgYLl++jEWLFuHOnTvo0KEDevbsiZ49e4p+//BRixYtsG/fPqxZs0bs+r59+6CpqQkAyM7OhrKyMot4hGeoER0hhJf++OMP+Pj4IDIyUjQ/9qMXL17AwsICjo6O+P333xklrJmnT5/CysoKUlJSSElJQZcuXZCSkgI1NTWEhYWhSZMmrCNWqrS0FAMHDkRBQQHat2+P+vXri93fuHEjo2Q18+zZM2zduhVxcXGQlZWFsbExnJ2dRSt5fLRw4UL4+vri+vXr5TpOZ2ZmwszMDGPHjsXKlSsZJaxecXExPD098fjxY0yYMEG0krRp0ybIy8tj0qRJjBNWbcyYMUhKSoKJiQkOHz6M9PR0qKqq4tSpU/j999+RkJDAOuI3a/v27XB1dYW8vDxatmyJ2NhYCIVCbNmyBQEBAbzsdP5xJ5JAIMC/P1J/nFSxYcMGURHMV1ZWVtDU1ETv3r0xceJEJCYmQk9PD1euXMH48ePx6NEj1hFr5MGDB3B3d4evr2+lO9344tSpUxg+fDjatGmDH374AQKBADdu3EBSUhKOHTuGgQMHYseOHUhJSeH9v7ek9lHRTgjhpa5du+KXX36pdH6vl5cX9uzZI9pCxmcFBQXw8/NDdHQ0ysrK0KlTJ4wZMwaysrKso1Xpjz/+wNKlS2FgYICmTZuKdbkVCAS8XrGWVG/fvkW3bt2Qnp6OsWPHwsDAAAKBAHfv3sVff/0FTU1NXLt2jfdHKyRZbm4uFi1ahMePH2PatGmwsbEBACxduhTS0tJYuHAh44TlxcfH1/i9fN86fPPmTTx+/Bh9+vQR7aQ6e/YslJSUYGFhwThd5XR0dHDjxg2oqamxjvJF4uPjMWbMGInrfp+Tk4MrV66IusbfuXMHKioq6NGjBywtLTFjxgzWEav06NEj7Ny5E8nJyeA4Dm3atMEvv/zC67GkhA0q2gkhvKSiooKoqCgYGBhUeD8pKQnm5ubIycmp42Q1V1xcDAMDA5w5cwaGhoas43w2ZWVleHh4YMKECayjfJGrV69i165dSE1NxdGjR9G8eXMcPHgQOjo6vD7X/vr1ayxYsAD+/v6i8+vKysoYOXIkVq1axft55wBw8OBB0fc+KioKWlpa2LRpE3R0dDBkyBDW8b45H0dHffxIV9UYKT6vPH70/v17PHz4EK1atUK9enSSk6XCwkJISUmV22nFF1JSUlBTU0P37t1FW+KNjIxYxyLkq6PfhIQQXnrz5k2VxYmSkhLevHlTd4G+QP369VFUVFTlB2g+a9CgAa9Xtqpy/PhxjBs3DmPGjEFMTIxoVu/bt2+xatUqnDt3jnHCyikqKmL79u3Ytm0bsrKywHEcGjduLDE/Rzt27MCSJUswa9YsrFy5UlQkKikpYdOmTRJRtEvaA5+HDx+K/hwbG4tff/0Vc+fORbdu3QB8aHi1YcMGrF27llXEGsnPz8fMmTNx4MABAB+ao+nq6sLFxQUaGhq8768REhKCkJAQvHjxQnQ+/CMvLy9GqWouNzcXx44dw4MHDzB37lyoqKggMTERTZs2RfPmzVnHq1BcXJxEF+m5ubm4fv16hT8zDg4OjFIRXmLSs54QQqohFAq5Fy9eVHo/MzOTEwqFdZjoy6xevZobP368RMzp/bdVq1ZxM2fOZB3ji3Ts2JE7cOAAx3Hio/ZiY2O5pk2bsoxWI/n5+VxeXp7o9aNHjzgPDw8uKCiIYaqaadu2LRcYGMhxnPj3/vbt25yqqirDZDVz7NgxTlZWlps0aRLXoEEDUf5t27Zx/fr1Y5yuej/88AN39uzZctfPnj3LderUiUGimnNxceE6d+7MXb16lWvYsKHoe3/y5Enej3xbtmwZJxQKOVNTU27IkCHc0KFDxb74Li4ujlNTU+P09PS4evXqib73ixYt4saNG8c4XdWKi4u5CxcucDt37uTevHnDcRzHPX36lHv79i3jZFU7deoUp6CgwAmFQk5RUZFTUlISfSkrK7OOR3iGVtoJIbzEcRz09fUrXV3kJORkzz///IOQkBCcP38e7du3R8OGDcXuBwQEMEpWvevXryM0NBRnzpxBu3btym2P5HP2e/fuoUePHuWuN2rUCLm5uXUf6DMNGTIEdnZ2mDp1KnJzc2FqagppaWlkZWVh48aNmDZtGuuIlXr48GGFY4waNGiAvLw8Bok+j7u7O3bu3AkHBwdR93IAMDc3x4oVKxgmq5nbt29X2K1cR0cHiYmJDBLV3IkTJ+Dv74+uXbuK/e43NDTEgwcPGCar3s6dO+Ht7Y1x48axjvJF5syZA0dHR6xdu1asZ0a/fv1gb2/PMFnV0tLSYGNjg/T0dBQVFaFPnz5QUFDA2rVrUVhYiJ07d7KOWCk3Nzc4OTlh1apVkJOTYx2H8BwV7YQQXtq/fz/rCF+FkpIShg0bxjrGF1FSUoKdnR3rGF9EXV0d9+/fL9fMJzw8HLq6umxCfYaYmBh4eHgAAI4dO4ZmzZohNjYWx48fx5IlS3hdtOvo6ODWrVvlRtP9/fffEtHbQdIf+LRt2xbu7u7Yt2+faExaUVER3N3d0bZtW8bpqvby5csKJ2rk5eXx/njI+/fvYW5uzjrGF7tx4wZ27dpV7nrz5s2RmZnJIFHNuLq6okuXLoiLi4Oqqqrouq2tLe8nVTx9+hQuLi5UsJMaoaKdEMJL48ePZx3hq5Dkhw+SnP2XX36Bq6srvLy8IBAI8OzZM0RFReHXX3/FkiVLWMerVn5+vmi16/z587Czs4NQKETXrl2RlpbGOF3V5s6dixkzZqCwsBAcx+H69es4fPgwVq9ejb1797KOVy1Jf+Czc+dODBo0CJqamujQoQOAD+d+BQIBzpw5wzhd1X744QecPXtWNGP+Y6G+Z88e0fl8vpo0aRIOHTqExYsXs47yRWRkZCrsE3Pv3r1yY1f5JDw8HBEREZCWlha7rqWlhadPnzJKVTN9+/bFzZs3JeL3CmGPinZCCK89fvwYAoEALVq0APBhy/ahQ4dgaGiIKVOmME5H+GrevHl4/fo1LC0tUVhYiB49eqBBgwb49ddf4ezszDpetfT09HDixAnY2toiODgYs2fPBgC8ePECjRo1Ypyuao6OjigpKcG8efOQn58Pe3t7NG/eHJ6enhg1ahTreNWS9Ac+pqamePjwIXx9fZGUlASO4zBy5EjY29uXO57DN6tXr4aNjQ0SExNRUlICT09P3LlzB1FRUbhy5QrreFUqLCzE7t27cfHiRRgbG5c7TsT3OdtDhgzBihUrcOTIEQAfHpikp6fjt99+4/VuscpmsT958oT3ozEHDBiAuXPnIjExEe3bty/3MzN48GBGyQgf0cg3Qgivde/eHVOmTMG4ceOQmZkJfX19GBkZITk5GS4uLhLxIfrYsWM4cuQI0tPT8f79e7F7MTExjFJVrFOnTggJCYGysjJMTEyq3JLKt+wVyc/PR2JiIsrKymBoaCia+8x3x44dg729PUpLS9GrVy+cP38ewIeiJiwsDH///TfjhBUrKSnBX3/9hb59+6JZs2bIyspCWVlZhVue+WzhwoXw8PBAYWEhAIge+Pzxxx+Mk337bt++jfXr1yM6OhplZWXo1KkT5s+fj/bt27OOViVLS8tK7wkEAoSGhtZhms/35s0b9O/fH3fu3MHbt2+hoaGBzMxMdOvWDefOnePtA5+RI0dCUVERu3fvhoKCAuLj49G4cWMMGTIELVu25PWOMaFQWOk9gUAgEeMZSd2hop0QwmvKysq4du0aDAwMsHnzZvj7+yMiIgLnz5/H1KlTkZqayjpilTZv3oyFCxdi/Pjx2LNnDxwdHfHgwQPcuHEDM2bMwMqVK1lHFLN8+XLMnTsXcnJyWL58eZXvXbp0aR2l+u/S0tKQl5eHNm3aVPlBiU8yMzORkZGBDh06iDJfv34dioqKMDAwYJyucnJycrh79265M+2SRlIf+ADAwYMHRSProqKioKWlBQ8PD+jq6krEyD3CTmhoKGJiYkQPTHr37s06UpWePXsGS0tLSElJISUlBV26dEFKSgrU1NQQFhYmcQ8MCakMFe2EEF6Tl5dHQkICtLW1MXjwYFhYWGD+/PlIT0+HgYEBCgoKWEesUps2bbB06VKMHj0aCgoKiIuLg66uLpYsWYKcnBxs3bqVdcQKlZaWIjw8HMbGxlBWVmYdp8YOHDiAV69eYdasWaJrU6ZMwb59+wAABgYGCA4OhqamJqOENePk5ARPT89y2zvz8vIwc+ZMXs98trS0hKurK4YOHco6yhd5/fo1SktLoaKiInY9JycH9erV4/3xhB07dmDJkiWYNWsW3N3dcefOHejq6sLb2xsHDhzApUuXWEes1Llz5yAlJYW+ffuKXQ8ODkZZWRn69evHKNm3SUVFBcnJyVBTU6v0d44kKCgowOHDh8UeNowZMwaysrKsoxHy1VDRTgjhNTMzM1haWmLAgAGwtrbGtWvX0KFDB1y7dg0///wznjx5wjpilT5ddWzSpAkuXLiADh06ICUlBV27dkV2djbriJWSkZHB3bt3KxwfxVfdunXDlClT4OjoCAAICgrCoEGD4O3tjbZt28LZ2RmGhoa8b4gmJSWFjIyMcqtEWVlZaNasGUpKShglq97Ro0fx22+/Yfbs2ejcuXO5bbXGxsaMktVMv379MGjQIEyfPl3s+s6dO3Hq1CmcO3eOUbKaMTQ0xKpVqzB06FCxB4UJCQno2bMnsrKyWEeslLGxMdasWYP+/fuLXQ8KCsL8+fMRFxfHKFnN3LhxA0ePHq3wKBQfR2TKy8sjPj4eurq6kJKSQmZmJq+bzn0LNm/ejClTpkBGRgabN2+u8r0uLi51lIpIAmpERwjhtT///BO2trZYt24dxo8fL+qGfOrUKZiamjJOV71mzZohOzsbWlpa0NLSEj10ePjwIe9nzbdv3x6pqakSVbQnJyejS5cuotcnT57E4MGDMWbMGADAqlWrRAU9H7158wYcx4HjOLx9+1Y0sgv4sPvh3LlzvN/uOXLkSADiHzgFAgE4jpOIc5r//PNPhU3DevbsiYULFzJI9HkePnwIExOTctcbNGiAvLw8BolqLiUlpcKxgG3atMH9+/cZJKo5Pz8/ODg4wNraGhcuXIC1tTVSUlKQmZkJW1tb1vEq1K1bNwwdOhSdO3cGx3FwcXGpdHWaT7t7Tp06VeP38q2Zm4eHB8aMGQMZGRnRWM+KCAQCKtqJGCraCSG89nFl6M2bN2LbtKdMmSIRs02trKxw+vRpdOrUCRMnTsTs2bNx7Ngx3Lx5k/cz0FeuXClqvlXRiikftwkXFBSI5YqMjISTk5Pota6uLq9nDispKUEgEEAgEEBfX7/cfYFAUG2vAdYePnzIOsJ/UlRUVOFOhuLiYt4fxwEAHR0d3Lp1q1xPgb///rvCgphPFBUVkZqaWm7c3v3793nbCO2jVatWwcPDAzNmzICCggI8PT2ho6ODX375Berq6qzjVcjX1xceHh548OABBAIBXr9+LWq+yGc1PXrDx4eEn/5+lPTflaRuUdFOCOE9KSkplJSUIDw8XFTM/PtDHV/t3r0bZWVlAICpU6dCRUUF4eHhGDRoEKZOnco4XdVsbGwAfFip+LSLPJ9XTLW0tBAdHQ0tLS1kZWXhzp07+PHHH0X3MzMzoaioyDBh1S5dugSO42BlZYXjx4+LnauWlpaGlpYWNDQ0GCasXlpaGszNzVGvnvhHjJKSEkRGRvK+Qd0PP/yA3bt3Y8uWLWLXd+7cic6dOzNKVXNz587FjBkzUFhYCI7jcP36dRw+fBirV6/m/bGQwYMHY9asWQgMDESrVq0AfCjY3dzceLdi+m8PHjzAgAEDAPz/rgaBQIDZs2fDysqKlw/bmjZtijVr1gD48LDn4MGDUFVVZZyqeh//TZV08fHxlR4XOnHihMT2BSG1g4p2QgivfWy85ePjI/qHWkpKCg4ODtiyZQvvV9uFQqFYt/IRI0ZgxIgRDBPVHJ8bVlXGwcEBM2bMwJ07dxAaGoo2bdqIFVqRkZEwMjJimLBqP/30E0pKSuDg4IAuXbrwvmFeRSwtLSs8j//69WtYWlry8mHPp1auXInevXsjLi4OvXr1AgCEhITgxo0botF7fObo6IiSkhLMmzcP+fn5sLe3R/PmzeHp6YlRo0axjleldevWwcbGBm3atEGLFi0AfJi33b17d6xfv55xuqqpqKjg7du3AIDmzZsjISEB7du3R25uLvLz8xmnq963sOpbWFgodqSI7/r27YuIiAjo6uqKXT9+/DgcHBx4f5yF1C0q2gkhvDZnzhxcuXIFp0+fhoWFBQAgPDwcLi4ucHNzw44dOxgnrNr+/fshLy+P4cOHi10/evQo8vPzMX78eEbJqsZxHDQ0NFBcXAx9ff1yq6Z8NX/+fOTn5yMgIADNmjXD0aNHxe5HRERg9OjRjNLVTL169XD8+HEsW7aMdZQv8nEnxr9lZ2fzfoszAFhYWCAqKgrr1q3DkSNHICsrC2NjY+zbtw+tW7dmHa9GJk+ejMmTJyMrKwtlZWW874PwkaKiIiIjI3HhwgXExcWJvvc9evRgHa1a3bt3x4ULF9C+fXuMGDECrq6uCA0NxYULF0QPf/guLy8PV65cqbCRHl/PV5eWlmLVqlXYuXMnnj9/juTkZOjq6mLx4sXQ1tbGxIkTWUes1LRp09CrVy9ERkaKjlD4+/vDyckJ3t7ebMMR3qHu8YQQXlNTU8OxY8fQs2dPseuXLl3CiBEj8PLlSzbBasjAwAA7d+6EpaWl2PUrV65gypQpuHfvHqNklXv06BGGDBmChIQEAICmpiYCAgLQqVMnxsm+H0OHDsXQoUMxYcIE1lFq7GOPhpMnT8LGxgYNGjQQ3SstLUV8fDwMDAwQFBTEKuJ3oaCgABzHiXYhpaWlITAwEIaGhrC2tmac7tuVk5ODwsJCaGhooKysDOvXr0d4eDj09PSwePFi3o/OjI2NRf/+/ZGfn4+8vDyoqKggKysLcnJyaNKkCVJTU1lHrNCKFStw4MABrFixApMnT0ZCQgJ0dXVx5MgReHh4ICoqinXEKrm6uuLixYu4evUqgoKCMGnSJBw8eBDDhg1jHY3wjGQsnRBCvlv5+flo2rRpuetNmjSRiC2HaWlpFXZf19LSQnp6OoNE1Zs/fz4KCwtx8OBByMjIYN26dZg6dSquX7/OOlqNPX78GAKBQLTF9vr16zh06BAMDQ0xZcoUxumq169fPyxYsAAJCQkVNgHk4/nej70COI6DgoKCWBdqaWlpdO3aFZMnT2YV74sUFBSguLhY7BofGzB+asiQIbCzs8PUqVORm5sLU1NTSEtLIysrCxs3bsS0adNYR6ySJK72lpSU4PTp06L58kKhEPPmzcO8efMYJ6u52bNnY9CgQdixYweUlJRw7do11K9fH2PHjoWrqyvreJXy8fHB7t270atXL7E+McbGxkhKSmKYrGY8PT0xbtw4dO3aFU+fPsXhw4cxZMgQ1rEID9FKOyGE13r16gVVVVX4+PiIzqoVFBRg/PjxyMnJwcWLFxknrFrLli2xdevWckXWyZMnMWPGDF7OmdfQ0MDhw4fx008/AfhwplRLSwvv3r2rdBwQ33Tv3h1TpkzBuHHjkJmZCQMDA7Rr1w7JyclwcXHBkiVLWEes0qd9EP6Nr00AP1q+fDl+/fVXidgKX5H8/HzMmzcPR44cQXZ2drn7fP7eAx92J125cgXt2rXD3r17sWXLFsTGxuL48eNYsmQJ7t69yzpipSR1tRcA5OTkcPfuXd43WqyMkpIS/vnnHxgYGEBJSQlRUVFo27Yt/vnnH4wfP563BbCsrCySkpKgpaUFBQUFxMXFQVdXF4mJiTA1NcW7d+9YRxRT0bi64uJizJ49G9bW1mKfFfj4cJawQyvthBBe8/T0hI2NDVq0aIEOHTpAIBDg1q1bkJGRQXBwMOt41Ro1ahRcXFygoKAgOpd55coVuLq68rYpVGZmJtq0aSN63aJFC8jKyuL58+cS07U/ISEBpqamAIAjR47AyMgIEREROH/+PKZOncr7ol2SuyMvXbqUdYT/ZO7cubh06RK2b98OBwcHbNu2DU+fPsWuXbtEnbb5LD8/HwoKCgCA8+fPw87ODkKhEF27dkVaWhrjdFWT1NVeADAzM0NsbKzEFu3169cX9aJo2rQp0tPT0bZtWygqKvJ2VxgAtGvXDlevXi33fT969ChMTEwYpapcVR3hvby84OXlBYD/D2dJ3aOinRDCa0ZGRkhJSYGvry+SkpLAcRxGjRqFMWPGSMSqr7u7O9LS0tCrVy9RM7eysjI4ODhg1apVjNNVTCAQlFvpFQqFkKSNWcXFxaIz1RcvXhStWLRp0wYZGRkso33znj9/jl9//RUhISF48eJFuZ8bvn8QPX36NHx8fNCzZ084OTmhe/fu0NPTg5aWFv766y+MGTOGdcQq6enp4cSJE7C1tUVwcDBmz54NAHjx4gXvt/bfunULu3btgpSUFKSkpFBUVARdXV2sXbsW48ePF/VN4KPp06fDzc0NT548qfBIS2WjvfjCxMQEN2/ehL6+PiwtLbFkyRJkZWXh4MGDaN++Pet45Tg5OcHT0xNLly7FuHHj8PTpU5SVlSEgIAD37t2Dj48Pzpw5wzpmOZL8QJawRdvjCSGkDiQnJ4u6Ibdv357XqzFCoRCKiopiHcBzc3PRqFEjsWI+JyeHRbwaMTMzg6WlJQYMGABra2tcu3YNHTp0wLVr1/Dzzz/z8ljCv125cgXr16/H3bt3IRAI0LZtW8ydOxfdu3dnHa1K/fr1Q3p6OpydnaGurl6ukzzfz2vKy8vjzp070NLSQosWLRAQEABTU1M8fPgQ7du359122387duwY7O3tUVpaCisrK1y4cAEAsHr1aoSFheHvv/9mnLByjRs3RkREBPT19WFgYIDNmzejb9++SEpKQqdOnXjdx6SiIy0CgUA0TYHvD6tu3ryJt2/fwtLSEi9fvsT48eNFjfT279+PDh06sI4oRkpKSjRaMjg4GKtWrUJ0dDTKysrQqVMnLFmyhNeNF4uLi2FtbY1du3ZBX1+fdRwiAWilnRDCOxWd+aoM3898Xb58GT179oS+vr7E/MO8f/9+1hH+sz///BO2trZYt24dxo8fL/rAeerUKdG2eT7z9fWFo6Mj7Ozs4OLiAo7jEBkZiV69esHb2xv29vasI1YqPDwcV69eRceOHVlH+SK6urp49OgRtLS0YGhoiCNHjsDU1BSnT5+GkpIS63jV+vnnn/Hjjz8iIyNDrNDq1asXbG1tGSarnqSt9n5K0uecd+nSRfTnxo0b49y5cwzTVO/TNce+ffuKmgBKivr16yMhIaHC8ZiEVIRW2gkhvFNVE65PScLqhYyMDJo3bw5HR0dMmDBB1M2c1L7S0lK8efNGbNTSo0ePRE2t+Kxt27aYMmWKaGvzRxs3bsSePXt43UzM0NAQf/31Fy/Pk9aEh4cHpKSk4OLigkuXLmHAgAEoLS1FSUkJNm7cyPuz1Z968uQJBAIBmjdvzjpKjUjaau+3oKCgABcuXIClpaWoF8JHb968weXLl9G3b1+xEY58IBQK8fz5czRu3Jh1lC/m5uaG+vXrS0SvDMIeFe2EEFKLcnJy4OvrC29vb8THx6NXr16YOHEihg4dCmlpadbxqiTpY9MA4OXLl7h37x4EAgH09fUl5gNegwYNcOfOHejp6Yldv3//PoyMjFBYWMgoWfXOnz+PDRs2YNeuXRLTuLAqaWlpiI6ORqtWrSSiaCwrK4O7uzs2bNgg2sqvoKAANzc3LFy4sMYPRcnn8fHxqfK+g4NDHSX5PJ6enjh16hRCQkIqvN+7d2/Y2tpixowZdZysahUd46oIn49xzZw5Ez4+PtDT00OXLl3K9UHYuHEjo2SEj6hoJ4TwUmhoKJydnXHt2rVyzZNev34Nc3Nz7Ny5k/fnez9169YteHl54fDhwygrK8OYMWMwceJE3hYC/x6bpq+vDyMjI4kYm5aXlyf6QPSx8Y+UlBQcHBywZcsWyMnJMU5YNT09PcydOxe//PKL2PVdu3Zh/fr1SElJYZSsesrKysjPz0dJSQnk5ORQv359sft8/hD9LViwYAH27duH5cuXw8LCAhzHISIiAsuWLcPkyZOxcuVK1hGr9eLFC9HDNgMDA4l42Pbpjh7gw5nl/Px8SEtLQ05Ojrc/96ampli8eDEGDRpU4f0zZ85gxYoVuH79eh0nq5pQKMSmTZugqKhY5fvGjx9fR4k+n6WlZaX3BAIBQkND6zAN4Tsq2gkhvDR48GBYWlqW2x780ebNm3Hp0iUEBgbWcbL/5tmzZ9i9ezfWrFmDevXqobCwEN26dcPOnTvRrl071vHEKCsr49q1a6KGUP7+/mJj0/g8M/mXX37BxYsXsXXrVlhYWAD4cNbaxcUFffr0wY4dOxgnrNqOHTswa9YsODk5wdzcHAKBAOHh4fD29oanp2e5Yp5PDhw4UOV9Pn+I/igkJAQeHh6iJoBt2rTBrFmz0Lt3b9bRqqWhoYGdO3eW6/dx8uRJTJ8+HU+fPmWUrHpv3rzBjBkz4OfnJzr6JCUlhZEjR2Lbtm3VFmh8k5KSgmnTpmHu3Lm8PXOtrKyMuLg4tGzZssL76enp6NChA169elXHyaomFAqRmZnJ+6NOhHw1HCGE8FDLli25xMTESu/fvXuX09TUrMNEX+79+/fc0aNHuX79+nH16tXjunbtyu3Zs4d79+4dl56ezo0ePZpr27Yt65jlNGzYkHv48CHHcRw3aNAgbs2aNRzHcVxaWhonIyPDMFn1VFVVuUuXLpW7HhoayqmpqdV9oC8QEBDAWVhYcCoqKpyKigpnYWHBnThxgnWsb96WLVu4evXqcaNGjeI8PT05T09PbvTo0Vz9+vW5LVu2sI5XrQYNGnD37t0rdz0pKYn3f2+HDx/OtW7dmgsKCuJev37NvXnzhgsKCuIMDAy44cOHs473RW7cuMEZGBiwjlEpeXl57ubNm5Xev3nzJicvL1+HiWpGKBRyz58/Zx3jq3n8+DH35MkT1jEIj1HRTgjhpQYNGnApKSmV3k9JSeH9B1CO4zhnZ2dOVVWVU1VV5VxdXbnbt2+Xe09aWhonEAgYpKuaqakpN3/+fC4sLIyTkZHhbt26xXEcx0VFRXHNmzdnnK5qsrKyFT70SUhI4OTk5Bgk+r7cv3+fW7hwITdq1CjRB+u///6bS0hIYJysehoaGhUW51u3buXU1dUZJPo8pqam3MyZM8tdd3Z25szMzBgkqjk5OTnu6tWr5a6HhYVJ7N/bmJgYTkFBgXWMSpmZmYkeyFZk9erVvPy5EQgEEl+0l5aWcsuXL+caNWrECYVCTigUcoqKityKFSu40tJS1vEIz9DIN0IILzVv3hy3b98u14jro/j4eKirq9dxqs+XmJiILVu2YNiwYZU2ntPQ0MClS5fqOFn1JHlsWrdu3bB06VL4+PhARkYGwIcuycuXL0e3bt0Yp6u5mzdvis1p79y5M+tI1bpy5Qr69esHCwsLhIWFYeXKlWjSpAni4+Oxd+9eHDt2jHXEKr158wY2NjblrltbW2P+/PkMEn2etWvXYsCAAbh48SK6desGgUCAyMhIPH78mPdjvFRVVSvcAq+oqFjuzDjf/HtUKcdxyMjIEDuiw0dOTk6YM2cO2rVrh4EDB4rdO336NNzd3XnZEO1jrxJJtnDhQuzbtw9r1qwp13+isLBQIvpPkLpDZ9oJIbw0c+ZMXL58GTdu3BAVXR8VFBTA1NQUlpaW2Lx5M6OE3wdJHZuWkJAAGxsbFBYWokOHDhAIBLh16xZkZGQQHBzMu/4B//bkyROMHj0aERERotngubm5MDc3x+HDh6Gpqck2YBW6deuG4cOHY86cOVBQUEBcXBx0dXVx48YNDB06lNdnqgFgzJgx6NixI+bOnSt2ff369YiOjsbhw4cZJau5Z8+eYdu2bUhKSgLHcTA0NMT06dOhoaHBOlqVdu/ejaNHj8LHx0f0UDYzMxPjx4+HnZ0dr3s5/Lsrv0AgQOPGjWFlZYUNGzbw+iHz2LFjcejQIbRp0wYGBgYQCAS4e/cukpOTMWLECIn4mZdEktx/gtQ9KtoJIbz0/PlzdOrUCVJSUnB2dhb7ILFt2zaUlpYiJiYGTZs2ZR21RhITE5Geno7379+LXf/3P9Z8JKlj0woKCuDr6ytWuIwZMwaysrKso1XL2toab968wYEDB2BgYAAAuHfvHpycnNCwYUOcP3+eccLKycvL4/bt29DR0REr2h89eoQ2bdrwelwdALi7u2P9+vWwsLAQ7cq4du0aIiIi4ObmJjbNwsXFhVXMb5KJiQnu37+PoqIiUWO09PR0NGjQAK1btxZ7b0xMDIuI36wjR47g0KFDSElJAcdx0NfXh729PUaMGME62jdLRkYG8fHx0NfXF7t+7949dOzYEQUFBYySET6iop0QwltpaWmYNm0agoOD8fFXlUAgQN++fbF9+3aJmAGdmpoKW1tb3L59GwKBQOy/A4CoQzIfSfrYNEkmKyuLyMhImJiYiF2PiYmBhYUFrz/MtWjRAkeOHIG5ublY0R4YGIhff/0VDx48YB2xSjo6OjV6n0Ag4M0Ehfj4+Bq/19jYuBaT/DfLly+v8XuXLl1ai0kIqX1mZmYwMzMrt2Nw5syZuHHjBq5du8YoGeEjOtNOCOEtLS0tnDt3Dq9evcL9+/fBcRxat27N+7ONn3J1dYWOjg4uXrwIXV1dXL9+HdnZ2XBzc8P69etZx6vSnDlzcOXKFZw+fbrc2DQ3NzfejU3795nSqvB9h0PLli1RXFxc7npJSQmaN2/OIFHN2dvbY/78+Th69CgEAgHKysoQERGBX3/9FQ4ODqzjVevhw4esI3y2jh07ij0UrIxAIOD1g0JJL8SfPHmCU6dOVbirio/nwj8VExOD+vXro3379gA+bNHev38/DA0NsWzZskp7spAvJ8n9J0jdo5V2QgipRWpqaggNDYWxsTEUFRVx/fp1GBgYIDQ0FG5uboiNjWUdsVJqamo4duwYevbsKXb90qVLGDFiBF6+fMkmWCX+faa0MnwvXIAPH5hXrVqFbdu2oXPnzhAIBLh58yZmzpyJ+fPnY+jQoawjVqq4uBgTJkyAn58fOI5DvXr1UFpaCnt7e3h7e0NKSop1xM9SUlKCwsJCyMvLs45SqbS0tBq/V0tLqxaTfD2FhYXw9/dHXl4e+vTpU257PN+EhIRg8ODB0NHRwb1792BkZIRHjx6B4zh06tQJoaGhrCNW6YcffsBvv/2GYcOGITU1FYaGhrCzs8ONGzcwYMAAbNq0iXXEb9LTp0+xfft2ies/QeoeFe2EEFKLlJWVER0dDV1dXbRq1Qp79+6FpaUlHjx4gPbt2yM/P591xErJyckhOjoabdu2Fbt+584dmJqaIi8vj1Gyb5+ysjLy8/NRUlKCevU+bIr7+OeGDRuKvTcnJ4dFxGqlpqYiJiYGZWVlMDEx4X3Rde7cOWRnZ2PcuHGiaytXrsQff/yBkpISWFlZwd/fX6J2+kiKuXPn4v379/D09AQAvH//HqampkhMTIScnBxKSkpw/vx5mJubM05aOVNTU9jY2GDFihWiYyFNmjTBmDFjYGNjg2nTprGOWCVFRUXExMSgVatW+PPPPxEaGorg4GBERERg1KhRePz4MeuIhHzXaHs8IYTUIiMjI8THx0NXVxdmZmZYu3YtpKWlsXv3bujq6rKOVyVJHJsWGhoKZ2dnXLt2TaxhGAC8fv0a5ubm2LlzJ7p3784oYc1I6qrWmzdvIC8vD6FQCF1dXdHPeFlZGd68eVPu/wmfrF+/HsOGDRO9joyMxJIlS7BixQq0bdsWCxcuxB9//MHbbc7R0dH49ddfcfLkyQp/9ocOHYpNmzaJRjfyyd9//41Vq1aJXv/1119IT09HSkoKWrZsCScnJ6xcuRJnz55lmLJqd+/eFXVZr1evHgoKCiAvL48VK1ZgyJAhvC/aOY4T9S65ePGiaPybpqYmsrKyWEb7ZllYWOCnn36CpaUlzM3Nyz2QJeRTVLQTQkgtWrRokWhF2t3dHQMHDkT37t2hqqoKf39/xumq5unpCRsbG7Ro0aLCsWl8tGnTJkyePLnC4lBRURG//PILNm7cyPuiffz48awjfLbAwEDMnz8ft27dKteksLCwED/88APWr1+PQYMGMUpYtYSEBGzYsEH0+tixY+jTpw8WLlwI4EOnZ1dXV94W7Rs2bICVlVWlP/t9+vTBunXr4OvryyBd1dLT02FoaCh6ff78efz888+irfyurq7o378/q3g10rBhQxQVFQH4MMrrwYMHotGSklD0dunSBe7u7ujduzeuXLki6lny8OFDiZnSImkGDhyIK1euYOvWrSgsLETnzp3x008/oWfPnvjxxx95fSSH1L2aHQAkhBDyRfr27Qs7OzsAgK6uLhITE5GVlYUXL17AysqKcbqqGRkZISUlBatXr0bHjh1hbGyMNWvWICUlhbdzzuPi4mBjY1PpfWtra0RHR9dhos9TVlaGkpISsWvPnz/H8uXLMW/ePISHhzNKVr0dO3Zg3rx5FU4VkJOTw/z587F161YGyWrm7du3UFVVFb0ODw8X+zvarl07PHv2jEW0Gvnnn38wZMiQSu8PGjQIkZGRdZio5oRCoVgTvWvXrqFr166i10pKSnj16hWLaDXWtWtXREREAAAGDBgANzc3rFy5Ek5OTmL/LXzl4eGBmJgYODs7Y+HChdDT0wPw4eEVn48lSLIFCxYgKCgIr169QlhYGIYMGYJbt25h8ODBYr+LCAFopZ0QQmodx3HIzs6GQCCAqqoqVFRUWEeqMVlZWUyePJl1jBp7/vw56tevX+n9evXq8a6B3qcmTpyI+vXrY/fu3QA+FJI//PADCgsLoa6uDg8PD5w8eZKXq44JCQnYvn17pfd79OiBRYsW1WGiz6OhoYG7d++iZcuWePfuHeLi4uDh4SG6n52dzesxh0+fPoWCgkKl9+Xl5ZGRkVGHiWquTZs2OH36NObMmYM7d+4gPT0dlpaWovtpaWm8X+3duHEj3r17BwBYtmwZ3r17B39/f+jp6Yn9HPFVhw4dcPv27XLX161bJ+qrQWpHSkoK4uLiEBcXh/j4eDRq1Ij3u8FI3aO/hYQQUksyMzMxb948nDp1Cm/fvgUANGrUCLa2tli9ejUvP4RK+ti05s2b4/bt26JVon+Lj4+Hurp6HaequYiICLHVaB8fH5SUlCAlJQWKioqYP38+1q1bx8ui/dWrV+V2CXyquLiY16ulP//8M2bNmoXff/8d586dQ7NmzcRWSG/evAkDAwOGCavWuHFj3Lt3r9I580lJSVBTU6vjVDUzd+5cjB49GmfPnsWdO3fQv39/sf+Oc+fOwdTUlGHC6n3ao0ROTq7KB1h8pKurixs3bpRb4S0sLESnTp2QmprKKNm3a+TIkQgLC0NZWRl69OiBHj16YMGCBTA2NmYdjfAQFe2EEFIL3rx5A3Nzc7x79w6Ojo5o06YNOI5DYmIiDh8+jPDwcMTExPDuzFpNR4nxdWxa//79sWTJEvTr10/UPO+jgoICLF26VNRgiY+ePn0q1mU9JCQEw4YNg6KiIoAPZ93379/PKl6VtLW1cfPmTbRp06bC+zdv3uT1uLGlS5fi2bNncHFxQbNmzeDr6ys2nu7w4cO8PY8PAL1798bKlSsrPB7CcRxWrVqF3r17M0hWvWHDhuHcuXM4e/YsrK2tMXPmTLH7cnJymD59OqN0NVNZ0ZubmysRRe+jR48q/J1eVFSEJ0+eMEj07Tt69CjU1NQwYcIEWFpaonv37rz7TED4g0a+EUJILfjjjz/g4+ODyMhING7cWOzeixcvYGFhAUdHR/z++++MEn6bnj9/jk6dOkFKSgrOzs4wMDCAQCDA3bt3sW3bNpSWliImJoaXuxwAQFVVFVevXhU15dLQ0MC6deswZswYAB/GqBkZGfFyVODChQvh6+uL69evl/v+ZmZmwszMDGPHjsXKlSsZJfy2PXjwAJ07d4aBgQHc3NzEfvY3bNiA5ORk3Lx5s9JdKOS/EQqFyMzMRJMmTcSuP3/+HC1bthQ1qeObj7urhg4digMHDogeEAJAaWkpQkJCcOHCBdy7d49VxG9Wbm4uwsLCcPnyZVy5cgV37txBhw4d0LNnT/Ts2RP9+vVjHZHwCBXthBBSC7p27YpffvkFjo6OFd738vLCnj17EBUVVcfJqifpY9PS0tIwbdo0BAcHi5pbCQQC9O3bF9u3b4e2tjbbgFWwsrKCmZkZVq9ejatXr6Jnz5548uSJaEv/hQsXMG3aNNy/f59x0vLevn2Lbt26IT09HWPHjhUrGv/66y9oamri2rVrVZ67Jv/NzZs3MWHCBCQmJkIgEAD4sMpuaGiI/fv344cffmCcsLz4+Pgav5eP24YlvegVCj/0pBYIBPh3SVC/fn1oa2tjw4YNvN6h9K148OAB3N3d4evri7KyMl7uZiPsUNFOCCG1QEVFBVFRUZWegU1KSoK5uTlycnLqOFn1Bg8eDEtLS8yePbvC+5s3b8alS5cQGBhYx8k+z6tXr3D//n1wHIfWrVtDWVmZdaRqXbp0Cf3794eGhgYyMjIwevRo7Nu3T3R/+vTpyMvLw4EDBximrNzr16+xYMEC+Pv7i86vKysrY+TIkVi1ahWUlJTYBqyEiYmJqMitTkxMTC2n+e9iY2NFP/v6+vro2LEj60iVEgqFYgVjVf8f+FjEfCtFr46ODm7cuMHbvgffopycHFy5cgWXL1/G5cuXcefOHaioqKBHjx6wtLTEjBkzWEckPEJFOyGE1IJ69erh6dOnlW7DzszMRIsWLaps3MWKlpYWgoKC0LZt2wrvJyUlwdraGunp6XWc7PuQmJiICxcuoFmzZhg+fLioKACA3bt3w9TUlNdFGPBhdTcrKwscx6Fx48Y1LohZWb58eY3fu3Tp0lpM8t9dvnwZPXv2ZB2jxtLS0kR/jo2Nxa+//oq5c+eiW7duAICoqChs2LABa9eurXHPDRao6CWfS0pKCmpqaujevbtoS7yRkRHrWISnqGgnhJBaICUlhczMzHLn2T96/vw5NDQ0eLlyJCMjg4SEhErPvt6/fx/t27dHQUFBHScjkqCgoAAcx4nGo6WlpSEwMBBt27ZF3759Gaf79snIyKB58+ZwdHTEhAkT0KJFC9aRaszU1BTLli0rNx3h3LlzWLx4MaKjoxkl+zK5ubm83V1SkZCQEISEhODFixcoKysTu+fl5cUo1bcrISGBinRSY8Lq30IIIeRzfdyWqqKiUuFXZR22+eDj2LTK8H1s2rfgwIEDOHv2rOj1vHnzoKSkBHNzc7GVST4aMmQIfHx8AHwoWkxNTbFhwwYMHToUO3bsYJzu2/fs2TO4uroiICAA2tra6Nu3L44cOYL379+zjlat27dvVziyTkdHB4mJiQwS1dyff/4Jf39/0evhw4dDRUUFzZs3R1xcHMNkNbN8+XJYW1sjJCQEWVlZePXqldgX+fqMjIxQUlKCixcvYteuXaLRsM+ePcO7d+8YpyN8QyvthBBSC2p65nj8+PG1nOTzzZw5E5cvX8aNGzcqHJtmamoKS0tLbN68mVHCb5+BgQF27NgBKysrREVFoVevXti0aRPOnDmDevXqISAggHXESqmpqeHKlSto164d9u7diy1btiA2NhbHjx/HkiVLcPfuXdYRy1FWVq7xFn4+9qGozK1bt+Dl5YXDhw+jrKwMY8aMwcSJE9GhQwfW0SrUqVMntG3bFvv27RP97ikqKoKTkxPu3r3L634Curq68PX1hbm5OS5cuIARI0bA398fR44cQXp6Os6fP886YpXU1dWxdu1ajBs3jnWU70ZaWhpsbGyQnp6OoqIiJCcnQ1dXF7NmzUJhYSF27tzJOiLhESraCSGEiJH0sWnfAjk5OSQlJaFly5aYP38+MjIy4OPjgzt37qBnz554+fIl64iV+jT7iBEj0K5dOyxduhSPHz+GgYEBL8fVfU5jPz4+aKvKs2fPsHv3bqxZswb16tVDYWEhunXrhp07d6Jdu3as44m5fv06Bg0ahLKyMtGDhbi4OAgEApw5cwampqaME1ZOVlYWycnJ0NTUhKurKwoLC7Fr1y4kJyfDzMyM96vVqqqquH79Olq1asU6yndj6NChUFBQwL59+6Cqqoq4uDjo6uriypUrmDRpElJSUlhHJDxSj3UAQgj5lj1+/BgCgUB0rvT69es4dOgQDA0NMWXKFMbpKta0aVNERkZi2rRpWLBgQYVj06hgr13y8vLIzs5Gy5Ytcf78eVEnfxkZGd73EtDT08OJEydga2uL4OBgUfYXL16UGyHIFzUtxPn8sORTxcXFOHnyJLy8vHDhwgV06dIFW7duxejRo5GTk4P58+dj+PDhvNtybmpqiocPH8LX1xdJSUngOA4jR46Evb09GjZsyDpelZSVlfH48WNoamoiKCgI7u7uAD4cleJj75J/mzRpEg4dOoTFixezjvLdCA8PR0REBKSlpcWua2lp4enTp4xSEb6iop0QQmqRvb09pkyZgnHjxiEzMxO9e/eGkZERfH19kZmZiSVLlrCOWCEtLS2cO3dOIsemfQv69OmDSZMmwcTEBMnJyRgwYAAA4M6dO7yeMw8AS5Ysgb29PWbPno1evXqJuoCfP38eJiYmjNN9Po7j8Pfff2Pv3r04e/YsioqKWEeq0syZM3H48GEAwNixY7F27VqxZlcNGzbEmjVrePtzJCcnx9sHmlWxs7ODvb09WrdujezsbPTr1w/AhyMKlTX15JPCwkLs3r0bFy9ehLGxMerXry92f+PGjYySfbsqm8X+5MkTKCgoMEhE+Iwa0RFCSC1KSEgQbek8cuQI2rdvj8jISBw6dAje3t5sw9WAsrIyfvjhB5iamlLBXoe2bduGbt264eXLlzh+/DhUVVUBANHR0Rg9ejTjdFX7+eefkZ6ejps3byIoKEh0/eO5fEmRmpqKRYsWoWXLlhgzZgzk5OTg5+fHOla1EhMTsWXLFjx79gybNm2qsDu1hoYGLl26xCBd9Q4ePIgff/wRGhoaoqaLHh4eOHnyJONkVfPw8ICzszMMDQ1x4cIFyMvLAwAyMjIwffp0xumqFx8fj44dO0IoFCIhIQGxsbGir1u3brGO903q06eP2O9EgUCAd+/eYenSpeUmKBBCZ9oJIaQWycvLIyEhAdra2hg8eDAsLCwwf/58pKenw8DAgPdbnQn5XE5OTvD09Cy3UpSXl4eZM2fyenRUYWEhjh07hr179+LatWvo06cP/v77b9y6dUsiRjMVFxdjypQpWLx4MXR1dVnH+Ww7duzAkiVLMGvWLLi7u+POnTvQ1dWFt7c3Dhw4wNsHDYR8iWfPnsHS0hJSUlJISUlBly5dkJKSAjU1NYSFhaFJkyasIxIeoaKdEEJqkZmZGSwtLTFgwABYW1vj2rVr6NChA65du4aff/4ZT548YR2R8FRhYSHi4+PLzUwWCAQYNGgQw2RVk5KSQkZGRrkPnFlZWWjWrBlKSkoYJava9OnT4efnBwMDA4wdOxajRo2Cqqoq6tevj7i4OBgaGrKOWCNKSkqIiYmRyKLd0NAQq1atEjXo+tiYKyEhAT179kRWVhbriFU6ePAgdu3ahdTUVERFRUFLSwubNm2Cjo4OhgwZwjoe4aGCggIcPnwYMTExKCsrQ6dOnTBmzBjIysqyjkZ4hs60E0JILfrzzz9ha2uLdevWYfz48aKOyKdOneJ1J2TCVlBQEMaNG4fs7Oxy9wQCAS8bW7158wYcx4HjOLx9+1ZsXGBpaSnOnTvH65Wj3bt3Y/78+fjtt98k+jypra0tTpw4gTlz5rCO8tkePnxYYd+DBg0aIC8vj0Gimvt0l8DKlStFf0eVlJSwadMmiSjab9y4gaNHjyI9PR3v378Xu8fnMZOSTFZWFk5OTnBycmIdhfAcFe2EEFKLPq4OvXnzRuxM+JQpUyAnJ8cwGeEzZ2dnjBgxAkuWLJGYTv1KSkoQCAQQCATQ19cvd18gEGD58uUMktWMj48P9u/fD3V1dQwYMADjxo2DjY0N61ifTU9PD3/88QciIyPRuXPncl3XXVxcGCWrno6ODm7dugUtLS2x63///Tfvdzps2bIFe/bswdChQ7FmzRrR9S5duuDXX39lmKxm/Pz84ODgAGtra1y4cAHW1tZISUlBZmYmbG1tWcf7Zpw6darG7x08eHAtJiGShrbHE0JIHXj58iXu3bsnKmgaN27MOhLhsUaNGiE2NlaiZiZfuXIFHMfBysoKx48fh4qKiuietLQ0tLS0oKGhwTBhzTx69Aj79++Ht7c38vPzkZOTA39/f/z888+so9WIjo5OpfcEAgFSU1PrMM3n2b9/PxYvXowNGzZg4sSJ2Lt3Lx48eIDVq1dj7969GDVqFOuIlZKVlUVSUhK0tLTEtvanpKTA2NiY9/1LjI2N8csvv2DGjBmi/Do6Ovjll1+grq7O6wdukkQorFkPcL7uqCLsUNFOCCG16GPzLR8fH9G5ZCkpKTg4OGDLli202k4q5OTkBAsLC0ycOJF1lM9SUlKCSZMm4Y8//oCmpibrOP8Jx3EIDg6Gl5cXTp06BTU1NdjZ2WHz5s2so33T9uzZA3d3dzx+/BgA0Lx5cyxbtoz3fxcMDQ2xevVqDBkyRKxo37x5M7y9vRETE8M6YpUaNmwoGimppqaGS5cuoX379rh79y6srKyQkZHBOiIh3zXaHk8IIbVozpw5uHLlCk6fPg0LCwsAQHh4OFxcXODm5oYdO3YwTkj4aOvWrRg+fDiuXr2K9u3bl5uZzNctzvXq1cPx48exbNky1lH+M4FAABsbG9jY2CAnJ0e0fV6SfFyXEQgEjJPU3OTJkzF58mRkZWWhrKyM130QPjV37lzMmDEDhYWF4DgO169fx+HDh7Fq1Srs27ePdbxqqaio4O3btwA+PChJSEhA+/btkZubi/z8fMbpvn2FhYVifUAI+TdaaSeEkFqkpqaGY8eOoWfPnmLXL126hBEjRuDly5dsghFe27t3L6ZOnQpZWVmoqqqKFV183+I8dOhQDB06FBMmTGAd5Ytcvny53N9XSePj44N169YhJSUFAKCvr4+5c+di3LhxjJNVraCgABzHiXYgpaWlITAwEIaGhrC2tmacrnoV7RJYvnw5+vbti+bNmzNOVzV7e3t06dIFc+bMwcqVK+Hp6YkhQ4bgwoUL6NSpEzWiqwWlpaVYtWoVdu7ciefPnyM5ORm6urpYvHgxtLW1eb+7hNQtKtoJIaQWycnJITo6Gm3bthW7fufOHZiamvK+IzJho1mzZnBxccFvv/1W4zOQfLFr1y4sW7YMY8aMqbARGt+bK8nIyKB58+ZwdHTE+PHjJW6b/8aNG7F48WI4OzvDwsICHMchIiIC27Ztg7u7O2bPns06YqWsra1hZ2eHqVOnIjc3FwYGBpCWlkZWVhY2btyIadOmsY5YIx93CXwsyvbu3cv7M+05OTkoLCyEhoYGysrKsH79eoSHh0NPTw+LFy8Wa6RKvo4VK1bgwIEDWLFiBSZPnoyEhATo6uriyJEj8PDwQFRUFOuIhE84QgghtcbKyoobPnw4V1BQILqWn5/PDR8+nOvVqxfDZITPlJWVufv377OO8UUEAkGlX0KhkHW8amVnZ3Oenp6ciYkJJyUlxVlbW3P+/v5cUVER62g1oq2tzR04cKDcdW9vb05bW5tBoppTVVXlEhISOI7juD179nDGxsZcaWkpd+TIEa5NmzaM01Xs1atXnL29Paempsapq6tznp6eXGlpKbdkyRJOTk6O69KlC3fo0CHWMatUXFzMeXt7cxkZGayjfFdatWrFXbx4keM4jpOXl+cePHjAcRzH3b17l1NSUmIZjfCQZD2+J4QQCePp6YnIyEi0aNECvXr1Qu/evaGpqYnIyEh4enqyjkd4avz48fD392cd44uUlZVV+iUJ3ZBVVFTg4uKCmJgY3Lx5EwYGBpgxYwbU1dXh4uKCuLg41hGrlJGRAXNz83LXzc3Ned9MLD8/HwoKCgCA8+fPw87ODkKhEF27dkVaWhrjdBX7/fffERYWhvHjx0NFRQWzZ8/GwIEDcfXqVZw7dw43btzA6NGjWcesUr169TBt2jQUFRWxjvJdefr0KfT09MpdLysrQ3FxMYNEhM+oER0hhNQiIyMjpKSkwNfXF0lJSeA4DqNGjcKYMWMgKyvLOh7hqdLSUqxduxbBwcEwNjYu14hu48aNjJJ9Xzp27IjffvsNKioqWLNmDby8vLB9+3Z069YNO3fuRLt27VhHLEdPTw9HjhzB77//Lnbd398frVu3ZpSqZvT09HDixAnY2toiODhYtJX/xYsXaNSoEeN0FTt79iz279+P3r17Y/r06dDT04O+vj42bdrEOtpnMTMzQ2xsLLS0tFhH+W60a9cOV69eLfc9P3r0KExMTBilInxFRTshhNQyWVlZTJ48mXUMIkFu374t+tCWkJAgdk8SOoFfuXIF69evx927dyEQCNC2bVvMnTsX3bt3Zx2tRoqLi3Hy5El4eXnhwoUL6NKlC7Zu3YrRo0cjJycH8+fPx/Dhw5GYmMg6ajnLly/HyJEjERYWBgsLCwgEAoSHhyMkJARHjhxhHa9KS5Ysgb29PWbPng0rKyt069YNwIdVd74WMc+ePYOhoSEAQFdXFzIyMpg0aRLjVJ9v+vTpcHNzw5MnTyrsRWFsbMwo2bfHyckJnp6eWLp0KcaNG4enT5+irKwMAQEBuHfvHnx8fHDmzBnWMQnPUCM6Qgj5yk6dOlXj9/K9KRchn8vX1xeOjo6ws7MTNUKLjIxEYGAgvL29YW9vzzpilWbOnInDhw8DAMaOHYtJkybByMhI7D3p6enQ1tZGWVkZi4jVio6OhoeHB+7evQuO42BoaAg3NzfeFr6fyszMREZGBjp06CBqwnj9+nU0atQIbdq0YZyuPCkpKWRmZqJx48YAAAUFBcTHx0NHR4dxss9TUcNLgUAAjuMgEAgk4miLpJCSkkJGRgaaNGmC4OBgrFq1CtHR0SgrK0OnTp2wZMkSiZiWQOoWFe2EEPKV1bTbN30QIpXx9vbGyJEjJfIIRdu2bTFlypRyXco3btyIPXv24O7du4yS1UyvXr0wadIkDBs2DNLS0hW+p6SkBBEREfjpp5/qON3348mTJxAIBLwflSYUCtGvXz80aNAAAHD69GlYWVmVW6nm+8i06noG0Lb5r0coFCIzMxNNmjRhHYVIECraCSGEEJ5RV1dHXl4ehg8fjokTJ1bYWIyvGjRogDt37pRrsHT//n0YGRmhsLCQUbLqFRcXY8qUKVi8eDF0dXVZx/kin67ifSo7OxtNmjTh9YPCsrIyuLu7Y8OGDXj37h2ADyvXbm5uWLhwIS/HHzo6Otboffv376/lJERSCIVCPH/+XLQ7g5CaoDPthBBSC0JDQ+Hs7Ixr166Va6D0+vVrmJubY+fOnRJzxpfUrSdPnuDs2bPw9vaGpaUldHR0RHPDmzVrxjpelTQ1NRESElKuaA8JCeH9zPP69esjMDAQixcvZh3li1W2FlNUVFTpzgG+WLhwIfbt24c1a9aIzZhftmwZCgsLsXLlStYRy/lWinEfH58q7zs4ONRRku+Dvr5+tf1JcnJy6igNkQS00k4IIbVg8ODBsLS0LLdF+KPNmzfj0qVLCAwMrONkRNK8ePECvr6+8Pb2RlJSEmxsbDBx4kQMGjSIlyuPO3bswKxZs+Dk5ARzc3NRIzRvb294enril19+YR2xSo6Ojmjfvj3mzJnDOspn2bx5MwBg9uzZ+OOPPyAvLy+6V1pairCwMDx69AixsbGsIlZLQ0MDO3fuLNfr4+TJk5g+fTqePn3KKNm3T1lZWex1cXEx8vPzIS0tDTk5OSogvyKhUIhNmzZBUVGxyveNHz++jhIRSUBFOyGE1AItLS0EBQWhbdu2Fd5PSkqCtbU10tPT6zgZkUT//PMPvLy8cODAAairqyM3NxdKSkrYv38/evbsyTpeOYGBgdiwYYPo/PrH7vFDhgxhnKx6K1euxPr169GrV68Ku2i7uLgwSla1j43P0tLS0KJFC0hJSYnuSUtLQ1tbGytWrICZmRmriNWSkZFBfHw89PX1xa7fu3cPHTt2REFBAaNk36eUlBRMmzYNc+fORd++fVnH+WbQmXbyJahoJ4SQWiAjI4OEhIRyW4Q/un//Ptq3b08fQkmlnj9/joMHD2L//v1ITU3F0KFDMXHiRPTu3RsFBQVYtGgRjh07Vm0DKfJ5qur6LRAIkJqaWodpPp+lpSUCAgLKrZxKAjMzM5iZmYl2DXw0c+ZM3LhxA9euXWOU7Pt18+ZNjB07FklJSayjfDMq6ztBSFXoTDshhNSC5s2b4/bt25UW7fHx8VBXV6/jVERSDBo0CMHBwdDX18fkyZPh4OAAFRUV0X1ZWVm4ubnBw8ODYcqq3bx5U2xOe+fOnVlHqpGHDx+yjvCfXLp0iXWEL7Z27VoMGDAAFy9eRLdu3SAQCBAZGYnHjx/j3LlzrON9l6SkpPDs2TPWMb4ptF5KvgQV7YQQUgv69++PJUuWoF+/fpCRkRG7V1BQgKVLl2LgwIGM0hG+a9KkCa5cuYJu3bpV+h51dXVeFphPnjzB6NGjERERASUlJQBAbm4uzM3NcfjwYd43o/vUxw/X1TWM4psnT57g1KlTSE9Px/v378Xubdy4kVGq6v30009ITk7Gtm3bkJSUBI7jYGdnh+nTp0NDQ4N1vG/aqVOnxF5zHIeMjAxs3boVFhYWjFJ9m8rKylhHIBKItscTQkgteP78OTp16gQpKSk4OzvDwMAAAoEAd+/exbZt21BaWoqYmBg0bdqUdVTCIwUFBQgJCRE90FmwYAGKiopE96WkpPDHH3+UexDEJ9bW1njz5g0OHDgAAwMDAB/OJDs5OaFhw4Y4f/4844TV8/Hxwbp165CSkgLgQ6fnuXPnYty4cYyTVS8kJASDBw+Gjo4O7t27ByMjIzx69Agcx6FTp04IDQ1lHZHw0L+bWgoEAjRu3BhWVlbYsGED7QwjhDEq2gkhpJakpaVh2rRpCA4OFlux69u3L7Zv3w5tbW22AQnv7Nq1C2fOnMHp06cBfJhR3a5dO8jKygL40MBw3rx5lU4l4ANZWVlERkbCxMRE7HpMTAwsLCx438dh48aNWLx4MZydncXGjm3btg3u7u68/t4DgKmpKWxsbLBixQooKCggLi4OTZo0wZgxY2BjY4Np06axjigmPj6+xu81NjauxSSEEMJfVLQTQkgte/XqFe7fvw+O49C6dWuJbBBF6kaPHj0we/Zs2NraAoCo6NLV1QUA+Pr6Ytu2bYiKimIZs0oGBgY4ePAgTE1Nxa5fv34d9vb2uH//PqNkNaOjo4Ply5eXm0t94MABLFu2jJdHEj6loKCAW7duoVWrVlBWVkZ4eDjatWuHuLg4DBkyBI8ePWIdUYxQKIRAIKj2nK9AIEBpaWkdpSKEEH6hM+2EEFLLlJWV8cMPP7COQSRAcnKy2LgrGRkZsW2rpqammDFjBotoNbZ27VrMnDkT27ZtQ+fOnSEQCHDz5k24urpi/fr1rONVKyMjA+bm5uWum5ubIyMjg0Giz9OwYUPRkQoNDQ08ePAA7dq1AwBkZWWxjFYhvj8E+Z5Iai8EQr4HVLQTQgghPPH69WvUq/f//zS/fPlS7H5ZWZnYGXc+mjBhAvLz82FmZib6bykpKUG9evXg5OQEJycn0XtzcnJYxayUnp4ejhw5gt9//13sur+/P1q3bs0oVc117doVERERMDQ0xIABA+Dm5obbt28jICAAXbt2ZR2vHC0tLdYRCKrvhUAIYYuKdkIIIYQnWrRogYSEBFEDt3+Lj49HixYt6jjV59m0aRPrCP/J8uXLMXLkSISFhcHCwgICgQDh4eEICQnBkSNHWMer1saNG/Hu3TsAwLJly/Du3Tv4+/tDT0+PtyMCo6Oj8euvv+LkyZNo1KiR2L3Xr19j6NCh2LRpEzp06MAo4bdvwYIFcHNzE/VCOH78uFgvBEIIW3SmnRBCCOEJV1dXXLx4EdHR0RWOCuzSpQt69+4NT09PRgm/D9HR0fDw8MDdu3fBcRwMDQ3h5uZWrrke+Trs7e3Rtm1bLF68uML7q1atQmJiInx9fes42fdD0nohEPK9oaKdEEII4Ynnz5+jY8eOkJaWhrOzM/T19SEQCJCUlIStW7eipKQEsbGxvBwVWFZWhrKyMrHt/c+fP8fOnTuRl5eHwYMH48cff2SYkPBVq1atEBgYWGl3+Nu3b2PIkCFITU2t42Tfj2bNmiE0NBSGhoZo164dVq9ejcGDByMuLg4WFhai3RuEEDZoezwhhBDCE02bNkVkZCSmTZuG3377TWxUYJ8+fbB9+3ZeFuwAMHHiRNSvXx+7d+8GALx9+xY//PADCgsLoa6uDg8PD5w8eRL9+/dnnLRqUlJSyMjIQJMmTcSuZ2dno0mTJrzsYK6srAyBQFCj9/Kxj8DTp0+hoKBQ6X15eXmJaAIoySStFwIh3xsq2gkhhBAe0dHRQVBQEHJyckTj0fT09KCiosI4WdUiIiKwdetW0WsfHx+UlJQgJSUFioqKmD9/PtatW8f7or2yDYhFRUWQlpau4zQ182kfgezsbLi7u6Nv377o1q0bACAqKgrBwcGVbj9nrXHjxrh37x50dHQqvJ+UlAQ1NbU6TvV9kcReCIR8T2h7PCGEEEL+s4YNGyIhIUFUeNnZ2aF58+bYsmULACAxMRE9e/bEixcvWMas1ObNmwEAs2fPxh9//AF5eXnRvdLSUoSFheHRo0eIjY1lFbFGhg0bBktLSzg7O4td37p1Ky5evIgTJ06wCVYFR0dH3L9/H1evXi13j+M49OjRA3p6eti/fz+DdIQQwh4V7YQQQgj5z1RVVXH16lUYGhoC+DAjfN26dRgzZgwAIDU1FUZGRsjPz2cZs1IfHzakpaWhRYsWkJKSEt2TlpaGtrY2VqxYATMzM1YRa0ReXh63bt2Cnp6e2PWUlBSYmJjw8mzygwcP0LlzZxgYGMDNzQ0GBgYQCAS4e/cuNmzYgOTkZNy8ebPcfxP5enR1dXHjxg2oqqqKXc/NzUWnTp2onwAhjNH2eEIIIYT8Zx06dMDBgwexevVqXL16Fc+fP4eVlZXo/oMHD6ChocEwYdUePnwIALC0tERAQACUlZUZJ/oyqqqqCAwMxNy5c8WunzhxolxBxhetWrXCxYsXMWHCBIwaNUp0Pv9j5/4LFy5QwV7LHj16VGG/hqKiIjx9+pRBIkLIp6hoJ4QQQsh/tnjxYvTv3x9HjhxBRkYGJkyYAHV1ddH9wMBAWFhYMExYM5cuXWId4T9Zvnw5Jk6ciMuXL4vOtF+7dg1BQUHYu3cv43SV69KlCxISEhAbG4v79++D4zjo6+ujY8eOrKN9006dOiX6c3BwMBQVFUWvS0tLERISAm1tbQbJCCGfou3xhBBCCPkqEhMTceHCBTRr1gzDhw+HUCgU3du9ezdMTU0logh78uQJTp06hfT0dLx//17s3saNGxmlqrl//vkHmzdvFpsz7+Liwvut/ZcvX0bPnj1Zx/iufPw7KhAIyjVhrF+/PrS1tbFhwwYMHDiQRTxCyP9Q0U4IIYQQ8j8hISEYPHgwdHR0cO/ePRgZGeHRo0fgOA6dOnVCaGgo64jfLBkZGTRv3hyOjo6YMGECWrRowTrSd0NHRwc3btygLv2E8JSw+rcQQgghhNTMgQMHcPbsWdHrefPmQUlJCebm5khLS2OYrGYWLFgANzc3JCQkQEZGBsePH8fjx4/x008/Yfjw4azj1UhZWRmSk5MRHh6OsLAwsS8+e/bsGVxdXREQEABtbW307dsXR44cKbfbgXx9Dx8+LFew5+bmsglDCCmHVtoJIYQQ8tUYGBhgx44dsLKyQlRUFHr16oVNmzbhzJkzqFevHgICAlhHrJKCggJu3bqFVq1aQVlZGeHh4WjXrh3i4uIwZMgQPHr0iHXEKl27dg329vZIS0srt91ZIBBU2GyMj27dugUvLy8cPnwYZWVlGDNmDCZOnIgOHTqwjvZN+vPPP6GtrY2RI0cCAIYPH47jx49DXV0d586do+87IYzRSjshhBBCvprHjx+LOn2fOHECP//8M6ZMmSLqKs93DRs2RFFREYAPY+sePHggupeVlcUqVo1NnTpV1NQtJycHr169En3l5OSwjldjHTt2xG+//YYZM2YgLy8PXl5e6Ny5M7p37447d+6wjvfN2bVrFzQ1NQEAFy5cwMWLFxEUFIR+/fqVm0RACKl7VLQTQggh5KuRl5dHdnY2AOD8+fPo3bs3gA/nlQsKClhGq5GuXbsiIiICADBgwAC4ublh5cqVcHJyQteuXRmnq15KSgpWrVqFtm3bQklJCYqKimJffFdcXIxjx46hf//+0NLSQnBwMLZu3Yrnz5/j4cOH0NTUlJhjCpIkIyNDVLSfOXMGI0aMgLW1NebNm4cbN24wTkcIoZFvhBBCCPlq+vTpg0mTJsHExATJyckYMGAAAODOnTsSMTpq48aNePfuHQBg2bJlePfuHfz9/aGnpwcPDw/G6apnZmaG+/fvS+Rc85kzZ+Lw4cMAgLFjx2Lt2rUwMjIS3W/YsCHWrFkjET9HkkZZWRmPHz+GpqYmgoKC4O7uDgDgOE5ijlQQ8i2jop0QQgghX822bduwaNEiPH78GMePH4eqqioAIDo6GqNHj2acrnq6urqiP8vJyWH79u0M03y+mTNnws3NDZmZmWjfvj3q168vdt/Y2JhRsuolJiZiy5YtGDZsGKSlpSt8j4aGBi5dulTHyb59dnZ2sLe3R+vWrZGdnY1+/foB+NBbQBIfABHyraFGdIQQQggh34iPc7c/9XEGN58b0RUXF2PKlClYvHix2IMTUjeKi4vh6emJx48fY8KECTAxMQEAbNq0CfLy8pg0aRLjhIR836hoJ4QQQshXVVhYiPj4eLx48QJlZWWi6wKBAIMGDWKYrGLKysoQCAQ1ei/fm7lVN1ZPS0urjpJ8PiUlJcTExFDRTggh/0Lb4wkhhBDy1QQFBWHcuHGiZnSf4utK76ZNm0R/zs7Ohru7O/r27Ytu3boBAKKiohAcHIzFixczSlhzfC7Kq2Nra4sTJ05gzpw5rKN8lw4ePIhdu3YhNTUVUVFR0NLSwqZNm6Cjo4MhQ4awjkfId41W2gkhhBDy1ejp6aFv375YsmQJmjZtyjrOZxs2bBgsLS3h7Owsdn3r1q24ePEiTpw4wSbYZ0pMTER6ejrev38vdn3w4MGMElVv5cqVWL9+PXr16oXOnTujYcOGYvddXFwYJfv27dixA0uWLMGsWbOwcuVKJCQkQFdXF97e3jhw4AD1ESCEMSraCSGEEPLVNGrUCLGxsWjVqhXrKF9EXl6+wuZbKSkpMDExEXWW56vU1FTY2tri9u3borPsAETb//m40+EjHR2dSu8JBAKkpqbWYZrvi6GhIVatWoWhQ4dCQUEBcXFx0NXVRUJCAnr27ImsrCzWEQn5rtGcdkIIIYR8NT///DMuX77MOsYXU1VVRWBgYLnrJ06cEHXC5zNXV1fo6Ojg+fPnkJOTw507dxAWFoYuXbrw/v/Lw4cPK/2igr12PXz4UNR87lMNGjRAXl4eg0SEkE/RmXZCCCGEfDVbt27F8OHDcfXq1QpHjvF9i/Py5csxceJEXL58WXSm/dq1awgKCsLevXsZp6teVFQUQkND0bhxYwiFQgiFQvz4449YvXo1XFxcEBsbyzpijfx7hwCpXTo6Orh161a5ngh///032rZtyygVIeQjKtoJIYQQ8tUcOnQIwcHBkJWVxeXLl8WKLoFAwPuifcKECWjbti02b96MgIAAcBwHQ0NDREREwMzMjHW8apWWlkJeXh4AoKamhmfPnsHAwABaWlq4d+8e43TV8/Hxwbp165CSkgIA0NfXx9y5czFu3DjGyb5tc+fOxYwZM1BYWAiO43D9+nUcPnwYq1atwr59+1jHI+S7R0U7IYQQQr6aRYsWYcWKFfjtt98qnBkuCczMzPDXX3+xjvFFjIyMEB8fD11dXZiZmWHt2rWQlpbG7t27eT9KbePGjVi8eDGcnZ1hYWEBjuMQERGBqVOnIisrC7Nnz2Yd8Zvl6OiIkpISzJs3D/n5+bC3t0fz5s2xZcsWdO/enXU8Qr571IiOEEIIIV+NiooKbty4IbGN6ACgrKwM9+/fLzdnHgB69OjBKFXNBAcHIy8vD3Z2dkhNTcXAgQORlJQEVVVV+Pv7w8rKinXESuno6GD58uVwcHAQu37gwAEsW7YMDx8+ZJTs+5KVlYWysjKUlpZi1apV2Lt3LwoKCljHIuS7RkU7IYQQQr6a2bNno3Hjxvj9999ZR/ki165dg729PdLS0vDvj0h8nTNfnZycHCgrK/P+fLiMjAwSEhIq7Nzfvn17FBYWMkr27crNzcWMGTNw/vx51K9fH7/99hucnZ2xfPlyrF+/HoaGhpgzZw5Gjx7NOioh3zXaHk8IIYSQr6a0tBRr165FcHAwjI2NyzWi27hxI6NkNTN16lR06dIFZ8+ehbq6Ou8L3ZpQUVFhHaFG9PT0cOTIkXIPfPz9/dG6dWtGqb5tv//+O8LCwjB+/HgEBQVh9uzZCAoKQmFhIc6dO4effvqJdURCCGilnRBCCCFfkaWlZaX3BAIBQkND6zDN52vYsCHi4uLKrfbynZOTU43e5+XlVctJvtzx48cxcuRI9O7dGxYWFhAIBAgPD0dISAiOHDkCW1tb1hG/OVpaWti3bx969+6N1NRU6OnpwcXFBZs2bWIdjRDyCSraCSGEEEL+x8rKCvPmzYONjQ3rKJ9FKBRCS0sLJiYm5bb1f6qiGfR8Eh0dDQ8PD9y9e1fUud/Nza3CGeLkv6tfvz7S0tKgoaEBAJCTk8P169dhZGTEOBkh5FO0PZ4QQgghX423tzdGjhwJWVlZ1lG+yMyZM+Hm5obMzMwK58wbGxszSla1qVOnws/PD6mpqXBycsLYsWMlZlv8pzp37gxfX1/WMb4bZWVlYj/jUlJSaNiwIcNEhJCK0Eo7IYQQQr4adXV15OXlYfjw4Zg4cSLMzc1ZR/osFY2pEwgE4DiO943oioqKEBAQAC8vL0RGRmLAgAGYOHEirK2tJeJsvpSUFDIyMtCkSROx69nZ2WjSpAmvv/eSSigUol+/fmjQoAEA4PTp07CysipXuAcEBLCIRwj5HyraCSGEEPLVlJaW4uzZs/D29sbZs2eho6MDR0dHjB8/Hs2aNWMdr1ppaWlV3tfS0qqjJP9NWloavL294ePjg+LiYiQmJkJeXp51rCoJhUJkZmaWK9qfPXuGVq1a0dixWuDo6Fij9+3fv7+WkxBCqkLb4wkhhBDy1UhJSWHw4MEYPHgwXrx4AV9fX3h7e2Px4sWwsbHBxIkTMWjQoApXtPlAUory6ggEAtEOgX/PmuebzZs3A/iQee/evWIPF0pLSxEWFoY2bdqwivdNo2KcEMlAK+2EEEIIqTX//PMPvLy8cODAAairqyM3NxdKSkrYv38/evbsyTpepRITE5Geno7379+LXR88eDCjRNX7dHt8eHg4Bg4cCEdHR9jY2PD2IQkA6OjoAPiwO6BFixaQkpIS3ZOWloa2tjZWrFgBMzMzVhEJIYQpKtoJIYQQ8lU9f/4cBw8exP79+5GamoqhQ4di4sSJ6N27NwoKCrBo0SIcO3as2q3oLKSmpsLW1ha3b98WrVQDEJ0J5+u56unTp8PPzw8tW7aEo6Mjxo4dC1VVVdaxPoulpSUCAgKgrKzMOgohhPAKFe2EEEII+WoGDRqE4OBg6OvrY9KkSXBwcCjXxfzZs2do0aIFL7dtDxo0CFJSUtizZw90dXVx/fp1ZGdnw83NDevXr0f37t1ZR6yQUChEy5YtYWJiUmXTOWooRgghkofOtBNCCCHkq2nSpAmuXLmCbt26VfoedXV1PHz4sA5T1VxUVBRCQ0PRuHFjCIVCCIVC/Pjjj1i9ejVcXFwQGxvLOmKFHBwcJKJDfHWePHmCU6dOVXg0YePGjYxSEUIIW1S0E0IIIeQ/KygoQEhICPbt2wcAWLBgAYqKikT3paSk8Mcff0BGRgYCgYC3Dd9KS0tFjdDU1NTw7NkzGBgYQEtLC/fu3WOcrnLe3t6sI/xnISEhGDx4MHR0dHDv3j0YGRnh0aNH4DgOnTp1Yh2PEEKY4W9XEkIIIYRIDB8fH+zatUv0euvWrYiMjERsbCxiY2Ph6+uLHTt2MExYM0ZGRoiPjwcAmJmZYe3atYiIiMCKFSugq6vLON3ne/PmDU6cOIGkpCTWUaq1YMECuLm5ISEhATIyMjh+/DgeP36Mn376CcOHD2cdjxBCmKEz7YQQQgj5z3r06IHZs2fD1tYWAKCgoIC4uDhRoevr64tt27YhKiqKZcxqBQcHIy8vD3Z2dkhNTcXAgQORlJQEVVVV+Pv7w8rKinXEKo0YMQI9evSAs7MzCgoK0KFDB9FqtZ+fH4YNG8Y6YqUUFBRw69YttGrVCsrKyggPD0e7du0QFxeHIUOG4NGjR6wjEkIIE7TSTgghhJD/LDk5Gfr6+qLXMjIyYmPGTE1NkZiYyCLaZ+nbty/s7OwAALq6ukhMTERWVhZevHjB+4IdAMLCwkTN8gIDA8FxHHJzc7F582a4u7szTle1hg0bio5UaGho4MGDB6J7WVlZrGIRQghzdKadEEIIIf/Z69evUa/e/3+sePnypdj9srIysTPukuTf3e/57PXr16K8QUFBGDZsGOTk5DBgwADMnTuXcbqqde3aFRERETA0NMSAAQPg5uaG27dvIyAgAF27dmUdjxBCmKGinRBCCCH/WYsWLZCQkAADA4MK78fHx6NFixZ1nKrmnJycavQ+Ly+vWk7y32hqaiIqKgoqKioICgqCn58fAODVq1eQkZFhnK5qGzduxLt37wAAy5Ytw7t37+Dv7w89PT14eHgwTkcIIezQmXZCCCGE/Geurq64ePEioqOjyxWHBQUF6NKlC3r37g1PT09GCasmFAqhpaUFExMTVPXRKDAwsA5Tfb7t27fD1dUV8vLy0NLSQkxMDIRCIbZs2YKAgABcunSJdURCCCGfiYp2QgghhPxnz58/R8eOHSEtLQ1nZ2fo6+tDIBAgKSkJW7duRUlJCWJjY9G0aVPWUSs0ffp0+Pn5oWXLlnBycsLYsWMlalv8p6Kjo5Geno4+ffqIxtedPXsWSkpKsLCwYJyOEELI56KinRBCCCFfxcOHDzFt2jRcuHBBtFotEAjQp08fbN++nfcj04qKihAQEAAvLy9ERkZiwIABmDhxIqytrSEQCFjHq5H4+HgYGxtXeO/EiRMYOnRo3QaqhrKyco2/tzk5ObWchhBC+ImKdkIIIYR8VTk5Obh//z4AQE9PTyJXrNPS0uDt7Q0fHx8UFxcjMTFRtGrNZ+rq6oiIiCj3gOT48eNwcHBAXl4eo2QVO3DggOjP2dnZcHd3R9++fdGtWzcAQFRUFIKDg7F48WLMnj2bVUxCCGGKGtERQggh5KtSUVGBqakp6xj/iUAggEAgAMdxKCsrYx2nxqZNm4ZevXohMjIS6urqAAB/f384OTnB29ubbbgKjB8/XvTnYcOGYcWKFXB2dhZdc3FxwdatW3Hx4kUq2gkh3y1aaSeEEEIIgfj2+PDwcAwcOBCOjo6wsbERmznPdx+bAl69ehVBQUGYNGkSDh48iGHDhrGOViV5eXncunULenp6YtdTUlJgYmIi6ixPCCHfG1ppJ4QQQsh379NGdI6OjvDz84OqqirrWF/E09MT48aNQ9euXfH06VMcPnwYQ4YMYR2rWqqqqggMDCw3T/7EiRMS+/+CEEK+BlppJ4QQQsh3TygUomXLljAxMamyMVpAQEAdpqqZU6dOlbtWXFyM2bNnw9raGoMHDxZd//TPfOPt7Y2JEyfCxsZGdKb92rVrCAoKwt69ezFhwgS2AQkhhBEq2gkhhBDy3ZswYUKNupjv37+/DtJ8nppu3RcIBCgtLa3lNP/NP//8g82bN+Pu3bvgOA6GhoZwcXGBmZkZ62iEEMIMFe2EEEIIIYQQQghP0Zl2QgghhJBKvHnzBqGhoWjTpg3atGnDOs4Xyc3NhZKSEusYNVJWVob79+/jxYsX5br29+jRg1EqQghhi1baCSGEEEL+Z8SIEejRowecnZ1RUFCADh064NGjR+A4Dn5+frzvwP7nn39CW1sbI0eOBAAMHz4cx48fh7q6Os6dO4cOHTowTli5a9euwd7eHmlpafj3x1NJ2NpPCCG1RXLmlxBCCCGE1LKwsDB0794dABAYGAiO45Cbm4vNmzfD3d2dcbrq7dq1C5qamgCACxcu4OLFiwgKCkK/fv3KdWXnm6lTp6JLly5ISEhATk4OXr16JfrKyclhHY8QQpihlXZCCCGEkP+RlZVFcnIyNDU14eDgAA0NDaxZswbp6ekwNDTk/azwT/O7urqisLAQu3btQnJyMszMzPDq1SvWESvVsGFDxMXFlZvTTggh3ztaaSeEEEII+R9NTU1ERUUhLy8PQUFBsLa2BgC8evUKMjIyjNNVT1lZGY8fPwYABAUFoXfv3gAAjuN4v73czMwM9+/fZx2DEEJ4hxrREUIIIYT8z6xZszBmzBjIy8tDS0sLPXv2BPBh23z79u3ZhqsBOzs72Nvbo3Xr1sjOzka/fv0AALdu3eL9CvbMmTPh5uaGzMxMtG/fHvXr1xe7b2xszCgZIYSwRdvjCSGEEEI+ER0djfT0dPTp0wfy8vIAgLNnz0JJSQkWFhaM01WtuLgYnp6eePz4MSZMmAATExMAwKZNmyAvL49JkyYxTli5iubNCwQCcBxHjegIId81KtoJIYQQQv4nPj6+0hXdEydOYOjQoXUb6DuSlpZW5X0tLa06SkIIIfxCRTshhBBCyP+oq6sjIiICurq6YtePHz8OBwcH5OXlMUr2eRITE5Geno7379+LXR88eDCjRIQQQr4UnWknhBBCCPmfadOmoVevXoiMjIS6ujoAwN/fH05OTvD29mYbrgZSU1Nha2uL27dvi7aWAx+2mQOQiC3m9MCBEELE0Uo7IYQQQsgnXF1dcfHiRVy9ehVBQUGYNGkSDh48iGHDhrGOVq1BgwZBSkoKe/bsga6uLq5fv47s7Gy4ublh/fr1ohn0fPQtPHAghJDaQCPfCCGEEEI+4enpiU6dOqFr166YPHkyDh8+LBEFOwBERUVhxYoVaNy4MYRCIYRCIX788UesXr0aLi4urONVydXVFTo6Onj+/Dnk5ORw584dhIWFoUuXLrh8+TLreIQQwgxtjyeEEELId+3UqVPlrg0dOhRXrlzB6NGjIRAIRO/h+xbt0tJSUcd7NTU1PHv2DAYGBtDS0sK9e/cYp6taVFQUQkNDK33gEBsbyzoiIYQwQUU7IYQQQr5rVXWE9/LygpeXFwBIxNgxIyMjxMfHQ1dXF2ZmZli7di2kpaWxe/fucs31+EaSHzgQQkhtoqKdEEIIId+1srIy1hG+mkWLFok63Lu7u2PgwIHo3r07VFVV4efnxzhd1ST5gQMhhNQmakRHCCGEEFKF3NxcKCkpsY7xxXJycqCsrCxq6MZXwcHByMvLg52dHVJTUzFw4EAkJSVBVVUV/v7+sLKyYh2REEKYoKKdEEIIIeR//vzzT2hra2PkyJEAgOHDh+P48eNQV1fHuXPn0KFDB8YJK+bk5FSj933c6i8pJOWBAyGE1CYq2gkhhBBC/kdXVxe+vr4wNzfHhQsXMGLECPj7++PIkSNIT0/H+fPnWUeskFAohJaWFkxMTFDVR7vAwMA6TEUIIeRroDPthBBCCCH/k5GRAU1NTQDAmTNnMGLECFhbW0NbWxtmZmaM01Vu6tSp8PPzQ2pqKpycnDB27FioqKiwjlUj3+ouAUII+VpoTjshhBBCyP8oKyvj8ePHAICgoCD07t0bAMBxHK87x2/fvh0ZGRmYP38+Tp8+DU1NTYwYMQLBwcFVrrzzgbe3Ny5duoTc3Fy8evWq0i9CCPle0fZ4QgghhJD/cXZ2xpkzZ9C6dWvExsbi0aNHkJeXh7+/P/7880/ExMSwjlgjaWlp8Pb2ho+PD4qLi5GYmCgap8Y306dPh5+fH1q2bClxuwQIIaQu0Eo7IYQQQsj/eHh4wNnZGYaGhrhw4YKo0M3IyMD06dMZp6s5gUAAgUAAjuN4P9JOkncJEEJIXaCVdkIIIYSQb0BRURECAgLg5eWF8PBwDBw4EI6OjrCxsYFQKDnrNJK0S4AQQuoCNaIjhBBCCPmXxMREpKen4/3792LXBw8ezChR1T7dYu7o6Ag/Pz+oqqqyjvVFJGmXACGE1AVaaSeEEEII+Z/U1FTY2tri9u3bosIRgGhOOF+b0QmFQrRs2RImJiZVzjQPCAiow1Q1963sEiCEkNpAK+2EEEIIIf/j6uoKHR0dXLx4Ebq6urh+/Tqys7Ph5uaG9evXs45XKQcHhyqLdT77lnYJEEJIbaCVdkIIIYSQ/1FTU0NoaCiMjY2hqKiI69evw8DAAKGhoXBzc0NsbCzriN8cSd8lQAghtY1W2gkhhBBC/qe0tFTU9ExNTQ3Pnj2DgYEBtLS0cO/ePcbpvk2SvEuAEELqAhXthBBCCCH/Y2RkhPj4eOjq6sLMzAxr166FtLQ0du/eDV1dXdbxvkne3t6sIxBCCK/R9nhCCCGEkP8JDg5GXl4e7OzskJqaioEDByIpKQmqqqrw8/NDr169WEf8brx58wahoaFo06YN2rRpwzoOIYQwQ0U7IYQQQkgVcnJyoKysTFu4a9mIESPQo0cPODs7o6CgAB06dMCjR4/AcRz8/PwwbNgw1hEJIYQJ2h5PCCGEkO+ek5NTjd7n5eVVy0m+X2FhYVi4cCEAIDAwEBzHITc3FwcOHIC7uzsV7YSQ7xattBNCCCHkuycUCqGlpQUTExNU9dEoMDCwDlN9X2RlZZGcnAxNTU04ODhAQ0MDa9asQXp6OgwNDfHu3TvWEQkhhAlaaSeEEELId2/q1Knw8/NDamoqnJycMHbsWKioqLCO9V3R1NREVFQUVFRUEBQUBD8/PwDAq1evICMjwzgdIYSwI2QdgBBCCCGEte3btyMjIwPz58/H6dOnoampiREjRiA4OLjKlXfy9cyaNQtjxoxBixYtoKGhgZ49ewL4sG2+ffv2bMMRQghDtD2eEEIIIeRf0tLS4O3tDR8fHxQXFyMxMVE0v53UnujoaKSnp6NPnz6i7/fZs2ehpKQECwsLxukIIYQNWmknhBBCCPkXgUAAgUAAjuNQVlbGOs53IT4+Hp07d4atra3YA5IBAwbg5cuXDJMRQghbVLQTQgghhAAoKirC4cOH0adPHxgYGOD27dvYunUr0tPTaZW9DvTt2xepqanlrh8/fhxjxoxhkIgQQviBGtERQggh5Ls3ffp0+Pn5oWXLlnB0dISfnx9UVVVZx/quTJs2Db169UJkZCTU1dUBAP7+/nBycoK3tzfbcIQQwhCdaSeEEELId08oFKJly5YwMTGBQCCo9H0BAQF1mOr74+rqiosXL+Lq1asICgrCpEmTcPDgQZrRTgj5rlHRTgghhJDv3oQJE6os1j/av39/HaT5vo0bNw7//PMPnj59ikOHDmHIkCGsIxFCCFNUtBNCCCGEECZOnTpV7lpxcTFmz54Na2trDB48WHT90z8TQsj3hIp2QgghhBDChFBYs57IAoEApaWltZyGEEL4iYp2QgghhBBCCCGEp2jkGyGEEEII4aXc3FzWEQghhDkq2gkhhBBCCHN//vkn/P39Ra+HDx8OFRUVNG/eHHFxcQyTEUIIW1S0E0IIIYQQ5nbt2gVNTU0AwIULF3Dx4kUEBQWhX79+mDt3LuN0hBDCTj3WAQghhBBCCMnIyBAV7WfOnMGIESNgbW0NbW1tmJmZMU5HCCHs0Eo7IYQQQghhTllZGY8fPwYABAUFoXfv3gAAjuOoczwh5LtGK+2EEEIIIYQ5Ozs72Nvbo3Xr1sjOzka/fv0AALdu3YKenh7jdIQQwg4V7YQQQgghhDkPDw9oa2vj8ePHWLt2LeTl5QF82DY/ffp0xukIIYQdmtNOCCGEEEIIIYTwFK20E0IIIYQQ3khMTER6ejrev38vdn3w4MGMEhFCCFtUtBNCCCGEEOZSU1Nha2uL27dvQyAQ4ONmUIFAAADUjI4Q8t2i7vGEEEIIIYQ5V1dX6Ojo4Pnz55CTk8OdO3cQFhaGLl264PLly6zjEUIIM3SmnRBCCCGEMKempobQ0FAYGxtDUVER169fh4GBAUJDQ+Hm5obY2FjWEQkhhAlaaSeEEEIIIcyVlpaKOsarqanh2bNnAAAtLS3cu3ePZTRCCGGKzrQTQgghhBDmjIyMEB8fD11dXZiZmWHt2rWQlpbG7t27oauryzoeIYQwQ9vjCSGEEEIIc8HBwcjLy4OdnR1SU1MxcOBAJCUlQVVVFX5+fujVqxfriIQQwgQV7YQQQgghhJdycnKgrKws6iBPCCHfI9oeTwghhBBCmHFycqrR+7y8vGo5CSGE8BOttBNCCCGEEGaEQiG0tLRgYmKCqj6WBgYG1mEqQgjhDyraCSGEEEIIM9OnT4efnx9atmwJJycnjB07FioqKqxjEUIIb1DRTgghhBBCmCoqKkJAQAC8vLwQGRmJAQMGYOLEibC2tqbz7ISQ7x4V7YQQQgghhDfS0tLg7e0NHx8fFBcXIzExUTS/nRBCvkdC1gEIIYQQQgj5SCAQQCAQgOM4lJWVsY5DCCHMUdFOCCGEEEKYKioqwuHDh9GnTx8YGBjg9u3b2Lp1K9LT02mVnRDy3aORb4QQQgghhJlPG9E5OjrCz88PqqqqrGMRQghv0Jl2QgghhBDCjFAoRMuWLWFiYlJl07mAgIA6TEUIIfxBK+2EEEIIIYQZBwcH6hBPCCFVoJV2QgghhBBCCCGEp6gRHSGEEEIIIYQQwlNUtBNCCCGEEEIIITxFRTshhBBCCCGEEMJTVLQTQgghhBBCCCE8RUU7IYQQQgghhBDCU1S0E0IIIYQQQgghPEVFOyGEEEIIIYQQwlNUtBNCCCGEEEIIITz1f7kUbomq/qo0AAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 1000x800 with 2 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAOcCAYAAAA7OVB3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhNV/v/8fdJZI4kEkNCVWKIhMRQkSJVU9VQQUtpKWLWGGoqTUdVmqJV1NRqJdryoFWejmZBCWJIS8VYoSqqNUTNGfbvD7+cryODIHqOp59Xr31dzdprr3Xvfc6JrHOvvbbJMAwDEREREREREbE5dtYOQERERERERETypkG7iIiIiIiIiI3SoF1ERERERETERmnQLiIiIiIiImKjNGgXERERERERsVEatIuIiIiIiIjYKA3aRURERERERGyUBu0iIiIiIiIiNkqDdhEREREREREbpUG7iEgRioqKwt/f3yp9p6amYjKZiI+PN5dt3ryZMWPGcO7cuX8kBpPJxJgxY/6Rvm6XNV8bsO1rc7suXbrEmDFjSEhIuOM2Tpw4wZgxY0hOTs61b8yYMZhMpjsP8F8gISEBk8l0R6/B3r17GTNmDKmpqbn2WftzUhhnzpzhmWeeoXTp0phMJtq3b2/tkP71TCZTnlvJkiWtHZrI/4Ri1g5AROR/yWuvvcYLL7xg7TDMNm/ezJtvvklUVBReXl73vL/ExEQeeOCBe97PnbC11+Z+dunSJd58800AGjdufEdtnDhxgjfffBN/f39q1aplsa9Pnz60bNnyLqOU/Ozdu5c333yTxo0b5xqg3w+fk7feeoulS5cyd+5cKlWqhLe3t7VDEqBjx46MGDHCoszBwcFK0Yj8b9GgXUSkCFWqVMnaIVhVvXr1rB1Cvv7tr8395IEHHrDZL3/u1qVLl3B1dc1VnpWVRWZmJk5OTlaI6v/cD5+TPXv2UKlSJbp27XpHx1++fBkXF5cijkrKlClzW/8G6HUQKTxNjxcRKaQ///yTfv36Ub58eZycnChVqhQRERGsXr3aXCevqaUmk4lBgwYRFxdH1apVcXFxISwsjC1btmAYBpMmTSIgIAB3d3eaNm3KoUOHLI739/cnKioqVzyNGzcuMMs5ZswYXnzxRQACAgLM0xVzptMuWrSIxx9/HD8/P1xcXAgODuall17i4sWLFu1ERUXh7u7OoUOHaN26Ne7u7pQvX54RI0Zw9erVXOd68xTwPXv20K5dO0qUKIGzszO1atVi3rx5FnXi4+MxmUy5puvmNQV4165dtGnThtKlS+Pk5ETZsmV54oknOH78eL7XIuc8ivq1ady4MSEhIWzcuJF69erh4uJCuXLleO2118jKyiowHoCTJ0/Sv39/HnjgARwdHQkICODNN98kMzPTXCfntodJkyYxYcIE/P39cXFxoXHjxhw4cICMjAxeeuklypYti6enJ08++SSnTp3K1deiRYuoX78+bm5uuLu706JFC3bt2pXrGt3qtU5NTaVUqVIAvPnmm+b3Vc579NChQ/Ts2ZMqVarg6upKuXLliIyMZPfu3eZ+EhISqFu3LgA9e/Y0t5Hz3slrenx2djYTJ04kKCgIJycnSpcuTffu3XO97jmvSVJSEg0bNsTV1ZWKFSvyzjvvkJ2dfcvXJDs7mw8++IBatWrh4uKCl5cX9erV4+uvv77jWDZs2ECDBg1wdXWlV69e5td04sSJjBs3joCAAJycnFi3bh0A27dvp23btnh7e+Ps7Ezt2rVZvHjxLWPfvn07zzzzjPk94u/vz7PPPsvRo0fNdeLj43n66acBaNKkifna59xWk9fn5MqVK8TExBAQEICjoyPlypVj4MCBuW678ff3p02bNixfvpyHHnoIFxcXgoKCmDt37i1jh+vT3qOjoylXrhyOjo5UrFiRV155xeK9ZzKZWL16NSkpKbl+p+UlJ6avvvqK2rVr4+zsbJ4lUpjPH8CsWbOoWbMm7u7uFC9enKCgIF5++WWLa2oymVi1ahU9e/bE29sbNzc3IiMj+fXXX3PFNHfuXGrWrImzszPe3t48+eSTpKSkWNS5nd+7t4qvKM/1ThX0OsyYMYNHH32U0qVL4+bmRmhoKBMnTiQjI8Oijdv5bJ87d44RI0ZQsWJF82e0devW7Nu3z1zn2rVrjBs3zvw5LlWqFD179uTPP/+86/MVKWrKtIuIFFK3bt3YuXMn48ePJzAwkHPnzrFz505Onz59y2O//fZbdu3axTvvvIPJZGL06NE88cQT9OjRg19//ZXp06eTnp7O8OHD6dChA8nJyXd9T2+fPn04c+YMH3zwAV999RV+fn4AVKtWDYCDBw/SunVrhg4dipubG/v27WPChAls27aNtWvXWrSVkZFB27Zt6d27NyNGjGDDhg289dZbeHp68vrrr+cbw/79+2nQoAGlS5dm2rRp+Pj48PnnnxMVFcUff/zBqFGjbuucLl68SPPmzQkICGDGjBmUKVOGkydPsm7dOv7+++/bvELX3e1rc/LkSZ555hleeuklxo4dy3fffce4ceM4e/Ys06dPz7ffkydPEh4ejp2dHa+//jqVKlUiMTGRcePGkZqaSlxcnEX9GTNmUKNGDWbMmGH+gzQyMpKHH34YBwcH5s6dy9GjRxk5ciR9+vSxGGS+/fbbvPrqq/Ts2ZNXX32Va9euMWnSJBo2bMi2bdvM7wm49Wvt5+fH8uXLadmyJb1796ZPnz4A5oH8iRMn8PHx4Z133qFUqVKcOXOGefPm8fDDD7Nr1y6qVq3KQw89RFxcnDmeJ554AqDA7Przzz/PRx99xKBBg2jTpg2pqam89tprJCQksHPnTot7Z0+ePEnXrl0ZMWIEb7zxBkuXLiUmJoayZcvSvXv3At8PUVFRfP755/Tu3ZuxY8fi6OjIzp07Lb5Qup1Y0tLSeO655xg1ahRvv/02dnb/ly+ZNm0agYGBvPvuu3h4eFClShXWrVtHy5Ytefjhh5k9ezaenp4sXLiQzp07c+nSpTy/wMuRmppK1apVeeaZZ/D29iYtLY1Zs2ZRt25d9u7dS8mSJXniiSd4++23efnll5kxYwYPPfQQkH+G3TAM2rdvz5o1a4iJiaFhw4b8/PPPvPHGGyQmJpKYmGgxO+Cnn35ixIgRvPTSS5QpU4aPP/6Y3r17U7lyZR599NF8Y79y5QpNmjTh8OHDvPnmm9SoUYONGzcSGxtLcnIy3333HX5+fiQmJhIdHU16ejrz588HsHj/5mXnzp2kpKTw6quvEhAQgJubW6E/fwsXLiQ6OprBgwfz7rvvYmdnx6FDh9i7d2+ufnr37k3z5s1ZsGABv/32G6+++iqNGzfm559/Nt+eFBsby8svv8yzzz5LbGwsp0+fZsyYMdSvX5+kpCSqVKlibq8wv3cLE9+9ONe8GIaR60sAe3t78+/LvF4HgMOHD9OlSxfzl0I//fQT48ePZ9++fbm+8CnMZ/vvv//mkUceITU1ldGjR/Pwww9z4cIFNmzYQFpaGkFBQWRnZ9OuXTs2btzIqFGjaNCgAUePHuWNN96gcePGbN++XbMAxLYYIiJSKO7u7sbQoUMLrNOjRw+jQoUKFmWA4evra1y4cMFctmzZMgMwatWqZWRnZ5vLp0yZYgDGzz//bC6rUKGC0aNHj1x9NWrUyGjUqJH55yNHjhiAERcXZy6bNGmSARhHjhwpMO7s7GwjIyPDWL9+vQEYP/30k8U5AcbixYstjmndurVRtWrVXOf6xhtvmH9+5plnDCcnJ+PYsWMW9Vq1amW4uroa586dMwzDMOLi4vKMc926dQZgrFu3zjAMw9i+fbsBGMuWLSvwfPJyL16bRo0aGYDx3//+16Ldvn37GnZ2dsbRo0ct+rrx2vTv399wd3e3qGMYhvHuu+8agPHLL78YhvF/r2vNmjWNrKysXPG0bdvW4vihQ4cagJGenm4YhmEcO3bMKFasmDF48GCLen///bfh6+trdOrUyeIaFea1/vPPP3OdT34yMzONa9euGVWqVDGGDRtmLk9KSsr1fs3xxhtvGDf+iZKSkmIARnR0tEW9rVu3GoDx8ssvm8tyXpOtW7da1K1WrZrRokWLAmPdsGGDARivvPJKvnXuJJY1a9ZY1M15TStVqmRcu3bNYl9QUJBRu3ZtIyMjw6K8TZs2hp+fn/k9cPNnIy+ZmZnGhQsXDDc3N2Pq1Knm8i+++CLfY2/+nCxfvtwAjIkTJ1rUW7RokQEYH330kbmsQoUKhrOzs8V7+vLly4a3t7fRv3//fOM0DMOYPXt2nu+9CRMmGICxcuVKc1mjRo2M6tWrF9jejTHZ29sb+/fvtygv7Odv0KBBhpeXV4F95Pz+evLJJy3KN23aZADGuHHjDMMwjLNnzxouLi5G69atLeodO3bMcHJyMrp06WIuK+xnsTDxFeW55gfIc5szZ45hGPm/DjfLysoyMjIyjE8//dSwt7c3zpw5Y95X2M/22LFjDcBYtWpVvv385z//MQBjyZIlFuU5v5dmzpxZ6HMX+SdoeryISCGFh4cTHx/PuHHj2LJlS66pewVp0qSJOasAEBwcDECrVq0ssrY55TdOZ71Xfv31V7p06YKvry/29vY4ODjQqFEjgFxTNU0mE5GRkRZlNWrUuGWca9eupVmzZpQvX96iPCoqikuXLpGYmHhbMVeuXJkSJUowevRoZs+eXegMUEHu9rUpXrw4bdu2tSjr0qUL2dnZbNiwId9+v/32W5o0aULZsmXJzMw0b61atQJg/fr1FvVbt25tkaXNiScnS31z+bFjxwBYsWIFmZmZdO/e3aIfZ2dnGjVqlGtq8Z2+1jkyMzN5++23qVatGo6OjhQrVgxHR0cOHjyY631VWDnTxm/OMoeHhxMcHMyaNWssyn19fQkPD7/tc/jhhx8AGDhwYJHFUqJECZo2bZpnW23btrVYqOvQoUPs27fPfK/2ja9X69atSUtLY//+/fnGduHCBUaPHk3lypUpVqwYxYoVw93dnYsXL97xtc+ZdXPz+T799NO4ubnlOt9atWrx4IMPmn92dnYmMDCwUL8r3Nzc6Nixo0V5Tr8393M7atSoQWBgoEVZYT9/4eHhnDt3jmeffZb//ve//PXXX/n2c/M99g0aNKBChQrm90xiYiKXL1/OdS3Lly9P06ZNc51jYT6LhYnvXpxrXjp16kRSUpLFduPK/nm9DnD9lqe2bdvi4+Nj/reoe/fuZGVlceDAAYu6hfls//DDDwQGBvLYY4/lG+u3336Ll5cXkZGRFtekVq1a+Pr63tWTMUTuBU2PFxEppEWLFjFu3Dg+/vhjXnvtNdzd3XnyySeZOHEivr6+BR578+rGjo6OBZZfuXKlCCPP7cKFCzRs2BBnZ2fGjRtHYGAgrq6u/Pbbbzz11FNcvnzZor6rqyvOzs4WZU5OTreM8/Tp0+Zp+TcqW7asef/t8PT0ZP369YwfP56XX36Zs2fP4ufnR9++fXn11VfvaKXiu31typQpk6vNnPdDQef3xx9/8M033+Qb881/MN9pnH/88QeA+R7ym934RQDc+WudY/jw4cyYMYPRo0fTqFEjSpQogZ2dHX369Mn1viqsnOuY33vp5gGhj49PrnpOTk637P/PP//E3t6+wM/z7caSV7389uW8ViNHjmTkyJF5HlPQQKpLly6sWbOG1157jbp16+Lh4YHJZKJ169Z3de2LFStmvv0hh8lkwtfXN9d7/E6v/enTp/H19c11W1Dp0qUpVqzYbf+uuFFer0FhP3/dunUjMzOTOXPm0KFDB7Kzs6lbty7jxo2jefPmFsfk9b658Rrd6r2zatUqi7LCfBYLE9+9ONe8lCpVirCwsHz353Xex44do2HDhlStWpWpU6fi7++Ps7Mz27ZtY+DAgbneN4V5f/35558WXxzl5Y8//uDcuXPm35c3u90vLETuNQ3aRUQKqWTJkkyZMoUpU6Zw7Ngxvv76a1566SVOnTrF8uXL71m/zs7OuRYegut/VNzpM3DXrl3LiRMnSEhIMGfXgSJ/nruPjw9paWm5yk+cOAFgjj/nD9ObzzOvP5xCQ0NZuHAhhmHw888/Ex8fz9ixY3FxceGll14q0vgLI2egdaOTJ08Cef+BmaNkyZLUqFGD8ePH57k/54uNu5Vzjb/88ksqVKhQJG0W5PPPP6d79+68/fbbFuV//fXXHT92MOc6pqWl5brv/cSJE0X2LOhSpUqRlZXFyZMn8x1s324sBa1NcfO+nGNjYmJ46qmn8jymatWqeZanp6fz7bff8sYbb1h8Dq5evcqZM2fyjeFWfHx8yMzM5M8//7QYuBuGwcmTJ/P9MuhO+tm6dSuGYVhcl1OnTpGZmXlXr3Fer8HtfP569uxJz549uXjxIhs2bOCNN96gTZs2HDhwwOIzlfO5v9HJkyepXLmy+RyBfH8n3uk53iq+e3GudyKv12HZsmVcvHiRr776yqL95OTkO+6nVKlSt1yYtGTJkvj4+OT7b3fx4sXvuH+Re0HT40VE7sCDDz7IoEGDaN68OTt37rynffn7+/Pzzz9blB04cKDAabI5chaIujlbkfPH082Pl/rwww/vJtRcmjVrZv6C4Eaffvoprq6u5scD5axWffN53riY2s1MJhM1a9bk/fffx8vL656/Dvn5+++/c8W5YMEC7OzsClx4q02bNuZHV4WFheXaimrQ3qJFC4oVK8bhw4fz7KegzFh+8ntfwfXX5eb31Xfffcfvv/9e6DZuljO9/PPPP7coT0pKIiUlhWbNmhU++ALkTBeeNWuWVWKpWrUqVapU4aeffsr3tcpvMGEymTAMI9e1//jjj3M9yeB2rn3O+dx8vkuWLOHixYtFdu2bNWvGhQsXWLZsmUX5p59+ahFHUbmTz5+bmxutWrXilVde4dq1a/zyyy8W+3MWxsuxefNmjh49an7KR/369XFxccl1LY8fP26+lehu5BffvTjXopLXv0WGYTBnzpw7brNVq1YcOHAg14KqN2rTpg2nT58mKysrz2uS35djItaiTLuISCGkp6fTpEkTunTpQlBQEMWLFycpKYnly5fnmxErKt26deO5554jOjqaDh06cPToUSZOnJhrumpeQkNDAZg6dSo9evTAwcGBqlWr0qBBA0qUKMGAAQN44403cHBwYP78+fz0009FGvsbb7xhvp/y9ddfx9vbm/nz5/Pdd98xceJEPD09getTt6tWrcrIkSPJzMykRIkSLF26lB9//NGivW+//ZaZM2fSvn17KlasiGEYfPXVV5w7d65Q0zfvBR8fH55//nmOHTtGYGAg33//PXPmzOH5558vcIrm2LFjWbVqFQ0aNGDIkCFUrVqVK1eukJqayvfff8/s2bOL5Fnl/v7+jB07lldeeYVff/2Vli1bUqJECf744w+2bduGm5ub+dFLhVW8eHEqVKjAf//7X5o1a4a3tzclS5Y0P9YpPj6eoKAgatSowY4dO5g0aVKuc6lUqRIuLi7Mnz+f4OBg3N3dKVu2bJ4DiKpVq9KvXz8++OAD7OzsaNWqlXnF9vLlyzNs2LC7ukY5GjZsSLdu3Rg3bhx//PEHbdq0wcnJiV27duHq6srgwYPveSwffvghrVq1okWLFkRFRVGuXDnOnDlDSkoKO3fu5IsvvsjzOA8PDx599FEmTZpkfi3Wr1/PJ598kmuGQ0hICAAfffQRxYsXx9nZmYCAgDxnhjRv3pwWLVowevRozp8/T0REhHn1+Nq1a9OtW7e7Ot8c3bt3Z8aMGfTo0YPU1FRCQ0P58ccfefvtt2ndunWB9yfficJ+/vr27YuLiwsRERH4+flx8uRJYmNj8fT0zDXLYPv27fTp04enn36a3377jVdeeYVy5coRHR0NgJeXF6+99hovv/wy3bt359lnn+X06dO8+eabODs788Ybb9z2eRQmvntxrkWlefPmODo68uyzzzJq1CiuXLnCrFmzOHv27B23OXToUBYtWkS7du146aWXCA8P5/Lly6xfv542bdrQpEkTnnnmGebPn0/r1q154YUXCA8Px8HBgePHj7Nu3TratWvHk08+WYRnKnKXrLkKnojI/eLKlSvGgAEDjBo1ahgeHh6Gi4uLUbVqVeONN94wLl68aK6X3wrlAwcOtCjLWT160qRJFuU5K0J/8cUX5rLs7Gxj4sSJRsWKFQ1nZ2cjLCzMWLt2baFWjzcMw4iJiTHKli1r2NnZWawYvXnzZqN+/fqGq6urUapUKaNPnz7Gzp07c7XRo0cPw83NLdc1uXmF75xzvXlF8d27dxuRkZGGp6en4ejoaNSsWTPPFcMPHDhgPP7444aHh4dRqlQpY/DgwcZ3331nEfO+ffuMZ5991qhUqZLh4uJieHp6GuHh4UZ8fHyu9m52L16bnFWsExISjLCwMMPJycnw8/MzXn755Vyrf+d1bf78809jyJAhRkBAgOHg4GB4e3sbderUMV555RXziva3E49h/N9K1klJSRbly5YtM5o0aWJ4eHgYTk5ORoUKFYyOHTsaq1evtrhGhX2tV69ebdSuXdtwcnIyAPMTDs6ePWv07t3bKF26tOHq6mo88sgjxsaNG3O9Xw3j+grOQUFBhoODg8X1yau/rKwsY8KECUZgYKDh4OBglCxZ0njuueeM3377zaJefiuL5/X65yUrK8t4//33jZCQEMPR0dHw9PQ06tevb3zzzTdFFkt+r2mOn376yejUqZNRunRpw8HBwfD19TWaNm1qzJ4921wnr9Xjjx8/bnTo0MEoUaKEUbx4caNly5bGnj178nwCxZQpU4yAgADD3t7e4jOf13W6fPmyMXr0aKNChQqGg4OD4efnZzz//PPG2bNnLepVqFDBeOKJJ3KdT16vfV5Onz5tDBgwwPDz8zOKFStmVKhQwYiJiTGuXLmSq73bWT0+r5gMo3Cfv3nz5hlNmjQxypQpYzg6Ohply5Y1OnXqZPEUiZzP3MqVK41u3boZXl5e5lXiDx48mKvfjz/+2KhRo4b5/dWuXTvzCu45CvtZLEx8RXmu+cnrd+mNCnodvvnmG6NmzZqGs7OzUa5cOePFF180fvjhh1zv79v5bJ89e9Z44YUXjAcffNBwcHAwSpcubTzxxBPGvn37zHUyMjKMd99919y3u7u7ERQUZPTv3z/P103EmkyGYRj/0PcDIiIi/1MaN27MX3/9xZ49e6wdiohYSXx8PD179iQpKemObjcREbkV3dMuIiIiIiIiYqM0aBcRERERERGxUZoeLyIiIiIiImKjlGkXERERERERuYUNGzYQGRlJ2bJlMZlMuR5TmZf169dTp04dnJ2dqVixIrNnz77tfjVoFxEREREREbmFixcvUrNmTaZPn16o+keOHKF169Y0bNiQXbt28fLLLzNkyBCWLFlyW/1qeryIiIiIiIjIbTCZTCxdupT27dvnW2f06NF8/fXXpKSkmMsGDBjATz/9RGJiYqH7UqZdRERERERE/nWuXr3K+fPnLbarV68WWfuJiYk8/vjjFmUtWrRg+/btZGRkFLqdYkUWkYjI/9ej/WfWDgGAx36YZ+0QAMjMsJ0JTQlto6wdAgCzghZYOwSbYnK2t3YIAAxI7mztEMwafx1v7RAA6DzK0dohALBo4jVrh2BznnndxdohALbzubGVf/NSNvaydggAVKn3ibVDMHvySh9rhwCAl+Oz1g4hX9b62zGg1mHefPNNi7I33niDMWPGFEn7J0+epEyZMhZlZcqUITMzk7/++gs/P79CtaNBu4iIiIiIiPzrxMTEMHz4cIsyJyenIu3DZDJZ/Jxzd/rN5QXRoF1ERERERET+dZycnIp8kH4jX19fTp48aVF26tQpihUrho+PT6Hb0aBdRERERERErCbbrvBZ5/tJ/fr1+eabbyzKVq5cSVhYGA4ODoVuRwvRiYiIiIiIiNzChQsXSE5OJjk5Gbj+SLfk5GSOHTsGXJ9u3717d3P9AQMGcPToUYYPH05KSgpz587lk08+YeTIkbfVrzLtIiIiIiIiYjXGfZJp3759O02aNDH/nHM/fI8ePYiPjyctLc08gAcICAjg+++/Z9iwYcyYMYOyZcsybdo0OnTocFv9atAuIiIiIiIicguNGzc2LySXl/j4+FxljRo1YufOnXfVrwbtIiIiIiIiYjXZ9vdHpt1adE+7iIiIiIiIiI3SoF1ERERERETERmnQLv9qJpOJZcuWWTsMEREREZF/rWw7k1W2+4UG7fI/7eTJkwwePJiKFSvi5ORE+fLliYyMZM2aNUXeV3x8PCaTCZPJhL29PSVKlODhhx9m7NixpKenF3l/IiIiIiLyv08L0cn/rNTUVCIiIvDy8mLixInUqFGDjIwMVqxYwcCBA9m3b1+R9+nh4cH+/fsxDINz586xefNmYmNjiYuLY9OmTZQtW7bI+ywq165dw9HR0dphiIiIiMi/zP2U9bYGZdrlf1Z0dDQmk4lt27bRsWNHAgMDqV69OsOHD2fLli15HrN7926aNm2Ki4sLPj4+9OvXjwsXLpj3JyQkEB4ejpubG15eXkRERHD06FHzfpPJhK+vL35+fgQHB9O7d282b97MhQsXGDVqlLne8uXLeeSRR/Dy8sLHx4c2bdpw+PBh8/6mTZsyaNAgi9hOnz6Nk5MTa9euBeDq1auMGjWK8uXL4+TkRJUqVfjkk08AyMrKonfv3gQEBODi4kLVqlWZOnWqRXtRUVG0b9+e2NhYypYtS2BgIAC///47nTt3pkSJEvj4+NCuXTtSU1Pv4BUQEREREZG7pUG7/E86c+YMy5cvZ+DAgbi5ueXa7+Xllavs0qVLtGzZkhIlSpCUlMQXX3zB6tWrzYPnzMxM2rdvT6NGjfj5559JTEykX79+mEwFfzNYunRpunbtytdff01WVhYAFy9eZPjw4SQlJbFmzRrs7Ox48sknyc7OBqBPnz4sWLCAq1evmtuZP38+ZcuWpUmTJgB0796dhQsXMm3aNFJSUpg9ezbu7u4AZGdn88ADD7B48WL27t3L66+/zssvv8zixYstYluzZg0pKSmsWrWKb7/9lkuXLtGkSRPc3d3ZsGEDP/74I+7u7rRs2ZJr164V8uqLiIiIiEhR0fR4+Z906NAhDMMgKCio0MfMnz+fy5cv8+mnn5oH+tOnTycyMpIJEybg4OBAeno6bdq0oVKlSgAEBwcXqu2goCD+/vtvTp8+TenSpenQoYPF/k8++YTSpUuzd+9eQkJC6NChA4MHD+a///0vnTp1AiAuLo6oqChMJhMHDhxg8eLFrFq1isceewyAihUrmttzcHDgzTffNP8cEBDA5s2bWbx4sbk9ADc3Nz7++GPztPi5c+diZ2fHxx9/bP4yIi4uDi8vLxISEnj88ccLfT1FRERERArD0PT4AinTLv+TDMMAuGUW/EYpKSnUrFnTIjMfERFBdnY2+/fvx9vbm6ioKFq0aEFkZCRTp04lLS3tjuI5fPgwXbp0oWLFinh4eBAQEADAsWPHAHBycuK5555j7ty5ACQnJ/PTTz8RFRVl/tne3p5GjRrl2+fs2bMJCwujVKlSuLu7M2fOHHP7OUJDQy3uY9+xYweHDh2iePHiuLu74+7ujre3N1euXLGYvn+jq1evcv78eYstKyujUNdFREREREQKpkG7/E+qUqUKJpOJlJSUQh9jGEa+g/wbs86JiYk0aNCARYsWERgYmO/98TdKSUnBw8MDHx8fACIjIzl9+jRz5sxh69atbN26FcBiCnqfPn1YtWoVx48fZ+7cuTRr1owKFSoA4OLiUmB/ixcvZtiwYfTq1YuVK1eSnJxMz549c01xv/nWgezsbOrUqUNycrLFduDAAbp06ZJnX7GxsXh6elpsuw9+c8trIiIiIiICkG1vssp2v9CgXf4neXt706JFC2bMmMHFixdz7T937lyusmrVqpGcnGxRf9OmTdjZ2ZkXaQOoXbs2MTExbN68mZCQEBYsWFBgLKdOnWLBggW0b98eOzs7Tp8+TUpKCq+++irNmjUjODiYs2fP5jouNDSUsLAw5syZw4IFC+jVq5fFvuzsbNavX59nnxs3bqRBgwZER0dTu3ZtKleunG+m/EYPPfQQBw8epHTp0lSuXNli8/T0zPOYmJgY0tPTLbbQKpG37EtERERERG5Ng3b5nzVz5kyysrIIDw9nyZIlHDx4kJSUFKZNm0b9+vVz1e/atSvOzs706NGDPXv2sG7dOgYPHky3bt0oU6YMR44cISYmhsTERI4ePcrKlSs5cOCAxX3thmFw8uRJ0tLSSElJYe7cuTRo0ABPT0/eeecdAPOq7B999BGHDh1i7dq1DB8+PM9z6NOnD++88w5ZWVk8+eST5nJ/f3969OhBr169WLZsGUeOHCEhIcG80FzlypXZvn07K1as4MCBA7z22mskJSXd8pp17dqVkiVL0q5dOzZu3MiRI0dYv349L7zwAsePH8/zGCcnJzw8PCw2e3uHW/YlIiIiIgLXH/lmje1+oUG7/M8KCAhg586dNGnShBEjRhASEkLz5s1Zs2YNs2bNylXf1dWVFStWcObMGerWrUvHjh1p1qwZ06dPN+/ft28fHTp0IDAwkH79+jFo0CD69+9vbuP8+fP4+flRrlw56tevz4cffkiPHj3YtWsXfn5+ANjZ2bFw4UJ27NhBSEgIw4YNY9KkSXmew7PPPkuxYsXo0qULzs7OFvtmzZpFx44diY6OJigoiL59+5pnCQwYMICnnnqKzp078/DDD3P69Gmio6Nvec1cXV3ZsGEDDz74IE899RTBwcH06tWLy5cv4+HhUbgLLyIiIiIiRcZk5KyQJSI257fffsPf35+kpCQeeugha4dTaD3af2btEAB47Id51g4BgMwM2/k1m9A2ytohADArqODbSv5tTM721g4BgAHJna0dglnjr+OtHQIAnUc53rrSP2DRRD1282bPvF7w+i7/FFv53NjKv3kpG3vdutI/oEq9T6wdgtmTV/pYOwQAvByftXYI+Xqy1xdW6Xfp3Ket0u/t0iPfRGxQRkYGaWlpvPTSS9SrV+++GrCLiIiIiNyObDtNAC+Iro6IDdq0aRMVKlRgx44dzJ4929rhiIiIiIiIlSjTLmKDGjdujO5cEREREZF/A+M+WhTOGpRpFxEREREREbFRGrSLiIiIiIiI2ChNjxcRERERERGrybbX9PiCKNMuIiIiIiIiYqOUaRcRERERERGrydZCdAVSpl1ERERERETERinTLiIiIiIiIlajR74VTJl2ERERERERERulQbuIiIiIiIiIjdL0eBEpcs9sX2DtEABY2KqHtUMAoPHX8dYOweYsmnjN2iHYlIS2UdYOQfKh96rtGpDc2dohALbzb55x0Db+zavi/4m1Q7A5S50/tnYIAPTMftbaIeRLC9EVTJl2ERERERERERulTLuIiIiIiIhYTba9Mu0FUaZdRERERERExEZp0C4iIiIiIiJiozQ9XkRERERERKxGC9EVTJl2ERERERERERulTLuIiIiIiIhYjaFMe4GUaRcRERERERGxUcq0i4iIiIiIiNXonvaCKdMuIiIiIiIiYqM0aJciZTKZWLZsmbXDkAL4+/szZcqUQtePj4/Hy8vrnsUjIiIiIiL506BdbsvJkycZPHgwFStWxMnJifLlyxMZGcmaNWuKvK/4+HhMJhMmkwl7e3tKlCjBww8/zNixY0lPTy/y/qxlzJgxFudZvnx5+vTpw59//nlX7eY32E5KSqJfv3531baIiIiISFHJtjNZZbtf6J52KbTU1FQiIiLw8vJi4sSJ1KhRg4yMDFasWMHAgQPZt29fkffp4eHB/v37MQyDc+fOsXnzZmJjY4mLi2PTpk2ULVu2yPssKteuXcPR0bFQdatXr87q1avJyspi165d9O7dm99//50ffvjhjvrOyMjId1+pUqXuqE0REREREfnnKdMuhRYdHY3JZGLbtm107NiRwMBAqlevzvDhw9myZUuex+zevZumTZvi4uKCj48P/fr148KFC+b9CQkJhIeH4+bmhpeXFxERERw9etS832Qy4evri5+fH8HBwfTu3ZvNmzdz4cIFRo0aZa63fPlyHnnkEby8vPDx8aFNmzYcPnzYvL9p06YMGjTIIrbTp0/j5OTE2rVrAbh69SqjRo2ifPnyODk5UaVKFT755BMAsrKy6N27NwEBAbi4uFC1alWmTp1q0V5UVBTt27cnNjaWsmXLEhgYCMDvv/9O586dKVGiBD4+PrRr147U1FSLY4sVK4avry/lypWjTZs2DBkyhJUrV3L58uVbnltqaiomk4nFixfTuHFjnJ2d+fzzz+nZsyfp6enmLP6YMWOA3NPjJ0+eTGhoKG5ubpQvX57o6GiL10hERERE5F7KtjdZZbtfaNAuhXLmzBmWL1/OwIEDcXNzy7U/r2nYly5domXLlpQoUYKkpCS++OILVq9ebR48Z2Zm0r59exo1asTPP/9MYmIi/fr1w2Qq+ANUunRpunbtytdff01WVhYAFy9eZPjw4SQlJbFmzRrs7Ox48sknyc7OBqBPnz4sWLCAq1evmtuZP38+ZcuWpUmTJgB0796dhQsXMm3aNFJSUpg9ezbu7u4AZGdn88ADD7B48WL27t3L66+/zssvv8zixYstYluzZg0pKSmsWrWKb7/9lkuXLtGkSRPc3d3ZsGEDP/74I+7u7rRs2ZJr167le44uLi5kZ2eTmZl5y3PLMXr0aIYMGUJKSgrNmjVjypQpeHh4kJaWRlpaGiNHjsyzLzs7O6ZNm8aePXuYN28ea9eutfhCRERERERErEfT46VQDh06hGEYBAUFFfqY+fPnc/nyZT799FPzQH/69OlERkYyYcIEHBwcSE9Pp02bNlSqVAmA4ODgQrUdFBTE33//zenTpyldujQdOnSw2P/JJ59QunRp9u7dS0hICB06dGDw4MH897//pVOnTgDExcURFRWFyWTiwIEDLF68mFWrVvHYY48BULFiRXN7Dg4OvPnmm+afAwIC2Lx5M4sXLza3B+Dm5sbHH39snhY/d+5c7Ozs+Pjjj81fRsTFxeHl5UVCQgKPP/54rnPbt28fs2bNIjw8nOLFi9/y3HIMHTqUp556yvyzp6eneaZCQYYOHWpxXm+99RbPP/88M2fOLPC4HFevXrX4MgQgw8jGwaTvBEVERERE7pb+qpZCMQwD4JZZ8BulpKRQs2ZNi8x8REQE2dnZ7N+/H29vb6KiomjRogWRkZFMnTqVtLS0O4rn8OHDdOnShYoVK+Lh4UFAQAAAx44dA8DJyYnnnnuOuXPnApCcnMxPP/1EVFSU+Wd7e3saNWqUb5+zZ88mLCyMUqVK4e7uzpw5c8zt5wgNDbW4j33Hjh0cOnSI4sWL4+7ujru7O97e3ly5csViivvu3btxd3fHxcWFatWqUb58eebPn1+oc8sRFhZWqGt3s3Xr1tG8eXPKlStH8eLF6d69O6dPn+bixYuFOj42NhZPT0+LbdHfh299oIiIiIgIYNiZrLLdLzRol0KpUqUKJpOJlJSUQh9jGEa+g/wbs86JiYk0aNCARYsWERgYmO/98TdKSUnBw8MDHx8fACIjIzl9+jRz5sxh69atbN26FcBiCnqfPn1YtWoVx48fZ+7cuTRr1owKFSoA16ejF2Tx4sUMGzaMXr16sXLlSpKTk+nZs2euKe433zqQnZ1NnTp1SE5OttgOHDhAly5dzPWqVq1KcnIye/fu5fLly6xdu5bKlSsX+tzy6rswjh49SuvWrQkJCWHJkiXs2LGDGTNmAAUvZnejmJgY0tPTLbbOxSvddiwiIiIiIpKbpsdLoXh7e9OiRQtmzJjBkCFDcg0Qz507l+u+9mrVqjFv3jwuXrxorr9p0ybs7OzMi7QB1K5dm9q1axMTE0P9+vVZsGAB9erVyzeWU6dOsWDBAtq3b4+dnR2nT58mJSWFDz/8kIYNGwLw448/5jouNDSUsLAw5syZw4IFC/jggw8s9mVnZ7N+/Xrz9Pgbbdy4kQYNGhAdHW0uuzFTnp+HHnqIRYsWUbp0aTw8PPKt5+joaB6k36iw55Zfmzn3/Odn+/btZGZm8t5772Fnd/07vJvv078VJycnnJycLMo0NV5ERERECut+evyaNegvaym0mTNnkpWVRXh4OEuWLOHgwYOkpKQwbdo06tevn6t+165dcXZ2pkePHuzZs4d169YxePBgunXrRpkyZThy5AgxMTEkJiZy9OhRVq5cyYEDByzuazcMg5MnT5KWlkZKSgpz586lQYMGeHp68s477wCYV2X/6KOPOHToEGvXrmX48OF5nkOfPn145513yMrK4sknnzSX+/v706NHD3r16sWyZcs4cuQICQkJ5gFs5cqV2b59OytWrODAgQO89tprJCUl3fKade3alZIlS9KuXTs2btzIkSNHWL9+PS+88ALHjx+/5fG3c2438/f358KFC6xZs4a//vqLS5cu5apTqVIlMjMz+eCDD/j111/57LPPmD17dqHaFxERERGRe0+Ddim0gIAAdu7cSZMmTRgxYgQhISE0b96cNWvWMGvWrFz1XV1dWbFiBWfOnKFu3bp07NiRZs2aMX36dPP+ffv20aFDBwIDA+nXrx+DBg2if//+5jbOnz+Pn58f5cqVo379+nz44Yf06NGDXbt24efnB1xf/XzhwoXs2LGDkJAQhg0bxqRJk/I8h2effZZixYrRpUsXnJ2dLfbNmjWLjh07Eh0dTVBQEH379jXf1z1gwACeeuopOnfuzMMPP8zp06ctsu75cXV1ZcOGDTz44IM89dRTBAcH06tXLy5fvlxg5j3H7ZzbzRo0aMCAAQPo3LkzpUqVYuLEibnq1KpVi8mTJzNhwgRCQkKYP38+sbGxhWpfRERERKQoZNuZrLLdL0xGzopeIv8Cv/32G/7+/iQlJfHQQw9ZO5z/WT880MraIQCwMKzLrSv9Axp/HW/tEMwS2kZZOwTAtq6JLbCV18WW6D0it2Irn5tnti+wdggAGJtt49+8P/zjrR2C5KNn9hprh5Cvh99aZZV+t77W3Cr93i7d0y7/ChkZGaSlpfHSSy9Rr149DdhFREREROS+oEG7/Cts2rSJJk2aEBgYyJdffmntcERERERE5P8z7O+fqerWoEG7/Cs0btwY3QkiIiIiIiL3Gw3aRURERERExGrup0XhrEGrx4uIiIiIiIjYKA3aRURERERERGyUpseLiIiIiIiI9Wh6fIGUaRcRERERERGxUcq0i4iIiIiIiNXY2ekpTwVRpl1ERERERETERmnQLiIiIiIiImKjND1eRERERERErMbOXtPjC6JBu4gUuZMnrlk7BAAafx1v7RAASGgbZe0QzB77YZ61QwAg09oB2Bhbea+ueaqXtUOwOT8829faIQDQ6j9zrB0CACV8bOdPR1v53My3kc9NM/+51g4BsJ3PTJeVcdYOwezsaf2rJ3fHdn7zioiIiIiIyL+OFqIrmO5pFxEREREREbFRyrSLiIiIiIiI1SjTXjBl2kVERERERERslAbtIiIiIiIiIjZK0+NFRERERETEavTIt4Ip0y4iIiIiIiJio5RpFxEREREREavRQnQFU6ZdRERERERExEZp0C7yDzCZTCxbtuwf7TM1NRWTyURycnKhj4mPj8fLy+uexSQiIiIiIrdHg3aRInDy5EkGDx5MxYoVcXJyonz58kRGRrJmzZoi76uggfWNXw6UL1+etLQ0QkJCijwGEREREZGiYmdnWGW7X+iedpG7lJqaSkREBF5eXkycOJEaNWqQkZHBihUrGDhwIPv27bNKXPb29vj6+lqlbxERERERKRrKtIvcpejoaEwmE9u2baNjx44EBgZSvXp1hg8fzpYtW/I8Zvfu3TRt2hQXFxd8fHzo168fFy5cMO9PSEggPDwcNzc3vLy8iIiI4OjRo7cVV17T47/++muqVKmCi4sLTZo0Yd68eZhMJs6dO2dx7IoVKwgODsbd3Z2WLVuSlpZ2W32LiIiIiBSWMu0F06Bd5C6cOXOG5cuXM3DgQNzc3HLtz2sa+6VLl2jZsiUlSpQgKSmJL774gtWrVzNo0CAAMjMzad++PY0aNeLnn38mMTGRfv36YTKZ7irW1NRUOnbsSPv27UlOTqZ///688sorecb37rvv8tlnn7FhwwaOHTvGyJEj76pvERERERG5M5oeL3IXDh06hGEYBAUFFfqY+fPnc/nyZT799FPzQH/69OlERkYyYcIEHBwcSE9Pp02bNlSqVAmA4OBgizbS09Nxd3e/rVhnz55N1apVmTRpEgBVq1Zlz549jB8/3qJeRkYGs2fPNvc9aNAgxo4de1t9iYiIiIgUlp39/ZP1tgYN2kXugmFc/wVzO1nwlJQUatasaZGZj4iIIDs7m/379/Poo48SFRVFixYtaN68OY899hidOnXCz8/PXL948eLs3LkzV9tVqlTJt9/9+/dTt25di7Lw8PBc9VxdXc0DdgA/Pz9OnTqVb7tXr17l6tWrFmUZRjYOJk3kERERERG5W/qrWuQuVKlSBZPJREpKSqGPMQwj30F+TnlcXByJiYk0aNCARYsWERgYaHF/vJ2dHZUrV8613W6/OV863MjBwSFXTHnVyxEbG4unp6fF9h2pBcYiIiIiIiKFo0G7yF3w9vamRYsWzJgxg4sXL+baf/MCbwDVqlUjOTnZov6mTZuws7MjMDDQXFa7dm1iYmLYvHkzISEhLFiw4K5iDQoKIikpyaJs+/btd9UmQExMDOnp6RbbE/jfdbsiIiIi8u+ghegKpkG7yF2aOXMmWVlZhIeHs2TJEg4ePEhKSgrTpk2jfv36uep37doVZ2dnevTowZ49e1i3bh2DBw+mW7dulClThiNHjhATE0NiYiJHjx5l5cqVHDhwINd97berf//+7Nu3j9GjR3PgwAEWL15MfHw8cHvT+2/m5OSEh4eHxaap8SIiIiIiRUN/WYvcpYCAAHbu3EmTJk0YMWIEISEhNG/enDVr1jBr1qxc9V1dXVmxYgVnzpyhbt26dOzYkWbNmjF9+nTz/n379tGhQwcCAwPp168fgwYNon///ncd55dffslXX31FjRo1mDVrlnn1eCcnp7tqW0RERETkTinTXjAtRCdSBPz8/Jg+fbp54H2zm+8JDw0NZe3atXnWLVOmDEuXLs23r6ioKKKiom7Zj7+/f65+27ZtS9u2bc0/jx8/ngceeABnZ+d8227fvn2B97SLiIiIiMi9o0G7yL/IzJkzqVu3Lj4+PmzatIlJkyaZnw8vIiIiIiK2R4N2kX+RgwcPMm7cOM6cOcODDz7IiBEjiImJsXZYIiIiIvIvdj9NVbcGDdpF/kXef/993n//fWuHISIiIiIihaRBu4iIiIiIiFiNvb0y7QXR6vEiIiIiIiIiNkqZdhEREREREbEa3dNeMGXaRURERERERGyUBu0iIiIiIiIiNkrT40VERERERMRqND2+YMq0i4iIiIiIiNgoZdpFRERERETEauz0yLcCKdMuIiIiIiIiYqOUaReRItfj2yrWDgGAzS8et3YI130db+0IzFa3jbJ2CAD0PbjI2iEA4OpuG99dhyZGWzsEAAJO/mHtEMweHVLT2iEAEFUj09ohAHDtIU9rhwDAghfTrR2CWZNIF2uHAEDLTy9YOwQAfMc3tXYIALQq/7e1QwDAZ4G3tUMw+zvxjLVDkPucBu0iIiIiIiJiNXa28R26zdLlEREREREREbFRyrSLiIiIiIiI1eiRbwVTpl1ERERERETERinTLiIiIiIiIlajTHvBlGkXERERERERsVEatIuIiIiIiIjYKE2PFxEREREREauxs9f0+IIo0y4iIiIiIiJiozRol/uSyWRi2bJl/2ifqampmEwmkpOTC31MfHw8Xl5e9yymO+Hv78+UKVMKXd8Wz0FERERE/nfY2RlW2e4XGrSLTTp58iSDBw+mYsWKODk5Ub58eSIjI1mzZk2R91XQoPTGLwfKly9PWloaISEhRdr/mDFjMJlMmEwm7O3tKV++PH369OHPP/+8q3bzO6+kpCT69et3V22LiIiIiMg/Q/e0i81JTU0lIiICLy8vJk6cSI0aNcjIyGDFihUMHDiQffv2WSUue3t7fH1970nb1atXZ/Xq1WRlZbFr1y569+7N77//zg8//HBH7WVkZOS7r1SpUncapoiIiIiI/MOUaRebEx0djclkYtu2bXTs2JHAwECqV6/O8OHD2bJlS57H7N69m6ZNm+Li4oKPjw/9+vXjwoUL5v0JCQmEh4fj5uaGl5cXERERHD169Lbiymt6/Ndff02VKlVwcXGhSZMmzJs3D5PJxLlz5yyOXbFiBcHBwbi7u9OyZUvS0tIs9hcrVgxfX1/KlStHmzZtGDJkCCtXruTy5cssX76cRx55BC8vL3x8fGjTpg2HDx/OFdfixYtp3Lgxzs7OfP755/Ts2ZP09HRzFn/MmDFA7unxkydPJjQ0FDc3N8qXL090dLTFtRMRERERuZc0Pb5gGrSLTTlz5gzLly9n4MCBuLm55dqf13TvS5cu0bJlS0qUKEFSUhJffPEFq1evZtCgQQBkZmbSvn17GjVqxM8//0xiYiL9+vXDZDLdVaypqal07NiR9u3bk5ycTP/+/XnllVfyjO/dd9/ls88+Y8OGDRw7doyRI0cW2LaLiwvZ2dlkZmZy8eJFhg8fTlJSEmvWrMHOzo4nn3yS7Oxsi2NGjx7NkCFDSElJoVmzZkyZMgUPDw/S0tJIS0vLt087OzumTZvGnj17mDdvHmvXrmXUqFF3fmFERERERKTIaHq82JRDhw5hGAZBQUGFPmb+/PlcvnyZTz/91DzQnz59OpGRkUyYMAEHBwfS09Np06YNlSpVAiA4ONiijfT0dNzd3W8r1tmzZ1O1alUmTZoEQNWqVdmzZw/jx4+3qJeRkcHs2bPNfQ8aNIixY8fm2+6+ffuYNWsW4eHhFC9enA4dOljs/+STTyhdujR79+61uL9+6NChPPXUU+afPT09MZlMt5zSP3ToUPP/BwQE8NZbb/H8888zc+bMgi+AiIiIiEgRuJ+y3tagTLvYFMO4/oG9nSx4SkoKNWvWtMjMR0REkJ2dzf79+/H29iYqKooWLVoQGRnJ1KlTc01PL168OMnJybm2guzfv5+6detalIWHh+eq5+rqah6wA/j5+XHq1CmLOrt378bd3R0XFxeqVatG+fLlmT9/PgCHDx+mS5cuVKxYEQ8PDwICAgA4duyYRRthYWEFxpufdevW0bx5c8qVK0fx4sXp3r07p0+f5uLFi4U6/urVq5w/f95iu5qRdUexiIiIiIjYspkzZxIQEICzszN16tRh48aNBdafP38+NWvWxNXVFT8/P3r27Mnp06dvq08N2sWmVKlSBZPJREpKSqGPMQwj30F+TnlcXByJiYk0aNCARYsWERgYaHF/vJ2dHZUrV8613W6/OV863MjBwSFXTDfXq1q1KsnJyezdu5fLly+zdu1ac/+RkZGcPn2aOXPmsHXrVrZu3QrAtWvXLNrI63aCWzl69CitW7cmJCSEJUuWsGPHDmbMmAEUvJjdjWJjY/H09LTY3lm867ZjEREREZF/Jzt7wyrb7Vq0aBFDhw7llVdeYdeuXTRs2JBWrVrlSqbl+PHHH+nevTu9e/fml19+4YsvviApKYk+ffrc3vW57UhF7iFvb29atGjBjBkz8sz03rzAG0C1atVITk62qL9p0ybs7OwIDAw0l9WuXZuYmBg2b95MSEgICxYsuKtYg4KCSEpKsijbvn37HbXl6OhI5cqVCQgIwMnJyVx++vRpUlJSePXVV2nWrBnBwcGcPXu20G1mZRWc8d6+fTuZmZm899571KtXj8DAQE6cOHFbscfExJCenm6xvdSp9m21ISIiIiJi6yZPnkzv3r3p06cPwcHBTJkyhfLlyzNr1qw862/ZsgV/f3+GDBlCQEAAjzzyCP3797/tMYMG7WJzZs6cSVZWFuHh4SxZsoSDBw+SkpLCtGnTqF+/fq76Xbt2xdnZmR49erBnzx7WrVvH4MGD6datG2XKlOHIkSPExMSQmJjI0aNHWblyJQcOHMh1X/vt6t+/P/v27WP06NEcOHCAxYsXEx8fD9ze9P6ClChRAh8fHz766CMOHTrE2rVrGT58eKGO9ff358KFC6xZs4a//vqLS5cu5apTqVIlMjMz+eCDD/j111/57LPPmD179m3F6OTkhIeHh8Xm5GB/W22IiIiIiPzT8rzN8+rVPOteu3aNHTt28Pjjj1uUP/7442zevDnPYxo0aMDx48f5/vvvMQyDP/74gy+//JInnnjituLUoF1sTkBAADt37qRJkyaMGDGCkJAQmjdvzpo1a/L8FsvV1ZUVK1Zw5swZ6tatS8eOHWnWrBnTp08379+3bx8dOnQgMDCQfv36MWjQIPr373/XcX755Zd89dVX1KhRg1mzZplXj78xW3437OzsWLhwITt27CAkJIRhw4aZF767lQYNGjBgwAA6d+5MqVKlmDhxYq46tWrVYvLkyUyYMIGQkBDmz59PbGxskcQuIiIiIlIY1nrkW163eeb3t/Bff/1FVlYWZcqUsSgvU6YMJ0+ezPOYBg0aMH/+fDp37oyjoyO+vr54eXnxwQcf3Nb1MRl53YQrIndk/PjxzJ49m99++83aoVhV9vcDrB0CAJtfPG7tEAA4mHLZ2iGYJbSNsnYIAPQ9uMjaIQDg6m4b312HJkZbOwQANp38w9ohmD166CdrhwCAqcZD1g4BgGuffGXtEABY8GK6tUMwaxLpYu0QAHD6T6S1QwDA97e/rB0CAH+UL23tEADwWbDW2iGY/Z14xtohAOD9yQprh5Cv/hvv7rbVOzUtvEOuzLqTk1OeCbgTJ05Qrlw5Nm/ebDH7d/z48Xz22Wfs27cv1zF79+7lscceY9iwYbRo0YK0tDRefPFF6tatyyeffFLoOPXIN5G7MHPmTOrWrYuPjw+bNm1i0qRJ5ufDi4iIiIjIrdkXzZ2lty2/AXpeSpYsib29fa6s+qlTp3Jl33PExsYSERHBiy++CECNGjVwc3OjYcOGjBs3Dj8/v0L1bRspBpH71MGDB2nXrh3VqlXjrbfeYsSIEYwZM8baYYmIiIiISBFydHSkTp06rFq1yqJ81apVNGjQIM9jLl26hJ2d5ZDb3v762k+3M+FdmXaRu/D+++/z/vvvWzsMERERERG5x4YPH063bt0ICwujfv36fPTRRxw7dowBA67fGhoTE8Pvv//Op59+Clx/dHPfvn2ZNWuWeXr80KFDCQ8Pp2zZsoXuV4N2ERERERERsRo7K02Pv12dO3fm9OnTjB07lrS0NEJCQvj++++pUKECAGlpaRbPbI+KiuLvv/9m+vTpjBgxAi8vL5o2bcqECRNuq18N2kVEREREREQKITo6mujovBeQzXn8840GDx7M4MGD76pPDdpFRERERETEaqy1EN39QgvRiYiIiIiIiNgoZdpFRERERETEapRpL5gy7SIiIiIiIiI2SoN2ERERERERERul6fEiIiIiIiJiNZoeXzBl2kVERERERERslDLtIlLken4UYe0QAGicEm/tECQfc6p0tnYINqVxsUnWDgGAhLZR1g7B7MjXP1k7BAAS2ta2dggANP463doh2Jx131y2dggAJHRxtXYIADT+eq21QwBs5/dI469PWTsEm9PzE2tHkD87ZdoLpEy7iIiIiIiIiI3SoF1ERERERETERml6vIiIiIiIiFiNFqIrmDLtIiIiIiIiIjZKmXYRERERERGxGmXaC6ZMu4iIiIiIiIiN0qBdRERERERExEZperyIiIiIiIhYjZ1SyQXS5RERERERERGxURq0i/wDTCYTy5Yts2oMY8aMoVatWlaNQURERETkZvYm62z3Cw3aRYrAyZMnGTx4MBUrVsTJyYny5csTGRnJmjVriryv+Ph4TCaTefPz86NTp04cOXKkwONGjhx5T+IREREREZF7R/e0i9yl1NRUIiIi8PLyYuLEidSoUYOMjAxWrFjBwIED2bdvX5H36eHhwf79+zEMg3379tG/f3/atm1LcnIy9vb2FnUNwyArKwt3d3fc3d2LPBYRERERkbtxP2W9rUGZdpG7FB0djclkYtu2bXTs2JHAwECqV6/O8OHD2bJlS57H7N69m6ZNm+Li4oKPjw/9+vXjwoUL5v0JCQmEh4fj5uaGl5cXERERHD161LzfZDLh6+uLn58fTZo04Y033mDPnj0cOnSIhIQETCYTK1asICwsDCcnJzZu3JhrenxUVBTt27fn7bffpkyZMnh5efHmm2+SmZnJiy++iLe3Nw888ABz5869Z9dOREREREQKpkG7yF04c+YMy5cvZ+DAgbi5ueXa7+Xllavs0qVLtGzZkhIlSpCUlMQXX3zB6tWrGTRoEACZmZm0b9+eRo0a8fPPP5OYmEi/fv0wmfL/CtLFxQWAjIwMc9moUaOIjY0lJSWFGjVq5Hnc2rVrOXHiBBs2bGDy5MmMGTOGNm3aUKJECbZu3cqAAQMYMGAAv/322+1cFhERERERKSKaHi9yFw4dOoRhGAQFBRX6mPnz53P58mU+/fRT80B/+vTpREZGMmHCBBwcHEhPT6dNmzZUqlQJgODg4HzbO378OJMmTeKBBx4gMDCQv/76C4CxY8fSvHnzAmPx9vZm2rRp2NnZUbVqVSZOnMilS5d4+eWXAYiJieGdd95h06ZNPPPMM4U+RxERERGRwrLT9PgCKdMuchcMwwAoMAt+s5SUFGrWrGmRmY+IiCA7O5v9+/fj7e1NVFQULVq0IDIykqlTp5KWlmbRRnp6Ou7u7ri5uVG+fHmuXbvGV199haOjo7lOWFjYLWOpXr06djc8GLNMmTKEhoaaf7a3t8fHx4dTp07l28bVq1c5f/68xZaVlZFvfRERERERKTwN2kXuQpUqVTCZTKSkpBT6GMMw8h3k55THxcWRmJhIgwYNWLRoEYGBgRb3xxcvXpzk5GR2797NhQsX2LFjB3Xr1rVoK6/p+jdzcHDI1X9eZdnZ2fm2ERsbi6enp8W2++A3t+xbRERERATA3mRYZbtfaNAuche8vb1p0aIFM2bM4OLFi7n2nzt3LldZtWrVSE5Otqi/adMm7OzsCAwMNJfVrl2bmJgYNm/eTEhICAsWLDDvs7Ozo3LlylSsWLFQg/N7KSYmhvT0dIsttEqkVWMSEREREflfoUG7yF2aOXMmWVlZhIeHs2TJEg4ePEhKSgrTpk2jfv36uep37doVZ2dnevTowZ49e1i3bh2DBw+mW7dulClThiNHjhATE0NiYiJHjx5l5cqVHDhwoMD72q3JyckJDw8Pi83e3uHWB4qIiIiIyC1pITqRuxQQEMDOnTsZP348I0aMIC0tjVKlSlGnTh1mzZqVq76rqysrVqzghRdeoG7duri6utKhQwcmT55s3r9v3z7mzZvH6dOn8fPzY9CgQfTv3/+fPjURERERkXtOz2kvmAbtIkXAz8+P6dOnM3369Dz35yxYlyM0NJS1a9fmWbdMmTIsXbo0376ioqKIiorKd3/jxo1z9QcwZswYxowZY/45Pj4+V52EhIRcZampqfn2JSIiIiIi95YG7SIiIiIiImI1yrQXTPe0i4iIiIiIiNgoZdpFRERERETEauyUaS+QMu0iIiIiIiIiNkqDdhEREREREREbpenxIiIiIiIiYjVaiK5gyrSLiIiIiIiI2Chl2kVERERERMRqlGkvmDLtIiIiIiIiIjZKg3YRERERERERG6Xp8SIiIiIiImI1ek57wZRpFxEREREREbFRyrSLSJHzGmVv7RCu+9raAUh+bOU9cm5ilrVDAMCntIO1QxAREbEaLURXMGXaRURERERERGyUMu0iIiIiIiJiNcq0F0yZdhEREREREREbpUG7iIiIiIiIiI3S9HgRERERERGxGk2PL5gy7SIiIiIiIiI2Spl2ERERERERsRo7ZdoLpEy7iIiIiIiIiI3SoF1ERERERETERml6vIiIiIiIiFiNFqIrmDLtIlZmMplYtmyZtcMQEREREREbpEG7yD128uRJBg8eTMWKFXFycqJ8+fJERkayZs2aIu8rKyuL2NhYgoKCcHFxwdvbm3r16hEXF1fkfYmIiIiIFAV7k3W2+4Wmx4vcQ6mpqURERODl5cXEiROpUaMGGRkZrFixgoEDB7Jv374i7W/MmDF89NFHTJ8+nbCwMM6fP8/27ds5e/ZskfYjIiIiIiL/DGXaRe6h6OhoTCYT27Zto2PHjgQGBlK9enWGDx/Oli1b8jxm9+7dNG3aFBcXF3x8fOjXrx8XLlww709ISCA8PBw3Nze8vLyIiIjg6NGjAHzzzTdER0fz9NNPExAQQM2aNenduzfDhw83H28YBhMnTqRixYq4uLhQs2ZNvvzyS4sYfvnlF5544gk8PDwoXrw4DRs25PDhw/fgComIiIjIv52dyTrb/UKDdpF75MyZMyxfvpyBAwfi5uaWa7+Xl1euskuXLtGyZUtKlChBUlISX3zxBatXr2bQoEEAZGZm0r59exo1asTPP/9MYmIi/fr1w2S6/lvH19eXtWvX8ueff+Yb16uvvkpcXByzZs3il19+YdiwYTz33HOsX78egN9//51HH30UZ2dn1q5dy44dO+jVqxeZmZlFcFVEREREROR2aHq8yD1y6NAhDMMgKCio0MfMnz+fy5cv8+mnn5oH+tOnTycyMpIJEybg4OBAeno6bdq0oVKlSgAEBwebj588eTIdO3bE19eX6tWr06BBA9q1a0erVq0AuHjxIpMnT2bt2rXUr18fgIoVK/Ljjz/y4Ycf0qhRI2bMmIGnpycLFy7EwcEBgMDAwHxjvnr1KlevXrUoy7yWQTFHh0Kft4iIiIiI5E2ZdpF7xDAMAHMWvDBSUlKoWbOmRWY+IiKC7Oxs9u/fj7e3N1FRUbRo0YLIyEimTp1KWlqauW61atXYs2cPW7ZsoWfPnvzxxx9ERkbSp08fAPbu3cuVK1do3rw57u7u5u3TTz81T39PTk6mYcOG5gH7rcTGxuLp6Wmxbf/s60Kfs4iIiIj8u9mZDKts9wsN2kXukSpVqmAymUhJSSn0MYZh5DvIzymPi4sjMTGRBg0asGjRIgIDAy3uj7ezs6Nu3boMGzaMpUuXEh8fzyeffMKRI0fIzs4G4LvvviM5Odm87d2713xfu4uLy22dZ0xMDOnp6RZbWLe2t9WGiIiIiIjkTYN2kXvE29ubFi1aMGPGDC5evJhr/7lz53KVVatWjeTkZIv6mzZtws7OzmKKeu3atYmJiWHz5s2EhISwYMGCfOOoVq0acH1qfLVq1XBycuLYsWNUrlzZYitfvjwANWrUYOPGjWRkZBTqPJ2cnPDw8LDYNDVeRERERApLj3wrmAbtIvfQzJkzycrKIjw8nCVLlnDw4EFSUlKYNm2a+Z7yG3Xt2hVnZ2d69OjBnj17WLduHYMHD6Zbt26UKVOGI0eOEBMTQ2JiIkePHmXlypUcOHDAfF97x44def/999m6dStHjx4lISGBgQMHEhgYSFBQEMWLF2fkyJEMGzaMefPmcfjwYXbt2sWMGTOYN28eAIMGDeL8+fM888wzbN++nYMHD/LZZ5+xf//+f/TaiYiIiIiIFqITuacCAgLYuXMn48ePZ8SIEaSlpVGqVCnq1KnDrFmzctV3dXVlxYoVvPDCC9StWxdXV1c6dOjA5MmTzfv37dvHvHnzOH36NH5+fgwaNIj+/fsD0KJFC/7zn/8QGxtLeno6vr6+NG3alDFjxlCs2PWP+1tvvUXp0qWJjY3l119/xcvLi4ceeoiXX34ZAB8fH9auXcuLL75Io0aNsLe3p1atWkRERPxDV01ERERERHJo0C5yj/n5+TF9+nSmT5+e5/6cBetyhIaGsnbt2jzrlilThqVLl+bbV9++fenbt2+B8ZhMJoYMGcKQIUPyrVOjRg1WrFhRYDsiIiIiIkXhfloUzho0PV5ERERERETERinTLiIiIiIiIlZjdx8tCmcNyrSLiIiIiIiI2Chl2kVERERERMRq7HVPe4GUaRcRERERERGxURq0i4iIiIiIiNgoTY8XERERERERq9FCdAVTpl1ERERERETERinTLiIiIiIiIlZjp4XoCqRMu4iIiIiIiIiN0qBdRERERERExEZperyIFLlhExZYOwQAjCdcrB0CAAnfXbZ2CDan1iOfWDsEAOxsZOWbJW16WDsEAOJf22/tEMy2z3nO2iEA8Nx/v7d2CAA4LBxq7RAAiHOdYu0QzLpO87F2CAA8m/6ltUMA4JPxvawdAgAfLllo7RAAsP/qRWuHYLbY7T1rh2Dz7G3jn2ObpUy7iIiIiIiIiI1Spl1ERERERESsxkYmvtksZdpFREREREREbJQy7SIiIiIiImI1euRbwZRpFxEREREREbFRGrSLiIiIiIiI2ChNjxcRERERERGr0SPfCqZMu4iIiIiIiIiNUqZdRERERERErEYL0RVMmXYRERERERERG6VBu/zPMZlMLFu2zNph2Cx/f3+mTJlS6Prx8fF4eXnds3hERERERCR/GrTLfefkyZMMHjyYihUr4uTkRPny5YmMjGTNmjVF3ldWVhaxsbEEBQXh4uKCt7c39erVIy4ursj6GDNmDCaTCZPJhL29PeXLl6dPnz78+eefd9VufoPtpKQk+vXrd1dti4iIiIgUFTuTdbb7he5pl/tKamoqEREReHl5MXHiRGrUqEFGRgYrVqxg4MCB7Nu3r0j7GzNmDB999BHTp08nLCyM8+fPs337ds6ePVuk/VSvXp3Vq1eTlZXFrl276N27N7///js//PDDHbWXkZGR775SpUrdaZgiIiIiIvIPU6Zd7ivR0dGYTCa2bdtGx44dCQwMpHr16gwfPpwtW7bkeczu3btp2rQpLi4u+Pj40K9fPy5cuGDen5CQQHh4OG5ubnh5eREREcHRo0cB+Oabb4iOjubpp58mICCAmjVr0rt3b4YPH24+3jAMJk6cSMWKFXFxcaFmzZp8+eWXFjH88ssvPPHEE3h4eFC8eHEaNmzI4cOHzfuLFSuGr68v5cqVo02bNgwZMoSVK1dy+fJlli9fziOPPIKXlxc+Pj60adPG4tjU1FRMJhOLFy+mcePGODs78/nnn9OzZ0/S09PNWfwxY8YAuafHT548mdDQUNzc3ChfvjzR0dEW10dERERE5F6yNxlW2e4XGrTLfePMmTMsX76cgQMH4ubmlmt/XlPBL126RMuWLSlRogRJSUl88cUXrF69mkGDBgGQmZlJ+/btadSoET///DOJiYn069cPk+n6fBlfX1/Wrl1b4FT1V199lbi4OGbNmsUvv/zCsGHDeO6551i/fj0Av//+O48++ijOzs6sXbuWHTt20KtXLzIzM/Nt08XFhezsbDIzM7l48SLDhw8nKSmJNWvWYGdnx5NPPkl2drbFMaNHj2bIkCGkpKTQrFkzpkyZgoeHB2lpaaSlpTFy5Mg8+7Kzs2PatGns2bOHefPmsXbtWkaNGpVvbCIiIiIi8s/R9Hi5bxw6dAjDMAgKCir0MfPnz+fy5ct8+umn5oH+9OnTiYyMZMKECTg4OJCenk6bNm2oVKkSAMHBwebjJ0+eTMeOHfH19aV69eo0aNCAdu3a0apVKwAuXrzI5MmTWbt2LfXr1wegYsWK/Pjjj3z44Yc0atSIGTNm4OnpycKFC3FwcAAgMDAw35j37dvHrFmzCA8Pp3jx4nTo0MFi/yeffELp0qXZu3cvISEh5vKhQ4fy1FNPmX/29PTEZDLh6+tb4DUaOnSo+f8DAgJ46623eP7555k5c2aBx4mIiIiIyL2nTLvcNwzj+hSWnCx4YaSkpFCzZk2LzHxERATZ2dns378fb29voqKiaNGiBZGRkUydOpW0tDRz3WrVqrFnzx62bNlCz549+eOPP4iMjKRPnz4A7N27lytXrtC8eXPc3d3N26effmqewp6cnEzDhg3NA/a87N69G3d3d1xcXKhWrRrly5dn/vz5ABw+fJguXbpQsWJFPDw8CAgIAODYsWMWbYSFhRX6utxo3bp1NG/enHLlylG8eHG6d+/O6dOnuXjxYqGOv3r1KufPn7fYrmZl3VEsIiIiIvLvo4XoCqZBu9w3qlSpgslkIiUlpdDHGIaR7yA/pzwuLo7ExEQaNGjAokWLCAwMtLg/3s7Ojrp16zJs2DCWLl1KfHw8n3zyCUeOHDFPUf/uu+9ITk42b3v37jXf1+7i4nLLOKtWrWo+7vLly6xdu5bKlSsDEBkZyenTp5kzZw5bt25l69atAFy7ds2ijbxuGbiVo0eP0rp1a0JCQliyZAk7duxgxowZQMGL2d0oNjYWT09Pi23WwcO3PlBERERERG5Jg3a5b3h7e9OiRQtmzJiRZxb43LlzucqqVatGcnKyRf1NmzZhZ2dnMUW9du3axMTEsHnzZkJCQliwYEG+cVSrVg24PjW+WrVqODk5cezYMSpXrmyxlS9fHoAaNWqwcePGAgfBjo6OVK5cmYCAAJycnMzlp0+fJiUlhVdffZVmzZoRHBxc6JXrHR0dybpFxnv79u1kZmby3nvvUa9ePQIDAzlx4kSh2s8RExNDenq6xfZ8lUq31YaIiIiI/HvZmQyrbPcLDdrlvjJz5kyysrIIDw9nyZIlHDx4kJSUFKZNm2a+p/xGXbt2xdnZmR49erBnzx7WrVvH4MGD6datG2XKlOHIkSPExMSQmJjI0aNHWblyJQcOHDDf196xY0fef/99tm7dytGjR0lISGDgwIEEBgYSFBRE8eLFGTlyJMOGDWPevHkcPnyYXbt2MWPGDObNmwfAoEGDOH/+PM888wzbt2/n4MGDfPbZZ+zfv/+W51uiRAl8fHz46KOPOHToEGvXrrVYub4g/v7+XLhwgTVr1vDXX39x6dKlXHUqVapEZmYmH3zwAb/++iufffYZs2fPLlT7OZycnPDw8LDYnOztb6sNERERERHJmwbtcl8JCAhg586dNGnShBEjRhASEkLz5s1Zs2YNs2bNylXf1dWVFStWcObMGerWrUvHjh1p1qwZ06dPN+/ft28fHTp0IDAwkH79+jFo0CD69+8PQIsWLfjmm2+IjIwkMDCQHj16EBQUxMqVKylW7Po6jm+99Ravv/46sbGxBAcHm4/Juffcx8eHtWvXcuHCBRo1akSdOnWYM2dOgfe457Czs2PhwoXs2LGDkJAQhg0bxqRJkwp1rRo0aMCAAQPo3LkzpUqVYuLEibnq1KpVi8mTJzNhwgRCQkKYP38+sbGxhWpfRERERKQo2Flpu1+YjJzVvUREikhquzbWDgEAI/vWdf4JCd9dtnYIZglto6wdAgCNv463dggA2NnIKjRr2/SwdggAxL926xlA/5TtD9rGbTa1/rvS2iEA4PBcF2uHAECc6xRrh2DWdZqPtUMAIDv9qrVDAOCT9p2sHQIAvZcstHYIANi/OtDaIZgtdnvP2iEA0PXyKmuHkK89Zz6xSr8h3r2t0u/tup++YBARERERERH5V9Fz2kVERERERMRq7O+jReGsQZl2ERERERERERulTLuIiIiIiIhYjY0sMWOzlGkXERERERERsVEatIuIiIiIiIjYKE2PFxEREREREaux00J0BVKmXURERERERMRGKdMuIiIiIiIiVmOvhegKpEy7iIiIiIiIiI1Spl1ERERERESsRve0F0yZdhEREREREREbpUy7iBS5B4dVtnYIAGwZfMjaIQDQfVF5a4dg5ljLNr6rDTjsYu0QAHBzt7d2CAB0fHCetUMAIOqtHtYOwazx1/HWDgGAi8e7WzsEAI64TrF2CADY2dnOjaenEi5aOwQAuleMtnYIAMS0mWHtEAB4auzz1g4BgM6O71o7BLP2fWzncyP3Jw3aRURERERExGps6PtAm2QbKRcRERERERERGzdz5kwCAgJwdnamTp06bNy4scD6V69e5ZVXXqFChQo4OTlRqVIl5s6de1t9KtMuIiIiIiIiVmN/nyxEt2jRIoYOHcrMmTOJiIjgww8/pFWrVuzdu5cHH3wwz2M6derEH3/8wSeffELlypU5deoUmZmZt9WvBu0iIiIiIiIitzB58mR69+5Nnz59AJgyZQorVqxg1qxZxMbG5qq/fPly1q9fz6+//oq3tzcA/v7+t92vpseLiIiIiIiIFODatWvs2LGDxx9/3KL88ccfZ/PmzXke8/XXXxMWFsbEiRMpV64cgYGBjBw5ksuXL99W38q0i4iIiIiIiNVYayG6q1evcvXqVYsyJycnnJycctX966+/yMrKokyZMhblZcqU4eTJk3m2/+uvv/Ljjz/i7OzM0qVL+euvv4iOjubMmTO3dV+7Mu0iIiIiIiLyrxMbG4unp6fFltc09xuZTJbfMBiGkassR3Z2NiaTifnz5xMeHk7r1q2ZPHky8fHxt5VtV6ZdRERERERErMZkpVxyTEwMw4cPtyjLK8sOULJkSezt7XNl1U+dOpUr+57Dz8+PcuXK4enpaS4LDg7GMAyOHz9OlSpVChWnMu0iIiIiIiLyr+Pk5ISHh4fFlt+g3dHRkTp16rBq1SqL8lWrVtGgQYM8j4mIiODEiRNcuHDBXHbgwAHs7Ox44IEHCh2nBu0iIiIiIiJiNSaTySrb7Ro+fDgff/wxc+fOJSUlhWHDhnHs2DEGDBgAXM/cd+/e3Vy/S5cu+Pj40LNnT/bu3cuGDRt48cUX6dWrFy4uLoXuV4N2yeXkyZO88MILVK5cGWdnZ8qUKcMjjzzC7NmzuXTpktXiWrduHU2aNMHb2xtXV1eqVKlCjx49bvs5h3ciISEBk8nEuXPnbuu48+fP88orrxAUFISzszO+vr489thjfPXVVxhG0T2PMioqivbt2xdZeyIiIiIiYqlz585MmTKFsWPHUqtWLTZs2MD3339PhQoVAEhLS+PYsWPm+u7u7qxatYpz584RFhZG165diYyMZNq0abfVr+5pFwu//vorEREReHl58fbbbxMaGkpmZiYHDhxg7ty5lC1blrZt2/7jcf3yyy+0atWKIUOG8MEHH+Di4sLBgwf58ssvyc7Ovqd9Z2Rk3NFx586d45FHHiE9PZ1x48ZRt25dihUrxvr16xk1ahRNmzbFy8uraIO9hYyMDBwcHP7RPkVERERE/ldER0cTHR2d5774+PhcZUFBQbmm1N8uZdrFQnR0NMWKFWP79u106tSJ4OBgQkND6dChA9999x2RkZH06tWLNm3aWByXmZmJr6+v+dEFjRs3ZvDgwQwdOpQSJUpQpkwZPvroIy5evEjPnj0pXrw4lSpV4ocffjC3cfbsWbp27UqpUqVwcXGhSpUqxMXFAdfvFfHz82PixImEhIRQqVIlWrZsyccff4yjoyNw/UPi5eXFsmXLCAwMxNnZmebNm/Pbb79ZxDpr1iwqVaqEo6MjVatW5bPPPrPYbzKZmD17Nu3atcPNzY0+ffrQpEkTAEqUKIHJZCIqKgqAL7/8ktDQUFxcXPDx8eGxxx7j4sWLALz88sukpqaydetWevToQbVq1QgMDKRv374kJyfj7u4OXH/m46hRoyhXrhxubm48/PDDJCQkmOPJOa8VK1YQHByMu7s7LVu2JC0tDYAxY8Ywb948/vvf/5qn+iQkJJCamorJZGLx4sU0btwYZ2dnPv/8cwDi4uIIDg7G2dmZoKAgZs6cae7v2rVrDBo0CD8/P5ydnfH397/lKpoiIiIiInfKhJ1VtvvF/ROp3HOnT59m5cqVDBw4EDc3tzzrmEwm+vTpw/Lly82DRoDvv/+eCxcu0KlTJ3PZvHnzKFmyJNu2bWPw4ME8//zzPP300zRo0ICdO3fSokULunXrZp5y/9prr7F3715++OEHUlJSmDVrFiVLlgTA19eXtLQ0NmzYUOA5XLp0ifHjxzNv3jw2bdrE+fPneeaZZ8z7ly5dygsvvMCIESPYs2cP/fv3p2fPnqxbt86inTfeeIN27dqxe/duxo4dy5IlSwDYv38/aWlpTJ06lbS0NJ599ll69epFSkoKCQkJPPXUUxiGQXZ2NgsXLqRr166ULVs2V5zu7u4UK3Z9okvPnj3ZtGkTCxcu5Oeff+bpp5+mZcuWHDx40OK83n33XT777DM2bNjAsWPHGDlyJAAjR46kU6dO5oF8WlqaxWIYo0ePZsiQIaSkpNCiRQvmzJnDK6+8wvjx40lJSeHtt9/mtddeY968eQBMmzaNr7/+msWLF7N//34+//xz/P39C7zuIiIiIiJyb2h6vJgdOnQIwzCoWrWqRXnJkiW5cuUKAAMHDmTChAnmDPWoUaOA65nbp59+2pw9BqhZsyavvvoqcH1RhnfeeYeSJUvSt29fAF5//XVmzZrFzz//TL169Th27Bi1a9cmLCwMwGKg+PTTT7NixQoaNWqEr68v9erVo1mzZnTv3h0PDw9zvYyMDKZPn87DDz8MXP/iIDg4mG3bthEeHs67775LVFSUeUrL8OHD2bJlC++++645mw7XF43o1auX+ecjR44AULp0afOU9sOHD5OZmclTTz1lvo8lNDQUuP7oh7NnzxIUFFTgNT98+DD/+c9/OH78uHlwP3LkSJYvX05cXBxvv/22+bxmz55NpUqVABg0aBBjx44Frn8B4OLiwtWrV/H19c3Vx9ChQ3nqqafMP7/11lu899575rKAgAD27t3Lhx9+SI8ePTh27BhVqlThkUcewWQymc9NREREROReuJNF4f5NlGmXXG7+0Gzbto3k5GSqV6/O1atXAejTp4956vqpU6f47rvvLAa5ADVq1DD/v729PT4+PuZBLWB+nuGpU6cAeP7551m4cCG1atVi1KhRbN682eL4uLg4jh8/zsSJEylbtizjx4+nevXqFhn/YsWKmQf9cP0eEi8vL1JSUgBISUkhIiLCIs6IiAjz/hw3tpGfmjVr0qxZM0JDQ3n66aeZM2cOZ8+eBTAvMnerX0A7d+7EMAwCAwNxd3c3b+vXr+fw4cPmeq6uruYBO1x/5mPOdbuVG8/lzz//5LfffqN3794W/Y0bN87cX1RUFMnJyVStWpUhQ4awcuXKAtu/evUq58+ft9iuXrv3iwOKiIiIiPwbaNAuZpUrV8ZkMrFv3z6L8ooVK1K5cmWLxxJ0796dX3/9lcTERPP06YYNG1ocd/OCZyaTyaIsZ0Cbs5Bcq1atOHr0KEOHDuXEiRM0a9bMPAU8R7ly5ejWrRszZsxg7969XLlyhdmzZ+fq52Y3lt283zCMXGX53R5wI3t7e1atWsUPP/xAtWrV+OCDD6hatSpHjhyhVKlSlChRIteXATfLzs7G3t6eHTt2kJycbN5SUlKYOnWquV5e17Kwq8/feC4513rOnDkW/e3Zs4ctW7YA8NBDD3HkyBHeeustLl++TKdOnejYsWO+7cfGxuLp6WmxvbNge6FiExERERGRgmnQLmY+Pj40b96c6dOnmxdTK6hu+/btiYuLIy4ujp49exZJDKVKlSIqKorPP/+cKVOm8NFHH+Vbt0SJEvj5+VnEmpmZyfbt/zdg3L9/P+fOnTNPUw8ODubHH3+0aGfz5s0EBwcXGFfOYndZWVkW5SaTiYiICN5880127dqFo6MjS5cuxc7Ojs6dOzN//nxOnDiRq72LFy+SmZlJ7dq1ycrK4tSpU1SuXNliy2uqe0Hx3RxbXsqUKUO5cuX49ddfc/UXEBBgrufh4UHnzp2ZM2cOixYtYsmSJZw5cybPNmNiYkhPT7fYXupy65kKIiIiIiKghehuRfe0i4WZM2cSERFBWFgYY8aMoUaNGtjZ2ZGUlMS+ffuoU6eOuW6fPn1o06YNWVlZ9OjR4677fv3116lTp455Gv63335rHkx/+OGHJCcn8+STT1KpUiWuXLnCp59+yi+//MIHH3xgbsPBwYHBgwczbdo0HBwcGDRoEPXq1SM8PByAF198kU6dOvHQQw/RrFkzvvnmG7766itWr15dYGwVKlTAZDLx7bff0rp1a1xcXPjll19Ys2YNjz/+OKVLl2br1q38+eef5pjffvttEhISePjhhxk/fjxhYWE4ODiwceNGYmNjSUpKIjAwkK5du9K9e3fee+89ateuzV9//cXatWsJDQ2ldevWhbp2/v7+rFixgv379+Pj44Onp2e+dceMGcOQIUPw8PCgVatWXL16le3bt3P27FmGDx/O+++/j5+fH7Vq1cLOzo4vvvgCX1/ffB9P5+TkhJOTk0VZtqN+tYiIiIiIFAX9ZS0WKlWqxK5du3j77beJiYnh+PHjODk5Ua1aNUaOHGnxTMLHHnsMPz8/qlevnucK6bfL0dGRmJgYUlNTcXFxoWHDhixcuBCA8PBwfvzxRwYMGMCJEydwd3enevXqLFu2jEaNGpnbcHV1ZfTo0XTp0oXjx4/zyCOPmB9DB9C+fXumTp3KpEmTGDJkCAEBAcTFxdG4ceMCYytXrhxvvvkmL730Ej179qR79+6MHj2aDRs2MGXKFM6fP0+FChV47733aNWqFXB9JsCWLVt45513GDduHEePHqVEiRKEhoYyadIk88A6Li6OcePGMWLECH7//Xd8fHyoX79+oQfsAH379iUhIYGwsDAuXLjAunXr8l3xvU+fPri6ujJp0iRGjRqFm5sboaGhDB06FLi+sN2ECRM4ePAg9vb21K1bl++//x47u/vn20gRERERuX+Y0EJ0BTEZhb0xVuQmly5domzZssydO9didXJriY+PZ+jQoZw7d87aofzrZScMtXYIAGwZfMjaIQDw8OslrR2C2cJaza0dAgABT/3H2iEA4OZub+0QAKhct+Bbkv4p0cfuftZUUWn8dby1QwAg4Hh3a4cAwJEHPrV2CADY2dnOH9bN2jvdutI/oHvF6FtX+gfEfDHD2iEA8P7Y560dAgCde069daV/SPs+tvG58Zy9ytoh5Ov0Fev8jvNxto3f8beiTLvctuzsbE6ePMl7772Hp6cnbdu2tXZIIiIiIiJynzKZNKOzIBq0y207duwYAQEBPPDAA8THx1OsmN5GIiIiIiIi94JGW3Lb/P39C/24sX9SVFQUUVFR1g5DRERERESkyGjQLiIiIiIiIlajhegKppsHRERERERERGyUMu0iIiIiIiJiNVqIrmC6OiIiIiIiIiI2SoN2ERERERERERul6fEiIiIiIiJiNVqIrmDKtIuIiIiIiIjYKGXaRURERERExGpMyiUXSFdHRERERERExEaZDMMwrB2EiPxvibNrZu0QJB9ROxpYOwQA4utstnYINkWvS24JbaOsHQIAo84ssXYIAMx/t5O1QwCg8wuLrB2C2ckT16wdAgAnfrONOGzlM9P/sG28R15t9by1QzDr9u5ka4cAQM/sNdYOIV9/Z3xhlX6LOzxtlX5vlzLtIiIiIiIiIjZKg3YRERERERERG6WF6ERERERERMRqtBBdwXR1RERERERERGyUMu0iIiIiIiJiNSZM1g7BpinTLiIiIiIiImKjNGgXERERERERsVGaHi8iIiIiIiJWYzIpl1wQXR0RERERERERG6VBu8i/SEJCAiaTiXPnzhX6mMaNGzN06NB7FpOIiIiI/LuZrPTf/UKD9n/AyZMneeGFF6hcuTLOzs6UKVOGRx55hNmzZ3Pp0iWrxbVu3TqaNGmCt7c3rq6uVKlShR49epCZmXnP+76TwSPA+fPneeWVVwgKCsLZ2RlfX18ee+wxvvrqKwzDKLL4oqKiaN++fZG1VxB/f39MJhMmkwlXV1dCQkL48MMP77rdvAbbDRo0IC0tDU9Pz7tuX0RERERE7j3d036P/frrr0RERODl5cXbb79NaGgomZmZHDhwgLlz51K2bFnatm37j8f1yy+/0KpVK4YMGcIHH3yAi4sLBw8e5MsvvyQ7O/ue9p2RkXFHx507d45HHnmE9PR0xo0bR926dSlWrBjr169n1KhRNG3aFC8vr6IN9hYyMjJwcHC463bGjh1L3759uXDhAvHx8QwYMAAvLy86d+5cpDE5Ojri6+t7t+GKiIiIiBQZ3dNeMF2deyw6OppixYqxfft2OnXqRHBwMKGhoXTo0IHvvvuOyMhIevXqRZs2bSyOy8zMxNfXl7lz5wLXs6aDBw9m6NChlChRgjJlyvDRRx9x8eJFevbsSfHixalUqRI//PCDuY2zZ8/StWtXSpUqhYuLC1WqVCEuLg6AVatW4efnx8SJEwkJCaFSpUq0bNmSjz/+GEdHRwDi4+Px8vJi2bJlBAYG4uzsTPPmzfntt98sYp01axaVKlXC0dGRqlWr8tlnn1nsN5lMzJ49m3bt2uHm5kafPn1o0qQJACVKlMBkMhEVFQXAl19+SWhoKC4uLvj4+PDYY49x8eJFAF5++WVSU1PZunUrPXr0oFq1agQGBtK3b1+Sk5Nxd3cH4Nq1a4waNYpy5crh5ubGww8/TEJCgjmenPNasWIFwcHBuLu707JlS9LS0gAYM2YM8+bN47///a85A56QkEBqaiomk4nFixfTuHFjnJ2d+fzzzwGIi4sjODgYZ2dngoKCmDlzprm/a9euMWjQIPz8/HB2dsbf35/Y2FiLa1S8eHF8fX2pXLky48aNo0qVKixbtgyA0aNHExgYiKurKxUrVuS1116z+OJjzJgx1KpVi7lz51KxYkWcnJzo0aMH69evZ+rUqeZzSE1NzTXD4fTp0zz77LM88MADuLq6Ehoayn/+858838siIiIiIvLPU6b9Hjp9+jQrV67k7bffxs3NLc86JpOJPn368Oijj5KWloafnx8A33//PRcuXKBTp07muvPmzWPUqFFs27aNRYsW8fzzz7Ns2TKefPJJXn75Zd5//326devGsWPHcHV15bXXXmPv3r388MMPlCxZkkOHDnH58mUAfH19SUtLY8OGDTz66KP5nsOlS5cYP3488+bNw9HRkejoaJ555hk2bdoEwNKlS3nhhReYMmUKjz32GN9++y09e/bkgQceMA/MAd544w1iY2N5//33sbe3p127dnTo0IH9+/fj4eGBi4sLaWlpPPvss0ycOJEnn3ySv//+m40bN2IYBtnZ2SxcuJCuXbtStmzZXHHmDNgBevbsSWpqKgsXLqRs2bIsXbqUli1bsnv3bqpUqWI+r3fffZfPPvsMOzs7nnvuOUaOHMn8+fMZOXIkKSkpnD9/3vwlh7e3NydOnACuD6Lfe+894uLicHJyYs6cObzxxhtMnz6d2rVrs2vXLvr27Yubmxs9evRg2rRpfP311yxevJgHH3yQ3377LdcXHzdzdnY2D8yLFy9OfHw8ZcuWZffu3fTt25fixYszatQoc/1Dhw6xePFilixZgr29PRUqVODgwYOEhIQwduxYAEqVKkVqaqpFP1euXKFOnTqMHj0aDw8PvvvuO7p160bFihV5+OGHC4xRRERERETuPQ3a76FDhw5hGAZVq1a1KC9ZsiRXrlwBYODAgUyYMMGcoc4ZiMXFxfH0009bDEZr1qzJq6++CkBMTAzvvPMOJUuWpG/fvgC8/vrrzJo1i59//pl69epx7NgxateuTVhYGHD93ukcTz/9NCtWrKBRo0b4+vpSr149mjVrRvfu3fHw8DDXy8jIYPr06eYB3Lx58wgODmbbtm2Eh4fz7rvvEhUVRXR0NADDhw9ny5YtvPvuuxaD9i5dutCrVy/zz0eOHAGgdOnS5inthw8fJjMzk6eeeooKFSoAEBoaCsCpU6c4e/YsQUFBBV7zw4cP85///Ifjx4+bB/cjR45k+fLlxMXF8fbbb5vPa/bs2VSqVAmAQYMGmQe37u7uuLi4cPXq1Tynkg8dOpSnnnrK/PNbb73Fe++9Zy4LCAhg7969fPjhh/To0YNjx45RpUoVHnnkEUwmk/nc8pKZmcnnn3/O7t27ef755wHMrzlcfw1HjBjBokWLLAbt165d47PPPqNUqVLmMkdHR1xdXQucDl+uXDlGjhxp/nnw4MEsX76cL774QoN2EREREflHmDQBvEC6Ov8Ak8lyZcJt27aRnJxM9erVuXr1KgB9+vQxZ3VPnTrFd999ZzHIBahRo4b5/+3t7fHx8TEPagHKlCljPh7g+eefZ+HChdSqVYtRo0axefNmi+Pj4uI4fvw4EydOpGzZsowfP57q1aubp4kDFCtWzDzoBwgKCsLLy4uUlBQAUlJSiIiIsIgzIiLCvD/HjW3kp2bNmjRr1ozQ0FCefvpp5syZw9mzZwHMi8zdfC1vtnPnTgzDIDAwEHd3d/O2fv16Dh8+bK7n6upqHrAD+Pn5ma/brdx4Ln/++Se//fYbvXv3tuhv3Lhx5v6ioqJITk6matWqDBkyhJUrV+Zqc/To0eYvCwYOHMiLL75I//79geu3DDzyyCP4+vri7u7Oa6+9xrFjxyyOr1ChgsWAvbCysrIYP348NWrUwMfHB3d3d1auXJmr/YJcvXqV8+fPW2wZxr1dF0FERERE5N9Cg/Z7qHLlyphMJvbt22dRXrFiRSpXroyLi4u5rHv37vz6668kJiby+eef4+/vT8OGDS2Ou3lxMZPJZFGWM6DNWUiuVatWHD16lKFDh3LixAmaNWtmkVWF65nWbt26MWPGDPbu3cuVK1eYPXt2rn5udmPZzfsNw8hVlt/tATeyt7dn1apV/PDDD1SrVo0PPviAqlWrcuTIEUqVKkWJEiVyfRlws+zsbOzt7dmxYwfJycnmLSUlhalTp5rr5XUtC7v6/I3nknOt58yZY9Hfnj172LJlCwAPPfQQR44c4a233uLy5ct06tSJjh07WrT54osvkpyczNGjR7lw4QITJ07Ezs6OLVu28Mwzz9CqVSu+/fZbdu3axSuvvMK1a9fyjel2vPfee7z//vuMGjWKtWvXkpycTIsWLXK1X5DY2Fg8PT0ttu9IvaN4REREROTfR498K5gG7feQj48PzZs3Z/r06ebF1Aqq2759e+Li4oiLi6Nnz55FEkOpUqWIiori888/Z8qUKXz00Uf51i1RogR+fn4WsWZmZrJ9+3bzz/v37+fcuXPmaerBwcH8+OOPFu1s3ryZ4ODgAuPKWewuKyvLotxkMhEREcGbb77Jrl27cHR0ZOnSpdjZ2dG5c2fmz59vvrf8RhcvXiQzM5PatWuTlZXFqVOnqFy5ssV2O6umOzo65ootL2XKlKFcuXL8+uuvufoLCAgw1/Pw8KBz587MmTOHRYsWsWTJEs6cOWPeX7JkSSpXrkzZsmUtvvDYtGkTFSpU4JVXXiEsLIwqVapw9OjRIjuHjRs30q5dO5577jlq1qxJxYoVOXjwYKHazxETE0N6errF9gT+t9WGiIiIiIjkTfe032MzZ84kIiKCsLAwxowZQ40aNbCzsyMpKYl9+/ZRp04dc90+ffrQpk0bsrKy6NGjx133/frrr1OnTh3zNPxvv/3WPJj+8MMPSU5O5sknn6RSpUpcuXKFTz/9lF9++YUPPvjA3IaDgwODBw9m2rRpODg4MGjQIOrVq0d4eDhwPUPcqVMnHnroIZo1a8Y333zDV199xerVqwuMrUKFCphMJr799ltat26Ni4sLv/zyC2vWrOHxxx+ndOnSbN26lT///NMc89tvv01CQgIPP/ww48ePJywsDAcHBzZu3EhsbCxJSUkEBgbStWtXunfvznvvvUft2rX566+/WLt2LaGhobRu3bpQ187f358VK1awf/9+fHx8Cnyu+ZgxYxgyZAgeHh60atWKq1evsn37ds6ePcvw4cN5//338fPzo1atWtjZ2fHFF1/g6+tbqMfTVa5cmWPHjrFw4ULq1q3Ld999x9KlSwt9Dlu3biU1NRV3d3e8vb3zbH/JkiVs3ryZEiVKMHnyZE6ePHnLL11u5OTkhJOTk0WZgx7bISIiIiJSJPSX9T1WqVIldu3axWOPPUZMTAw1a9YkLCyMDz74gJEjR/LWW2+Z6z722GP4+fnRokWLPFdIv12Ojo7ExMRQo0YNHn30Uezt7Vm4cCEA4eHhXLhwgQEDBlC9enUaNWrEli1bWLZsGY0aNTK34erqyujRo+nSpQv169fHxcXF3AZA+/btmTp1KpMmTaJ69ep8+OGHxMXF0bhx4wJjK1euHG+++SYvvfQSZcqUYdCgQXh4eLBhwwZat25NYGAgr776Ku+99x6tWrUCrs8E2LJlC8899xzjxo2jdu3aNGzYkP/85z9MmjTJPLCOi4uje/fujBgxgqpVq9K2bVu2bt1K+fLlC33t+vbtS9WqVQkLC6NUqVLm1fLz0qdPHz7++GPi4+MJDQ2lUaNGxMfHmzPt7u7uTJgwgbCwMOrWrUtqairff/89dna3/vi1a9eOYcOGMWjQIGrVqsXmzZt57bXXCnUOI0eOxN7enmrVqlGqVKk871N/7bXXeOihh2jRogWNGzfG19eX9u3bF6p9EREREZGiYDLZWWW7X5iMwt7IK/fcpUuXKFu2LHPnzrVYndxa4uPjGTp0qPmZ3iKFFWfXzNohSD6idjSwdggAxNfZfOtK/yJ6XXJLaBtl7RAAGHVmibVDAGD+u51uXekf0PmFRdYOwezkicKvv3IvnfjNNuKwlc9M/8O28R55tdXz1g7BrNu7k60dAgA9s9dYO4R8ZWQvt0q/DnYtrdLv7dL0eBuQnZ3NyZMnee+99/D09KRt27bWDklEREREROQfcT8tCmcNGrTbgGPHjhEQEMADDzxAfHw8xYrpZREREREREREN2m2Cv79/oR839k+KiooiKirK2mGIiIiIiIj8a2nQLiIiIiIiIlZzPy0KZw26OiIiIiIiIiI2Spl2ERERERERsRotRFcwZdpFREREREREbJQy7SIiIiIiImI1JuWSC6SrIyIiIiIiImKjNGgXERERERERsVGaHi8iIiIiIiJWYzJpIbqCKNMuIiIiIiIiYqOUaReRIhdW393aIQCwPfGCtUMAICqlqbVDMDvkW9raIQAQVv9na4cAgLO7Ye0QALj4SaK1QwAgbvooa4dgNu+HD6wdAgBjvDtbOwQAmjaYa+0QAEi2dgA3yM62jc+vrXxubOUzM7xuD2uHAMCLC6ZbOwSzk9YO4H5grY/zfZLgV6ZdRERERERExEZp0C4iIiIiIiJiozQ9XkRERERERKzHyLZOv5oeLyIiIiIiIiJ3Q5l2ERERERERsR5rZdrvE8q0i4iIiIiIiNgoZdpFRERERETEepRpL5Ay7SIiIiIiIiI2SoN2ERERERERERulQft9zmQysWzZMmuHcVfi4+Px8vKydhh37ebzGDNmDLVq1bJaPCIiIiIi9wUj2zrbfUKD9nsgKioKk8nEgAEDcu2Ljo7GZDIRFRX1zwd2k/slzv/H3p3HVVH2/x9/HVxAVg1FKFFUQFQQFzDNDdxQlBT3JZXMykwp1zTFXPNOc0n9Wu6QqWiJS2buqShqSmIWaGoRWfStyDJ3BX5/+GV+HUFA0w7evp+PxzxuZ+Y6M5+Zc+z2M5/ruiYvHh4ezJkz518/76pVqyhWrFie96wgly5d4rXXXqNKlSrY2NhQrlw5goKC2Lx58wOIVERERERE/hsoaX9A3N3diY2N5cqVK8a2q1evsnr1aipWrGjByMw9LHE+KNevX7+r9suWLWPUqFHExsZy+fLlu/rswIED2bBhA/Pnz+fkyZNs3bqVzp07k5GRcVfHERERERH5r5KVZZnlIaGk/QGpW7cuFStWJC4uztgWFxeHu7s7derUMbZt3bqVxo0bU7p0aZydnWnfvj1nz5419l+/fp3Bgwfj5uaGjY0NHh4eTJs27Y7nnTRpEuXLlycpKQmABQsW4OXlhY2NDeXLl6dLly73FGdhYk1NTcVkMhEXF0dwcDC2trb4+/tz8OBBs+NER0dTsWJFbG1tCQ8Pz5W0nj17lg4dOlC+fHns7e0JDAxk586dxv6goCC+//57hg4dislkwmQyGfvWrVtHzZo1sba2xsPDg5kzZ5od28PDgylTphAREYGTkxPPP/88zZs3Z/DgwWbtMjIysLa2Zvfu3WbXl5CQwOjRo/Hx8eGjjz664/eQl48//pjXX3+d0NBQPDw8qFevHkOGDKFfv35m8U2ePJlevXphb2/P448/zrx588yOM2vWLPz8/LCzs8Pd3Z1BgwZx8eJFszYHDhygWbNm2NraUqZMGUJCQjh//jwA2dnZTJ8+nSpVqlCqVCn8/f3NruX8+fP07t2bcuXKUapUKby8vFi+fPldXauIiIiIiNwfStofoGeffdYs2Vm2bBn9+/c3a3Pp0iWGDRvGkSNH2LVrF1ZWVoSHh5P1f09+5s6dy6ZNm1i7di2nTp3igw8+wMPDI9e5srOzeeWVV1i6dCn79++ndu3aHD16lMjISCZNmsSpU6fYunUrTZs2vac4CxNrjrFjxzJixAiSkpLw9vamZ8+e3Lx5E4DDhw/Tv39/Bg0aRFJSEsHBwUyZMsXs8xcvXiQ0NJSdO3dy7NgxQkJCCAsLIy0tDbj1UKFChQpMmjSJ9PR00tPTAUhMTKRbt2706NGDEydOMGHCBKKiooiOjjY7/owZM/D19SUxMZGoqCgGDBjAqlWruHbtmtFm5cqVPP744wQHB5vdl3bt2uHk5MQzzzzD0qVLc92j/Li6urJlyxb++uuvfNvNmDGDWrVq8cUXXzBmzBiGDh3Kjh07jP1WVlbMnTuXr776ipiYGHbv3s2oUaOM/UlJSbRo0YKaNWty8OBB9u/fT1hYGJmZmQCMGzeO5cuX8+677/L1118zdOhQnnnmGfbu3QtAVFQUycnJfPrpp6SkpPDuu+9StmzZu7pWERERERG5P/Se9geoT58+jBkzxqhAHzhwgNjYWPbs2WO06dy5s9lnli5diouLC8nJyfj6+pKWloaXlxeNGzfGZDJRqVKlXOe5efMmffv25ejRoxw4cIAKFSoAkJaWhp2dHe3bt8fBwYFKlSrlqp4XNs7CxJpjxIgRtGvXDoCJEydSs2ZNzpw5g4+PD++88w4hISGMHj0aAG9vbxISEti6davxeX9/f/z9/Y31KVOmsH79ejZt2sTgwYN57LHHKFasGA4ODri6uhrtZs2aRYsWLYiKijKOnZyczIwZM8zG5jdv3pwRI0YY6+7u7gwZMoSNGzfSrVs3AJYvX26M+QfIysoiOjraqHr36NGDYcOGcebMGTw9PXPd07wsWrSI3r174+zsjL+/P40bN6ZLly40atTIrF2jRo3M7s+BAweYPXs2rVq1AuDVV1812lauXJnJkyfz0ksvsWDBAgCmT59OQECAsQ5Qs2ZN4NaDl1mzZrF7924aNmwIQJUqVdi/fz8LFy6kWbNmpKWlUadOHQICAgDyfEgkIiIiInLfPESTwlmCKu0PUNmyZWnXrh0xMTEsX76cdu3a5apYnj17ll69elGlShUcHR2pXLkygFFVjoiIICkpiWrVqhEZGcn27dtznWfo0KEcPHiQ+Ph4I2EHaNWqFZUqVaJKlSr06dOHlStX5jkOuzBxFibWHLVq1TL+7ObmBsAvv/wCQEpKipEs5rh9/dKlS4waNYoaNWpQunRp7O3tOXnyZK7z3C4lJSXPBPj06dNGlRkwktEc1tbWPPPMMyxbtgy4Vak+fvy4WaK/fft2Ll26RNu2bYFb96x169bGZwqjadOmfPvtt+zatYvOnTvz9ddf06RJEyZPnmzWLq/7k5KSYqx/9tlntGrViieeeAIHBwf69u1LRkYGly5dMuJv0aJFnjEkJydz9epVWrVqhb29vbG8//77xlCHl156idjYWGrXrs2oUaNISEjI97quXbvGhQsXzJbrWZn5fkZERERERApHSfsD1r9/f6Kjo4mJicmzy3lYWBgZGRksXryYw4cPc/jwYeD/T5BWt25dvvvuOyZPnsyVK1fo1q1brnHprVq14scff2Tbtm1m2x0cHPjiiy9YvXo1bm5ujB8/Hn9/f/7444+7jrMwseYoUaKE8ee/V6rhVjf+gowcOZJ169YxdepU4uPjSUpKws/Pr8BJ47Kzs83Gt9/pfHZ2drm2DRgwgB07dnDu3DmWLVtGixYtzHo1LFu2jN9//x1bW1uKFy9O8eLF2bJlCzExMWYPBApSokQJmjRpwujRo9m+fTuTJk1i8uTJBV5bznV9//33hIaG4uvry7p160hMTOR//ud/ALhx4wYApUqVuuNxcr6HTz75hKSkJGNJTk42xrW3bduW77//nldffZWffvqJFi1amPVMuN20adNwcnIyW5acO13oeyIiIiIijzi98i1fStofsDZt2nD9+nWuX79OSEiI2b6MjAxSUlIYN24cLVq0oHr16sZkYX/n6OhI9+7dWbx4MWvWrGHdunX8/vvvxv6nn36aVatWMWDAAGJjY80+W7x4cVq2bMn06dP58ssvSU1NNZtcrTBx3k2sBalRowaHDh0y23b7enx8PBEREYSHh+Pn54erqyupqalmbUqWLJkrWa5Rowb79+8325aQkIC3tzfFihXLNy4/Pz8CAgJYvHgxq1atMntwkZGRwcaNG4mNjTVLdJOSkrh48SKffvppYS8/lxo1anDz5k2uXr1qbMvr/vj4+ABw9OhRbt68ycyZM2nQoAHe3t789NNPZu1r1arFrl277ng+a2tr0tLS8PT0NFvc3d2NduXKlSMiIoIPPviAOXPmsGjRojtew5gxY/jzzz/NlgEVvO76XoiIiIiISG4a0/6AFStWzOjafHviWKZMGZydnVm0aBFubm6kpaUZY5lzzJ49Gzc3N2rXro2VlRUffvghrq6ulC5d2qxdeHg4K1asoE+fPhQvXpwuXbqwefNmvv32W5o2bUqZMmXYsmULWVlZVKtW7a7iLGyshREZGclTTz3F9OnT6dixI9u3bzcbzw7g6elJXFwcYWFhmEwmoqKick125+Hhwb59++jRowfW1taULVuW4cOHExgYyOTJk+nevTsHDx5k/vz5ZmO78zNgwAAGDx5szGqfY8WKFTg7O9O1a1esrMyfc7Vv356lS5fSvn37Ao8fFBREz549CQgIwNnZmeTkZF5//XWCg4NxdHQ02h04cMC4Pzt27ODDDz/kk08+AaBq1arcvHmTefPmERYWxoEDB3jvvffMzjNmzBj8/PwYNGgQAwcOpGTJknz22Wd07dqVsmXLMmLECIYOHUpWVhaNGzfmwoULJCQkYG9vT79+/Rg/fjz16tWjZs2aXLt2jc2bN1O9evU7Xpe1tTXW1tZm20pa5f+QRERERETE8BBVvS1BlfZ/gaOjo1lSlsPKyorY2FgSExPx9fVl6NChzJgxw6yNvb09b731FgEBAQQGBpKamsqWLVtyJY8AXbp0ISYmhj59+hAXF0fp0qWJi4ujefPmVK9enffee4/Vq1cbk5IVNs7CxloYDRo0YMmSJcybN4/atWuzfft2xo0bZ9Zm9uzZlClThqeeeoqwsDBCQkKoW7euWZtJkyaRmppK1apVKVeuHHBrKMHatWuJjY3F19eX8ePHM2nSJLOx6fnp2bMnxYsXp1evXtjY2Bjbly1bRnh4eJ73vHPnzmzevJn//d//LfD4ISEhxMTE0Lp1a6pXr86QIUMICQlh7dq1Zu2GDx9OYmIiderUYfLkycycOdPo/VC7dm1mzZrFW2+9ha+vLytXrsz1CkBvb2+2b9/O8ePHqV+/Pg0bNmTjxo0UL37rGd3kyZMZP34806ZNo3r16oSEhPDxxx8bcxSULFmSMWPGUKtWLZo2bUqxYsVy9eAQEREREZF/hym7MIOMRR4BP/zwAx4eHhw5ciTXQ4J/i4eHB6+++qrZDPEPoxONOlg6BACOHrxYcKN/QURKc0uHYDjj6mLpEAC4GrrZ0iEAYGNfNP4v0M0r9yShlhBaY6SlQzDEfDrP0iEAMKFYd0uHAEDzzTGWDqHIycoqGn9/l88fVXCjf0FR+TszrFw/S4cAwAvbCz9Z8IP280/5z130b3k2K+/hk0XC5fWWOa9teMFtigB1j5dH3o0bN0hPT2f06NE0aNDAYgm7iIiIiMgjKUvd4/Oj7vHyyDtw4ACVKlUiMTEx1/hwERERERERS1KlXR55QUFBhXoV3b/h9lnyRURERET+62kiunyp0i4iIiIiIiJSRClpFxERERERESmi1D1eRERERERELEfd4/OlSruIiIiIiIhIEaVKu4iIiIiIiFiOKu35UqVdREREREREpIhSpV1EREREREQsJjs70yLnNVnkrHdPlXYRERERERGRIkpJu4iIiIiIiEgRZcrOzs62dBAi8t9luVULS4cgd9Bvf11LhwBATOMvLB1CkaLvJbc9T0dYOgQAmm+OsXQIAOxu38/SIQBF534AZGXpn7B/V1T+zgRtirZ0CEDRuR9QdO7Js1m7LB3CHWX//r5Fzmt6rK9Fznu3VGkXERERERERKaI0EZ2IiIiIiIhYjl75li9V2kVERERERESKKCXtIiIiIiIiIkWUuseLiIiIiIiI5ah7fL5UaRcREREREREpolRpFxEREREREctRpT1fqrSLiIiIiIiIFFGqtIuIiIiIiIjlqNKeL1XaRURERERERIooJe23MZlMbNiwwdJh/CPR0dGULl3a0mH8Y7dfx4QJE6hdu7bF4vlvcC+/DQ8PD+bMmfNA4hERERERkfw9FEl7REQEJpOJgQMH5to3aNAgTCYTERER/35gt3lY4syLpRKzVatWUaxYsTzvWUEuXbrEa6+9RpUqVbCxsaFcuXIEBQWxefPmBxDpg2MymYzFwcGBgIAA4uLi/vFx8/pOu3fvzjfffPOPjy0iIiIict9kZVlmeUg8FEk7gLu7O7GxsVy5csXYdvXqVVavXk3FihUtGJm5hyXOB+X69et31X7ZsmWMGjWK2NhYLl++fFefHThwIBs2bGD+/PmcPHmSrVu30rlzZzIyMu7qOEXB8uXLSU9P58iRI/j7+9O1a1cOHjx4T8fK7zsoVaoULi4u9xqmiIiIiIj8yx6apL1u3bpUrFjRrAIZFxeHu7s7derUMbZt3bqVxo0bU7p0aZydnWnfvj1nz5419l+/fp3Bgwfj5uaGjY0NHh4eTJs27Y7nnTRpEuXLlycpKQmABQsW4OXlhY2NDeXLl6dLly73FGdhYk1NTcVkMhEXF0dwcDC2trb4+/vnSuaio6OpWLEitra2hIeH50paz549S4cOHShfvjz29vYEBgayc+dOY39QUBDff/89Q4cONSq+OdatW0fNmjWxtrbGw8ODmTNnmh3bw8ODKVOmEBERgZOTE88//zzNmzdn8ODBZu0yMjKwtrZm9+7dZteXkJDA6NGj8fHx4aOPPrrj95CXjz/+mNdff53Q0FA8PDyoV68eQ4YMoV+/fmbxTZ48mV69emFvb8/jjz/OvHnzzI4za9Ys/Pz8sLOzw93dnUGDBnHx4kWzNgcOHKBZs2bY2tpSpkwZQkJCOH/+PADZ2dlMnz6dKlWqUKpUKfz9/c2u5fz58/Tu3Zty5cpRqlQpvLy8WL58udnxS5cujaurKz4+Prz33nvY2NiwadMmMjMzee6556hcuTKlSpWiWrVqvPPOO2afjYiIoGPHjkybNo3HH38cb2/vO36nt3ePL+i3ISIiIiLywGVnWWZ5SDw0STvAs88+a5bsLFu2jP79+5u1uXTpEsOGDePIkSPs2rULKysrwsPDyfq/7g9z585l06ZNrF27llOnTvHBBx/g4eGR61zZ2dm88sorLF26lP3791O7dm2OHj1KZGQkkyZN4tSpU2zdupWmTZveU5yFiTXH2LFjGTFiBElJSXh7e9OzZ09u3rwJwOHDh+nfvz+DBg0iKSmJ4OBgpkyZYvb5ixcvEhoays6dOzl27BghISGEhYWRlpYG3HqoUKFCBSZNmkR6ejrp6ekAJCYm0q1bN3r06MGJEyeYMGECUVFRREdHmx1/xowZ+Pr6kpiYSFRUFAMGDGDVqlVcu3bNaLNy5Uoef/xxgoODze5Lu3btcHJy4plnnmHp0qW57lF+XF1d2bJlC3/99Ve+7WbMmEGtWrX44osvGDNmDEOHDmXHjh3GfisrK+bOnctXX31FTEwMu3fvZtSoUcb+pKQkWrRoQc2aNTl48CD79+8nLCyMzMxMAMaNG8fy5ct59913+frrrxk6dCjPPPMMe/fuBSAqKork5GQ+/fRTUlJSePfddylbtuwd4y1RogTFixfnxo0bZGVlUaFCBdauXUtycjLjx4/n9ddfZ+3atWaf2bVrFykpKezYsYPNmzff8Tu9XUG/DRERERERsayH6pVvffr0YcyYMUYF+sCBA8TGxrJnzx6jTefOnc0+s3TpUlxcXEhOTsbX15e0tDS8vLxo3LgxJpOJSpUq5TrPzZs36du3L0ePHuXAgQNUqFABgLS0NOzs7Gjfvj0ODg5UqlQpV/W8sHEWJtYcI0aMoF27dgBMnDiRmjVrcubMGXx8fHjnnXcICQlh9OjRAHh7e5OQkMDWrVuNz/v7++Pv72+sT5kyhfXr17Np0yYGDx7MY489RrFixXBwcMDV1dVoN2vWLFq0aEFUVJRx7OTkZGbMmGE2Nr958+aMGDHCWHd3d2fIkCFs3LiRbt26Abe6f+eM+QfIysoiOjraqHr36NGDYcOGcebMGTw9PXPd07wsWrSI3r174+zsjL+/P40bN6ZLly40atTIrF2jRo3M7s+BAweYPXs2rVq1AuDVV1812lauXJnJkyfz0ksvsWDBAgCmT59OQECAsQ5Qs2ZN4NaDl1mzZrF7924aNmwIQJUqVdi/fz8LFy6kWbNmpKWlUadOHQICAgDyfEiU49q1a8yYMYMLFy7QokULSpQowcSJE83iS0hIYO3atca9BbCzs2PJkiWULFnS2JbXd3q7gn4bhXHt2jWzBzQAN7KzKGF6qJ4JioiIiIgUSQ/Vv6rLli1Lu3btiImJYfny5bRr1y5XxfLs2bP06tWLKlWq4OjoSOXKlQGMymFERARJSUlUq1aNyMhItm/fnus8Q4cO5eDBg8THxxsJO0CrVq2oVKkSVapUoU+fPqxcuTLPcdiFibMwseaoVauW8Wc3NzcAfvnlFwBSUlKMZDHH7euXLl1i1KhR1KhRg9KlS2Nvb8/JkycLrKampKTkmQCfPn3aqDIDRjKaw9rammeeeYZly5YBtyrVx48fN0v0t2/fzqVLl2jbti1w6561bt3a+ExhNG3alG+//ZZdu3bRuXNnvv76a5o0acLkyZPN2uV1f1JSUoz1zz77jFatWvHEE0/g4OBA3759ycjI4NKlS0b8LVq0yDOG5ORkrl69SqtWrbC3tzeW999/3xjq8NJLLxEbG0vt2rUZNWoUCQkJuY7Ts2dP7O3tsbW1ZdasWbz99tvGvXnvvfcICAigXLly2Nvbs3jx4lzfnZ+fn1nCXlj3+tv4u2nTpuHk5GS2fELqXcciIiIiIo8odY/P10OVtAP079+f6OhoYmJi8uxyHhYWRkZGBosXL+bw4cMcPnwY+P+Tc9WtW5fvvvuOyZMnc+XKFbp165ZrXHqrVq348ccf2bZtm9l2BwcHvvjiC1avXo2bmxvjx4/H39+fP/74467jLEysOUqUKGH8+e+VarjVjb8gI0eOZN26dUydOpX4+HiSkpLw8/MrcNK47Oxss/HtdzqfnZ1drm0DBgxgx44dnDt3jmXLltGiRQuzXg3Lli3j999/x9bWluLFi1O8eHG2bNlCTEyM2QOBgpQoUYImTZowevRotm/fzqRJk5g8eXKB15ZzXd9//z2hoaH4+vqybt06EhMT+Z//+R8Abty4AdyavO1Ocr6HTz75hKSkJGNJTk42xrW3bduW77//nldffZWffvqJFi1amPVMAJg9ezZJSUmkp6fz+++/M3z4cADWrl3L0KFD6d+/P9u3bycpKYlnn3021/Xl9R0Uxr3+Nv5uzJgx/Pnnn2ZLOzzuKR4RERERETH3UHWPB2jTpo2RUISEhJjty8jIICUlhYULF9KkSRMA9u/fn+sYjo6OdO/ene7du9OlSxfatGnD77//zmOPPQbA008/TVhYGL169aJYsWL06NHD+Gzx4sVp2bIlLVu25I033qB06dLs3r2bTp06FTrOu4m1IDVq1ODQoUNm225fj4+PJyIigvDwcODWOObU1FSzNiVLlsyVLNeoUSNXTAkJCXh7e1OsWLF84/Lz8yMgIIDFixezatUqs8nfMjIy2LhxI7GxsUY3c7iVADdp0oRPP/2U9u3b53/hd1CjRg1u3rzJ1atXjcpzXvfHx8cHgKNHj3Lz5k1mzpyJldWtZ1i3jxevVasWu3btMuum/vfzWVtbk5aWRrNmze4YV7ly5YiIiCAiIoImTZowcuRI3n77bWO/q6trnsMC4uPjeeqppxg0aJCx7e+TFeYnr+80r+MX9NsoiLW1NdbW1mbb1DVeRERERArtIap6W8JDl7QXK1bM6Np8e+JYpkwZnJ2dWbRoEW5ubqSlpRljmXPMnj0bNzc3ateujZWVFR9++CGurq5mM2oDhIeHs2LFCvr06UPx4sXp0qULmzdv5ttvv6Vp06aUKVOGLVu2kJWVRbVq1e4qzsLGWhiRkZE89dRTTJ8+nY4dO7J9+3az8ewAnp6exMXFERYWhslkIioqKtdkdx4eHuzbt48ePXpgbW1N2bJlGT58OIGBgUyePJnu3btz8OBB5s+fbza2Oz8DBgxg8ODBxqz2OVasWIGzszNdu3Y1EuUc7du3Z+nSpYVK2oOCgujZsycBAQE4OzuTnJzM66+/TnBwMI6Ojka7AwcOGPdnx44dfPjhh3zyyScAVK1alZs3bzJv3jzCwsI4cOAA7733ntl5xowZg5+fH4MGDWLgwIGULFmSzz77jK5du1K2bFlGjBjB0KFDycrKonHjxly4cIGEhATs7e3p168f48ePp169etSsWZNr166xefNmqlevXqh76Onpyfvvv8+2bduoXLkyK1as4MiRI8ZQivzk9Z3mdfyCfhsiIiIiImI5D2U5zNHR0Swpy2FlZUVsbCyJiYn4+voydOhQZsyYYdbG3t6et956i4CAAAIDA0lNTWXLli25kkeALl26EBMTQ58+fYiLi6N06dLExcXRvHlzqlevznvvvcfq1avNqsWFibOwsRZGgwYNWLJkCfPmzaN27dps376dcePGmbWZPXs2ZcqU4amnniIsLIyQkBDq1q1r1mbSpEmkpqZStWpVypUrB9waSrB27VpiY2Px9fVl/PjxTJo0yWxsen569uxJ8eLF6dWrFzY2Nsb2ZcuWER4enuc979y5M5s3b+Z///d/Czx+SEgIMTExtG7dmurVqzNkyBBCQkJyVcqHDx9OYmIiderUYfLkycycOdPo/VC7dm1mzZrFW2+9ha+vLytXrsz1CkBvb2+2b9/O8ePHqV+/Pg0bNmTjxo0UL37rmdfkyZMZP34806ZNo3r16oSEhPDxxx8biXXJkiUZM2YMtWrVomnTphQrVozY2NhC3cOBAwfSqVMnunfvzpNPPklGRoZZ1T0/eX2ntyvMb0NERERE5IHKyrLM8pAwZRdmULTIPfjhhx/w8PDgyJEjFksEPTw8ePXVV81miJcHb7lV3hP3ieX12180HsrENP7C0iEUKfpectvzdISlQwCg+eYYS4cAwO72/SwdAlB07gdAVpb+Cft3ReXvTNCmaEuHABSd+wFF5548m7XL0iHcUfYPcyxyXpP7qxY57916KCvtUrTduHGDtLQ0XnvtNRo0aKDKrYiIiIiI/FdYsGABlStXxsbGhnr16hEfH1+ozx04cIDixYtTu3btuz6nkna57w4cOEClSpVITEzMNT5cRERERETEzEPyyrc1a9bw6quvMnbsWI4dO0aTJk1o27Ztga9L/vPPP+nbt+8dXyNdkIduIjop+oKCggr1Krp/w93OhC4iIiIiIpKXWbNm8dxzzzFgwAAA5syZw7Zt23j33XdzzYv1dy+++KLxZrINGzbc9XlVaRcRERERERHLeQgq7devXycxMZHWrVubbW/dujUJCQl3/Nzy5cs5e/Ysb7zxxj3dGlClXURERERERB5B165d49q1a2bbrK2tsba2ztX2t99+IzMzk/Lly5ttL1++PD///HOexz99+jSjR48mPj7eePPUvVClXURERERERB4506ZNw8nJyWzJr5s7gMlkMlvPzs7OtQ0gMzOTXr16MXHiRLy9vf9RnKq0i4iIiIiIiOVY6J3pY8aMYdiwYWbb8qqyA5QtW5ZixYrlqqr/8ssvuarvAH/99RdHjx7l2LFjDB48GICsrCyys7MpXrw427dvp3nz5oWKU0m7iIiIiIiIPHLu1BU+LyVLlqRevXrs2LGD8PBwY/uOHTvo0KFDrvaOjo6cOHHCbNuCBQvYvXs3H330EZUrVy50nEraRURERERExHKyisabpwoybNgw+vTpQ0BAAA0bNmTRokWkpaUxcOBA4Fbl/scff+T999/HysoKX19fs8+7uLhgY2OTa3tBlLSLiIiIiIiIFKB79+5kZGQwadIk0tPT8fX1ZcuWLVSqVAmA9PT0At/Zfi+UtIuIiIiIiIgUwqBBgxg0aFCe+6Kjo/P97IQJE5gwYcJdn1NJu4iIiIiIiFiOhSaie1goaRcRecDs7ItZOgRDTOMvLB2C5KGofC8lrYvOm2DfrbrC0iEA8KGlA/g/zTfHWDoEAHa372fpEAytt71v6RCKlCLzd8Yq96uvLGFZ712WDsHw/iZLRyAPOyXtIiIiIiIiYjmqtOer6DxSFxEREREREREzqrSLiIiIiIiI5Twkr3yzFFXaRURERERERIooJe0iIiIiIiIiRZS6x4uIiIiIiIjlaCK6fKnSLiIiIiIiIlJEqdIuIiIiIiIilqNKe75UaRcREREREREpopS030cmk4kNGzZYOox/JDo6mtKlS1s6jH8sNTUVk8lEUlLSIx2DiIiIiIg83P7rk/aIiAhMJhMDBw7MtW/QoEGYTCYiIiL+/cBu87DEmRcPDw/mzJnzr57zzJkzPPvss1SoUAFra2sqV65Mz549OXr06L8ax91at24dTz75JE5OTjg4OFCzZk2GDx9u6bBERERERCwnK9syy0Pivz5pB3B3dyc2NpYrV64Y265evcrq1aupWLGiBSMz97DE+aBcv369UO2OHj1KvXr1+Oabb1i4cCHJycmsX78eHx+fIp0A79y5kx49etClSxc+//xzEhMTmTp1aqGvW0REREREHj2PRNJet25dKlasSFxcnLEtLi4Od3d36tSpY2zbunUrjRs3pnTp0jg7O9O+fXvOnj1r7L9+/TqDBw/Gzc0NGxsbPDw8mDZt2h3PO2nSJMqXL290j16wYAFeXl7Y2NhQvnx5unTpck9xFibWnK7ZcXFxBAcHY2tri7+/PwcPHjQ7TnR0NBUrVsTW1pbw8HAyMjLM9p89e5YOHTpQvnx57O3tCQwMZOfOncb+oKAgvv/+e4YOHYrJZMJkMhn71q1bR82aNbG2tsbDw4OZM2eaHdvDw4MpU6YQERGBk5MTzz//PM2bN2fw4MFm7TIyMrC2tmb37t1kZ2cTERGBl5cX8fHxtGvXjqpVq1K7dm3eeOMNNm7ceMfvY+/evdSvXx9ra2vc3NwYPXo0N2/eNPZ/9NFH+Pn5UapUKZydnWnZsiWXLl0y9i9fvpzq1atjY2ODj48PCxYsMDv+559/Tp06dbCxsSEgIIBjx46Z7d+8eTONGzdm5MiRVKtWDW9vbzp27Mi8efOMNhMmTKB27dosXLgQd3d3bG1t6dq1K3/88YfR5siRI7Rq1YqyZcvi5OREs2bN+OKLL8zO9ccff/DCCy9Qvnx5bGxs8PX1ZfPmzcb+hIQEmjZtSqlSpXB3dycyMtLsWgv6rYqIiIiI3DdZWZZZHhKPRNIO8Oyzz7J8+XJjfdmyZfTv39+szaVLlxg2bBhHjhxh165dWFlZER4eTtb/faFz585l06ZNrF27llOnTvHBBx/g4eGR61zZ2dm88sorLF26lP3791O7dm2OHj1KZGQkkyZN4tSpU2zdupWmTZveU5yFiTXH2LFjGTFiBElJSXh7e9OzZ08jUT18+DD9+/dn0KBBJCUlERwczJQpU8w+f/HiRUJDQ9m5cyfHjh0jJCSEsLAw0tLSgFsPFSpUqMCkSZNIT08nPT0dgMTERLp160aPHj04ceIEEyZMICoqiujoaLPjz5gxA19fXxITE4mKimLAgAGsWrWKa9euGW1WrlzJ448/TnBwMElJSXz99dcMHz4cK6vcP987jcf/8ccfCQ0NJTAwkOPHj/Puu++ydOlS43rT09Pp2bMn/fv3JyUlhT179tCpUyeys291m1m8eDFjx45l6tSppKSk8OabbxIVFUVMTIzxfbRv355q1aqRmJjIhAkTGDFihFkMrq6ufP3113z11Vd5xpjjzJkzrF27lo8//pitW7eSlJTEyy+/bOz/66+/6NevH/Hx8Rw6dAgvLy9CQ0P566+/AMjKyqJt27YkJCTwwQcfkJyczH/+8x+KFSsGwIkTJwgJCaFTp058+eWXrFmzhv379xsPSwr7WxURERERkQfvkXnlW58+fRgzZoxRgT5w4ACxsbHs2bPHaNO5c2ezzyxduhQXFxeSk5Px9fUlLS0NLy8vGjdujMlkolKlSrnOc/PmTfr27cvRo0c5cOAAFSpUACAtLQ07Ozvat2+Pg4MDlSpVylU9L2ychYk1x4gRI2jXrh0AEydOpGbNmpw5cwYfHx/eeecdQkJCGD16NADe3t4kJCSwdetW4/P+/v74+/sb61OmTGH9+vVs2rSJwYMH89hjj1GsWDEcHBxwdXU12s2aNYsWLVoQFRVlHDs5OZkZM2aYjc1v3ry5WXLr7u7OkCFD2LhxI926dQNuVbhzxvyfPn0aAB8fn1z3Lj8LFizA3d2d+fPnYzKZ8PHx4aeffuK1115j/PjxpKenc/PmTTp16mR8r35+fsbnJ0+ezMyZM+nUqRMAlStXJjk5mYULF9KvXz9WrlxJZmYmy5Ytw9bWlpo1a3Lu3Dleeukl4xhDhgwhPj4ePz8/KlWqRIMGDWjdujW9e/fG2traaHf16lViYmKM3868efNo164dM2fOxNXVlebNm5td28KFCylTpgx79+6lffv27Ny5k88//5yUlBS8vb0BqFKlitF+xowZ9OrVi1dffRUALy8v5s6dS7NmzXj33XcL/VsVEREREbkvHqLx5ZbwyFTay5YtS7t27YiJiWH58uW0a9eOsmXLmrU5e/YsvXr1okqVKjg6OlK5cmUAo6ocERFBUlIS1apVIzIyku3bt+c6z9ChQzl48CDx8fFG0gXQqlUrKlWqRJUqVejTpw8rV67k8uXL9xRnYWLNUatWLePPbm5uAPzyyy8ApKSk0LBhQ7P2t69funSJUaNGUaNGDUqXLo29vT0nT57MdZ7bpaSk0KhRI7NtjRo14vTp02RmZhrbAgICzNpYW1vzzDPPsGzZMgCSkpI4fvy4kejnVL7/3g2/MHKu9e+fa9SoERcvXuTcuXP4+/vTokUL/Pz86Nq1K4sXL+b8+fMA/Prrr/zwww8899xz2NvbG8uUKVOMIQkpKSn4+/tja2trHP/2e2lnZ8cnn3zCmTNnGDduHPb29gwfPpz69eub/RYqVqxo9ttp2LAhWVlZnDp1Crj1/Q0cOBBvb2+cnJxwcnLi4sWLxneSlJREhQoVjIT9domJiURHR5tdS0hICFlZWXz33XeF/q3muHbtGhcuXDBbbmQ/PN2NRERERESKskcmaQfo378/0dHRxMTE5NnlPCwsjIyMDBYvXszhw4c5fPgw8P8nSKtbty7fffcdkydP5sqVK3Tr1i3XWN9WrVrx448/sm3bNrPtDg4OfPHFF6xevRo3NzfGjx+Pv7+/2VjlwsZZmFhzlChRwvhzTsKa04U+JwHOz8iRI1m3bh1Tp04lPj6epKQk/Pz8Cpw8LTs7O1dindf57Ozscm0bMGAAO3bs4Ny5cyxbtowWLVoY1e+cRDQlJaXA2Asbj8lkolixYuzYsYNPP/2UGjVqMG/ePKpVq8Z3331n3K/FixeTlJRkLF999RWHDh2647XdSdWqVRkwYABLlizhiy++IDk5mTVr1tyxfU7cOf8bERFBYmIic+bMISEhgaSkJJydnY3vpFSpUvmePysrixdffNHsWo4fP87p06epWrXqXf1WAaZNm2Y8PMhZPiG10PdDRERERETu7JFK2tu0acP169e5fv06ISEhZvsyMjJISUlh3LhxtGjRgurVqxuV1r9zdHSke/fuLF68mDVr1rBu3Tp+//13Y//TTz/NqlWrGDBgALGxsWafLV68OC1btmT69Ol8+eWXpKamsnv37ruK825iLUiNGjWMpDPH7evx8fFEREQQHh6On58frq6upKammrUpWbKkWfU859j79+8325aQkIC3t7cxtvpO/Pz8CAgIYPHixaxatcrswUXt2rWpUaMGM2fOzDV+H7hjYlmjRg0SEhLMkuuEhAQcHBx44okngFtJcaNGjZg4cSLHjh2jZMmSrF+/nvLly/PEE0/w7bff4unpabbk9HCoUaMGx48fN5v5//Z7mRcPDw9sbW3NJoFLS0vjp59+MtYPHjyIlZWV8cAiPj6eyMhIQkNDjYn+fvvtN6N9rVq1OHfuHN98802e56xbty5ff/11rmvx9PSkZMmSQOF/qwBjxozhzz//NFva4VHgtYuIiIiIAJqIrgCPzJh2gGLFihkV2tsTxzJlyuDs7MyiRYtwc3MjLS3NGOudY/bs2bi5uVG7dm2srKz48MMPcXV1zTX5WXh4OCtWrKBPnz4UL16cLl26sHnzZr799luaNm1KmTJl2LJlC1lZWVSrVu2u4ixsrIURGRnJU089xfTp0+nYsSPbt283G88O4OnpSVxcHGFhYZhMJqKionIlyx4eHuzbt48ePXpgbW1N2bJlGT58OIGBgUyePJnu3btz8OBB5s+fn2vG9TsZMGAAgwcPNma1z2EymVi+fDktW7akadOmvP766/j4+HDx4kU+/vhjtm/fzt69e3Mdb9CgQcyZM4chQ4YwePBgTp06xRtvvMGwYcOwsrLi8OHD7Nq1i9atW+Pi4sLhw4f59ddfqV69OnBrVvfIyEgcHR1p27Yt165d4+jRo5w/f55hw4bRq1cvxo4dy3PPPce4ceNITU3l7bffNothwoQJXL58mdDQUCpVqsQff/zB3LlzuXHjBq1atTLa2djY0K9fP95++20uXLhAZGQk3bp1M+YM8PT0ZMWKFQQEBHDhwgVGjhxpVl1v1qwZTZs2pXPnzsyaNQtPT09OnjyJyWSiTZs2vPbaazRo0ICXX36Z559/Hjs7O1JSUtixYwfz5s27q98q3BrS8Pcx+QAlTI/U80ARERERkQfmkfuXtaOjI46Ojrm2W1lZERsbS2JiIr6+vgwdOpQZM2aYtbG3t+ett94iICCAwMBAUlNT2bJlS56zmHfp0oWYmBj69OlDXFwcpUuXJi4ujubNm1O9enXee+89Vq9eTc2aNe8qzsLGWhgNGjRgyZIlzJs3j9q1a7N9+3bGjRtn1mb27NmUKVOGp556irCwMEJCQqhbt65Zm0mTJpGamkrVqlUpV64ccKuau3btWmJjY/H19WX8+PFMmjTJbBK6/PTs2ZPixYvTq1cvbGxszPbVr1+fo0ePUrVqVZ5//nmqV6/O008/zddff82cOXPyPN4TTzzBli1b+Pzzz/H392fgwIFGgg237ve+ffsIDQ3F29ubcePGMXPmTNq2bQtgdGePjo7Gz8+PZs2aER0dbVTa7e3t+fjjj0lOTqZOnTqMHTuWt956yyyGZs2a8e2339K3b198fHxo27YtP//8M9u3bzdLiD09PenUqROhoaG0bt0aX19fs4cdy5Yt4/z589SpU4c+ffoQGRmJi4uL2bnWrVtHYGAgPXv2pEaNGowaNcroDVGrVi327t3L6dOnadKkCXXq1CEqKsqY8+Buf6siIiIiIv+IKu35MmXfzWBckX/JDz/8gIeHB0eOHMn1kOC/2YQJE9iwYQNJSUmWDuUfWW7VwtIhFCl29vkPCfk3XbqYWXAjeWSVtC46z/LDB93dhKMPyofvPDz/qPs37G7fz9IhGFpve9/SIRQp+jtj7pnVFQpu9C95v/sPlg4BgGezdlk6hDvKPnz3vYbvB9OT/7HIee/WI9U9Xoq+GzdukJ6ezujRo2nQoMEjlbCLiIiIiIjcTkm7FCkHDhwgODgYb29vPvroI0uHIyIiIiIiD5ilOn8Xjf4pBVPSLkVKUFCQxf7SFgUTJkxgwoQJlg5DRERERESKCCXtIiIiIiIiYjkP0aRwllB0ZpwRERERERERETOqtIuIiIiIiIjlqNKeL1XaRURERERERIooJe0iIiIiIiIiRZS6x4uIiIiIiIjlZD26b48qDFXaRURERERERIooVdpFRERERETEcjQRXb5UaRcREREREREpolRpF5H7LqSbtaVDACDrpsnSIQCwI+6qpUMw9F3jbukQAHi/+w+WDqFIKSrfS1Fyct4flg4BgKysvywdQpHSetv7lg7BsD2kr6VDAGCazWpLhwBA9o3rlg6hSCkq/w0BKGmtOqn8M0raRURERERExHLUPT5feuwjIiIiIiIiUkSp0i4iIiIiIiKWo1e+5UuVdhEREREREZEiSpV2ERERERERsRyNac+XKu0iIiIiIiIiRZSSdhEREREREZEiSt3jRURERERExHLUPT5fqrSLiIiIiIiIFFFFNmk3mUxs2LDB0mH8I9HR0ZQuXdrSYfxjqampmEwmkpKSHukY/hvc7d+rCRMmULt27QcWj4iIiIgIWdmWWR4Sd5W0R0REYDKZGDhwYK59gwYNwmQyERERcb9iu2cPS5x58fDwYM6cOf/qOc+cOcOzzz5LhQoVsLa2pnLlyvTs2ZOjR4/+q3HcrXXr1vHkk0/i5OSEg4MDNWvWZPjw4ZYO667k/FZNJhMlSpSgSpUqjBgxgkuXLv2j494p2U5PT6dt27b/6NgiIiIiIvLvuetKu7u7O7GxsVy5csXYdvXqVVavXk3FihXva3D/xMMS54Ny/fr1QrU7evQo9erV45tvvmHhwoUkJyezfv16fHx8inQCvHPnTnr06EGXLl34/PPPSUxMZOrUqYW+7qKkTZs2pKen8+233zJlyhQWLFjAiBEj7ulY2dnZ3Lx58477XV1dsba2vtdQRURERETkX3bXSXvdunWpWLEicXFxxra4uDjc3d2pU6eOsW3r1q00btyY0qVL4+zsTPv27Tl79qyx//r16wwePBg3NzdsbGzw8PBg2rRpdzzvpEmTKF++vNE9esGCBXh5eWFjY0P58uXp0qXLPcVZmFhzumbHxcURHByMra0t/v7+HDx40Ow40dHRVKxYEVtbW8LDw8nIyDDbf/bsWTp06ED58uWxt7cnMDCQnTt3GvuDgoL4/vvvGTp0qFF9zbFu3Tpq1qyJtbU1Hh4ezJw50+zYHh4eTJkyhYiICJycnHj++edp3rw5gwcPNmuXkZGBtbU1u3fvJjs7m4iICLy8vIiPj6ddu3ZUrVqV2rVr88Ybb7Bx48Y7fh979+6lfv36WFtb4+bmxujRo82SxY8++gg/Pz9KlSqFs7MzLVu2NKseL1++nOrVq2NjY4OPjw8LFiwwO/7nn39OnTp1sLGxISAggGPHjpnt37x5M40bN2bkyJFUq1YNb29vOnbsyLx584w2OdXmhQsX4u7ujq2tLV27duWPP/4w2hw5coRWrVpRtmxZnJycaNasGV988YXZuf744w9eeOEFypcvj42NDb6+vmzevNnYn5CQQNOmTSlVqhTu7u5ERkaaXWtBv1Vra2tcXV1xd3enV69e9O7d2+jC/sEHHxAQEICDgwOurq706tWLX375xfjsnj17MJlMbNu2jYCAAKytrVmxYgUTJ07k+PHjxu8oOjoayN09/rXXXsPb2xtbW1uqVKlCVFQUN27cyOsrFxERERF5MLKyLLM8JO5pTPuzzz7L8uXLjfVly5bRv39/szaXLl1i2LBhHDlyhF27dmFlZUV4eDhZ/3dz5s6dy6ZNm1i7di2nTp3igw8+wMPDI9e5srOzeeWVV1i6dCn79++ndu3aHD16lMjISCZNmsSpU6fYunUrTZs2vac4CxNrjrFjxzJixAiSkpLw9vamZ8+eRqJ6+PBh+vfvz6BBg0hKSiI4OJgpU6aYff7ixYuEhoayc+dOjh07RkhICGFhYaSlpQG3HipUqFCBSZMmkZ6eTnp6OgCJiYl069aNHj16cOLECSZMmEBUVJSRiOWYMWMGvr6+JCYmEhUVxYABA1i1ahXXrl0z2qxcuZLHH3+c4OBgkpKS+Prrrxk+fDhWVrl/Cncaj//jjz8SGhpKYGAgx48f591332Xp0qXG9aanp9OzZ0/69+9PSkoKe/bsoVOnTmRn3xo3snjxYsaOHcvUqVNJSUnhzTffJCoqipiYGOP7aN++PdWqVSMxMZEJEybkqjy7urry9ddf89VXX+UZY44zZ86wdu1aPv74Y7Zu3UpSUhIvv/yysf+vv/6iX79+xMfHc+jQIby8vAgNDeWvv/4CICsri7Zt25KQkMAHH3xAcnIy//nPfyhWrBgAJ06cICQkhE6dOvHll1+yZs0a9u/fbzwsKexv9e9KlSplJM7Xr19n8uTJHD9+nA0bNvDdd9/lObRj1KhRTJs2jZSUFFq3bs3w4cOpWbOm8Tvq3r17nudycHAgOjqa5ORk3nnnHRYvXszs2bPzjU9ERERERP499/TKtz59+jBmzBijAn3gwAFiY2PZs2eP0aZz585mn1m6dCkuLi4kJyfj6+tLWloaXl5eNG7cGJPJRKVKlXKd5+bNm/Tt25ejR49y4MABKlSoAEBaWhp2dna0b98eBwcHKlWqlKt6Xtg4CxNrjhEjRtCuXTsAJk6cSM2aNTlz5gw+Pj688847hISEMHr0aAC8vb1JSEhg69atxuf9/f3x9/c31qdMmcL69evZtGkTgwcP5rHHHqNYsWJGVTXHrFmzaNGiBVFRUcaxk5OTmTFjhlkC17x5c7Pk1t3dnSFDhrBx40a6desG3Kpw54yjPn36NAA+Pj657l1+FixYgLu7O/Pnz8dkMuHj48NPP/3Ea6+9xvjx40lPT+fmzZt06tTJ+F79/PyMz0+ePJmZM2fSqVMnACpXrkxycjILFy6kX79+rFy5kszMTJYtW4atrS01a9bk3LlzvPTSS8YxhgwZQnx8PH5+flSqVIkGDRrQunVrevfubdb9++rVq8TExBi/nXnz5tGuXTtmzpyJq6srzZs3N7u2hQsXUqZMGfbu3Uv79u3ZuXMnn3/+OSkpKXh7ewNQpUoVo/2MGTPo1asXr776KgBeXl7MnTuXZs2a8e677xb6t5rj888/Z9WqVbRo0QLA7CFTlSpVmDt3LvXr1+fixYvY29sb+yZNmkSrVq2MdXt7e4oXL272O8rLuHHjjD97eHgwfPhw1qxZw6hRo/L9nIiIiIjIffMQVb0t4Z4q7WXLlqVdu3bExMSwfPly2rVrR9myZc3anD17ll69elGlShUcHR2pXLkygFFVjoiIICkpiWrVqhEZGcn27dtznWfo0KEcPHiQ+Ph4I+kCaNWqFZUqVaJKlSr06dOHlStXcvny5XuKszCx5qhVq5bxZzc3NwCjq3JKSgoNGzY0a3/7+qVLlxg1ahQ1atSgdOnS2Nvbc/LkyVznuV1KSgqNGjUy29aoUSNOnz5NZmamsS0gIMCsjbW1Nc888wzLli0DICkpiePHjxuJfk7l++/d8Asj51r//rlGjRpx8eJFzp07h7+/Py1atMDPz4+uXbuyePFizp8/D8Cvv/7KDz/8wHPPPYe9vb2xTJkyxRiSkJKSgr+/P7a2tsbxb7+XdnZ2fPLJJ5w5c4Zx48Zhb2/P8OHDqV+/vtlvoWLFima/nYYNG5KVlcWpU6eAW9/fwIED8fb2xsnJCScnJy5evGh8J0lJSVSoUMFI2G+XmJhIdHS02bWEhISQlZXFd999V6jf6ubNm7G3t8fGxoaGDRvStGlTo5v/sWPH6NChA5UqVcLBwYGgoCAg92/z9u++sD766CMaN26Mq6sr9vb2REVFFfh7vN21a9e4cOGC2XLtb79LERERERG5d/f8yrf+/fsTHR1NTExMnl3Ow8LCyMjIYPHixRw+fJjDhw8D/3+CtLp16/Ldd98xefJkrly5Qrdu3XKN9W3VqhU//vgj27ZtM9vu4ODAF198werVq3Fzc2P8+PH4+/ubjVUubJyFiTVHiRIljD/nJKw5XehzEuD8jBw5knXr1jF16lTi4+NJSkrCz8+vwMnTsrOzcyXWeZ3Pzs4u17YBAwawY8cOzp07x7Jly2jRooVR/c5JRFNSUgqMvbDxmEwmihUrxo4dO/j000+pUaMG8+bNo1q1anz33XfG/Vq8eDFJSUnG8tVXX3Ho0KE7XtudVK1alQEDBrBkyRK++OILkpOTWbNmzR3b58Sd878REREkJiYyZ84cEhISSEpKwtnZ2fhOSpUqle/5s7KyePHFF82u5fjx45w+fZqqVasW6reaM1Th1KlTXL16lbi4OFxcXLh06RKtW7fG3t6eDz74gCNHjrB+/Xog928zr+++IIcOHaJHjx60bduWzZs3c+zYMcaOHXvXk/lNmzbNeOCRs8xP+fau4xERERGRR5Re+Zave07a27Rpw/Xr17l+/TohISFm+zIyMkhJSWHcuHG0aNGC6tWrG5XWv3N0dKR79+4sXryYNWvWsG7dOn7//Xdj/9NPP82qVasYMGAAsbGxZp8tXrw4LVu2ZPr06Xz55Zekpqaye/fuu4rzbmItSI0aNYykM8ft6/Hx8URERBAeHo6fnx+urq6kpqaatSlZsqRZ9Tzn2Pv37zfblpCQgLe3tzG2+k78/PwICAhg8eLFrFq1yuzBRe3atalRowYzZ87MNX4fyPMhSE48CQkJZsl1QkICDg4OPPHEE8CtpLhRo0ZMnDiRY8eOUbJkSdavX0/58uV54okn+Pbbb/H09DRbcno41KhRg+PHj5vN/H/7vcyLh4cHtra2ZpPApaWl8dNPPxnrBw8exMrKynhgER8fT2RkJKGhocZEf7/99pvRvlatWpw7d45vvvkmz3PWrVuXr7/+Ote1eHp6UrJkSaDg36qdnR2enp5UqlTJ7MHQyZMn+e233/jPf/5DkyZN8PHxMZuELj95/Y5ud+DAASpVqsTYsWMJCAjAy8uL77//vlDH/7sxY8bw559/mi2Dq1cp+IMiIiIiIlKgexrTDlCsWDGjQnt74limTBmcnZ1ZtGgRbm5upKWlGWO9c8yePRs3Nzdq166NlZUVH374Ia6urrkmPwsPD2fFihX06dOH4sWL06VLFzZv3sy3335L06ZNKVOmDFu2bCErK4tq1ardVZyFjbUwIiMjeeqpp5g+fTodO3Zk+/btZuPZATw9PYmLiyMsLAyTyURUVFSuZNnDw4N9+/bRo0cPrK2tKVu2LMOHDycwMJDJkyfTvXt3Dh48yPz583PNuH4nAwYMYPDgwcas9jlMJhPLly+nZcuWNG3alNdffx0fHx8uXrzIxx9/zPbt29m7d2+u4w0aNIg5c+YwZMgQBg8ezKlTp3jjjTcYNmwYVlZWHD58mF27dtG6dWtcXFw4fPgwv/76K9WrVwduzeoeGRmJo6Mjbdu25dq1axw9epTz588zbNgwevXqxdixY3nuuecYN24cqampvP3222YxTJgwgcuXLxMaGkqlSpX4448/mDt3Ljdu3DAb221jY0O/fv14++23uXDhApGRkXTr1s0Y6+3p6cmKFSsICAjgwoULjBw50qy63qxZM5o2bUrnzp2ZNWsWnp6enDx5EpPJRJs2bXjttddo0KABL7/8Ms8//zx2dnakpKSwY8cO5s2bd1e/1dtVrFiRkiVLMm/ePAYOHMhXX33F5MmTC/Wde3h48N133xnd+x0cHHK96s3T05O0tDRiY2MJDAzkk08+MSr5d8Pa2jrXsS8W8DBJREREREQK554r7XCrUu7o6Jj7oFZWxMbGkpiYiK+vL0OHDmXGjBlmbezt7XnrrbcICAggMDCQ1NRUtmzZkucs5l26dCEmJoY+ffoQFxdH6dKliYuLo3nz5lSvXp333nuP1atXU7NmzbuKs7CxFkaDBg1YsmQJ8+bNo3bt2mzfvt1ski+49aCiTJkyPPXUU4SFhRESEkLdunXN2kyaNInU1FSqVq1KuXLlgFvV3LVr1xIbG4uvry/jx49n0qRJec4inpeePXtSvHhxevXqhY2Njdm++vXrc/ToUapWrcrzzz9P9erVefrpp/n666+ZM2dOnsd74okn2LJlC59//jn+/v4MHDjQSLDh1v3et28foaGheHt7M27cOGbOnEnbtm0BjO7s0dHR+Pn50axZM6Kjo41Ku729PR9//DHJycnUqVOHsWPH8tZbb5nF0KxZM7799lv69u2Lj48Pbdu25eeff2b79u1mCbGnpyedOnUiNDSU1q1b4+vra/awY9myZZw/f546derQp08fIiMjcXFxMTvXunXrCAwMpGfPntSoUYNRo0YZVexatWqxd+9eTp8+TZMmTahTpw5RUVHGnAd3+1v9u3LlyhEdHc2HH35IjRo1+M9//pPr4cWddO7cmTZt2hAcHEy5cuVYvXp1rjYdOnRg6NChDB48mNq1a5OQkGBMdigiIiIi8q/RK9/yZcq+mwHE8lD64Ycf8PDw4MiRI7keEvw3mzBhAhs2bCApKcnSoTxyfuoRaukQAMi6eXeTLD4oO+KuWjoEQ9817pYOAYD3u/9g6RCKlKLyvRQlJ+f9YekQAPh8/1+WDqFIKWn9j+o999X2kL6WDgGAaTa5H4xbgpPL3c1J86B8VLiOoA9cwFP2BTf6lyQduVRwo39B7ys7LB3CHWXFPWuR81p1Wl5woyLgnrvHS9F348YN0tPTGT16NA0aNHikEnYREREREXk4ZGeqjpyfovO4VO67nInGEhMTee+99ywdjoiIiIiIiNwlVdr/iwUFBd3V69P+20yYMIEJEyZYOgwREREREZF7pqRdRERERERELOcheme6Jah7vIiIiIiIiEgRpUq7iIiIiIiIWI4mosuXKu0iIiIiIiIiRZQq7SIiIiIiImIx2RrTni9V2kVERERERESKKCXtIiIiIiIiIkWUuseLiIiIiIiI5Wgiunyp0i4iIiIiIiJSRKnSLiL3ndvw2pYOAYDoJw9bOgQA+m3xtnQIhi3Vn7J0CABU91tr6RAAcHAqZukQAPhp9a+WDgGAcVk9LB2CIWh/tKVDAMCU0t/SIQCQXX2ZpUMA4OaNolMNezmtaPx3ZEzFnpYOAYDmC2IsHQIAi8aOtHQIt0ydYekIDF0GWTqCh0BmlqUjKNJUaRcREREREREpopS0i4iIiIiIiBRR6h4vIiIiIiIiFqP3tOdPlXYRERERERGRIkqVdhEREREREbEcvfItX6q0i4iIiIiIiBRRStpFREREREREiih1jxcRERERERHL0UR0+VKlXURERERERKSIUtIu8l/s559/plWrVtjZ2VG6dGlLhyMiIiIikkt2ZrZFloeFkna5byIiIjCZTJhMJooXL07FihV56aWXOH/+/H05vslkYsOGDfflWP+me4k7OzubRYsW8eSTT2Jvb0/p0qUJCAhgzpw5XL58udDHmT17Nunp6SQlJfHNN9/cZeQiIiIiImJpGtMu91WbNm1Yvnw5N2/eJDk5mf79+/PHH3+wevVqS4d2V27cuEGJEiUsdv4+ffoQFxfHuHHjmD9/PuXKleP48ePMmTMHDw8POnbsWKjjnD17lnr16uHl5fVgAxYRERERuVdZWZaOoEhTpV3uK2tra1xdXalQoQKtW7eme/fubN++3di/fPlyqlevjo2NDT4+PixYsMDYd/36dQYPHoybmxs2NjZ4eHgwbdo0ADw8PAAIDw/HZDIZ62fPnqVDhw6UL18ee3t7AgMD2blzp1lMeVW6S5cuTXR0NACpqamYTCbWrl1LUFAQNjY2fPDBB2RkZNCzZ08qVKiAra0tfn5+uR4+BAUFERkZyahRo3jsscdwdXVlwoQJxv47xX38+HGCg4NxcHDA0dGRevXqcfToUQDWrl3LypUrWb16Na+//jqBgYF4eHjQoUMHdu/eTXBwMABHjhyhVatWlC1bFicnJ5o1a8YXX3xhdu5169bx/vvvYzKZiIiIAODPP//khRdewMXFBUdHR5o3b87x48eNz+UXm4iIiIiI/LuUtMsD8+2337J161ajYr148WLGjh3L1KlTSUlJ4c033yQqKoqYmBgA5s6dy6ZNm1i7di2nTp3igw8+MJLcI0eOALeS/vT0dGP94sWLhIaGsnPnTo4dO0ZISAhhYWGkpaXddbyvvfYakZGRpKSkEBISwtWrV6lXrx6bN2/mq6++4oUXXqBPnz4cPnzY7HMxMTHY2dlx+PBhpk+fzqRJk9ixY0e+cffu3ZsKFSpw5MgREhMTGT16tHGfVq5cSbVq1ejQoUOuGE0mE05OTgD89ddf9OvXj/j4eA4dOoSXlxehoaH89ddfxrnbtGlDt27dSE9P55133iE7O5t27drx888/s2XLFhITE6lbty4tWrTg999/LzA2ERERERH5d6l7vNxXmzdvxt7enszMTK5evQrArFmzAJg8eTIzZ86kU6dOAFSuXJnk5GQWLlxIv379SEtLw8vLi8aNG2MymahUqZJx3HLlygG3KuSurq7Gdn9/f/z9/Y31KVOmsH79ejZt2sTgwYPvKvZXX33ViC3HiBEjjD8PGTKErVu38uGHH/Lkk08a22vVqsUbb7wBgJeXF/Pnz2fXrl20atXqjnGnpaUxcuRIfHx8jM/lOH36NNWqVSsw3ubNm5utL1y4kDJlyrB3717at29PuXLlsLa2plSpUsa5d+/ezYkTJ/jll1+wtrYG4O2332bDhg189NFHvPDCC/nGJiIiIiJy3z1Ek8JZgpJ2ua+Cg4N59913uXz5MkuWLOGbb75hyJAh/Prrr/zwww8899xzPP/880b7mzdvGpXjiIgIWrVqRbVq1WjTpg3t27endevW+Z7v0qVLTJw4kc2bN/PTTz9x8+ZNrly5ck+V9oCAALP1zMxM/vOf/7BmzRp+/PFHrl27xrVr17CzszNrV6tWLbN1Nzc3fvnll3zPNWzYMAYMGMCKFSto2bIlXbt2pWrVqsCtSehMJlOB8f7yyy+MHz+e3bt387//+79kZmZy+fLlfK89MTGRixcv4uzsbLb9ypUrnD17tsDY8pJzX/6u5PWbWJfUf15ERERERP4pdY+X+8rOzg5PT09q1arF3LlzuXbtGhMnTiTr/yaXWLx4MUlJScby1VdfcejQIQDq1q3Ld999x+TJk7ly5QrdunWjS5cu+Z5v5MiRrFu3jqlTpxIfH09SUhJ+fn5cv37daGMymcjONn96d+PGjTxj/7uZM2cye/ZsRo0axe7du0lKSiIkJMTs2ECuruMmk8m43juZMGECX3/9Ne3atWP37t3UqFGD9evXA+Dt7U1KSkq+n4dbDzkSExOZM2cOCQkJJCUl4ezsnCu+v8vKysLNzc3sO0hKSuLUqVOMHDmywNjyMm3aNJycnMyWadEHC4xfRERERAQgOyvbIsvDQqUweaDeeOMN2rZty0svvcQTTzzBt99+S+/eve/Y3tHRke7du9O9e3e6dOlCmzZt+P3333nssccoUaIEmZmZZu3j4+OJiIggPDwcuDXGPTU11axNuXLlSE9PN9ZPnz5dqNemxcfH06FDB5555hngVsJ7+vRpqlevXtjLB8gzbriVnHt7ezN06FB69uzJ8uXLCQ8Pp1evXvTo0YONGzfmGteenZ3NhQsXcHJyIj4+ngULFhAaGgrADz/8wG+//ZZvLHXr1uXnn3+mePHixnwBeblTbHkZM2YMw4YNM9tW8sSUfOMQEREREZHCUaVdHqigoCBq1qzJm2++yYQJE5g2bRrvvPMO33zzDSdOnGD58uXGmPfZs2cTGxvLyZMn+eabb/jwww9xdXWldOnSwK3Z0Hft2sXPP/9svPvd09OTuLg4kpKSOH78OL169cpV5W7evDnz58/niy++4OjRowwcOLBQE6t5enqyY8cOEhISSElJ4cUXX+Tnn3++63twe9xXrlxh8ODB7Nmzh++//54DBw5w5MgR42FAt27d6N69Oz179mTatGkcPXqU77//ns2bN9OyZUs+++wzI74VK1aQkpLC4cOH6d27N6VKlco3lpYtW9KwYUM6duzItm3bSE1NJSEhgXHjxnH06NECY8uLtbU1jo6OZou6xouIiIiI3B9K2uWBGzZsGIsXLyYkJIQlS5YQHR2Nn58fzZo1Izo6msqVKwNgb2/PW2+9RUBAAIGBgaSmprJlyxasrG79TGfOnMmOHTtwd3enTp06wK1Ev0yZMjz11FOEhYUREhJC3bp1zc4/c+ZM3N3dadq0Kb169WLEiBHY2toWGHdUVBR169YlJCSEoKAgXF1dC/1+9NvP//e4ixUrRkZGBn379sXb25tu3brRtm1bJk6cCNzqXr9q1SpmzZrF+vXradasGbVq1WLChAl06NCBkJAQAJYtW8b58+epU6cOffr0ITIyEhcXl3xjMZlMbNmyhaZNm9K/f3+8vb3p0aMHqamplC9fvsDYRERERETuu8xsyywPCVP27YN9RUT+oewjr1s6BACinzxccKN/Qb8t3pYOwbCl+lOWDgGAsk+vtXQIADg4FbN0CAA4ls09z4YljMvqYekQDEGboi0dAgCmlP6WDgGA7OrLLB0CAFZWBU+U+m+pXiv/3mX/lv+p2M3SIQDQfHOMpUMAYNHYkZYOAYAXps6wdAiGLoMsHcEtdnN3WjqEO7o2Pe9hmA+a9ag7z9tUlKgPq4iIiIiIiFjOQ1T1tgR1jxcREREREREpolRpFxEREREREYt5mF6/ZgmqtIuIiIiIiIgUUUraRURERERERIoodY8XERERERERy8nMsnQERZoq7SIiIiIiIiJFlCrtIiIiIiIiYjGaiC5/qrSLiIiIiIiIFFFK2kVERERERESKKHWPFxEREREREcvJVPf4/KjSLiIiIiIiIlJEqdIuIvdd9JOHLR0CAI+7l7R0CADEhH5j6RAMEac9LB0CANEnLls6hCIl4nRrS4cAwDMtV1s6BMPsl4ZYOgQA3uq/3NIhALDvRH9LhwDAk/3WWDoEg7W1ydIhANB8c4ylQwBgd/t+lg4BgLc+mmfpEAAYNfM1S4dgyBr6H0uHAMCzcy0dQT40EV2+VGkXERERERERKaJUaRcRERERERGLydaY9nyp0i4iIiIiIiJSRClpFxERERERESmi1D1eRERERERELEcT0eVLlXYRERERERGRIkqVdhEREREREbGczCxLR1CkqdIuIiIiIiIiUkQpaRcREREREREpopS0i4iIiIiIiMVkZ2VbZLkXCxYsoHLlytjY2FCvXj3i4+Pv2DYuLo5WrVpRrlw5HB0dadiwIdu2bbvrcyppF7kLP//8M61atcLOzo7SpUtbOpy7FhERQceOHQvdPjU1FZPJRFJS0gOLSURERETkYbBmzRpeffVVxo4dy7Fjx2jSpAlt27YlLS0tz/b79u2jVatWbNmyhcTERIKDgwkLC+PYsWN3dV4l7UVYREQEJpMJk8lE8eLFqVixIi+99BLnz5+/L8c3mUxs2LDhvhzr33QvcWdnZ7No0SKefPJJ7O3tKV26NAEBAcyZM4fLly8X+jizZ88mPT2dpKQkvvnmm7uMPLc9e/YY37HJZKJcuXK0bduW48eP/6Pj3inZfuedd4iOjv5HxxYRERERua8ysy2z3KVZs2bx3HPPMWDAAKpXr86cOXNwd3fn3XffzbP9nDlzGDVqFIGBgXh5efHmm2/i5eXFxx9/fFfnVdJexLVp04b09HRSU1NZsmQJH3/8MYMGDbJ0WHftxo0bFj1/nz59ePXVV+nQoQOfffYZSUlJREVFsXHjRrZv317o45w9e5Z69erh5eWFi4vLfYvv1KlTpKen88knn3D+/HnatGnDn3/+eU/Hun79+h33OTk5PZQ9BERERERE7rdr165x4cIFs+XatWt5tr1+/TqJiYm0bt3abHvr1q1JSEgo1PmysrL466+/eOyxx+4qTiXtRZy1tTWurq5UqFCB1q1b0717d7Mkc/ny5VSvXh0bGxt8fHxYsGCBse/69esMHjwYNzc3bGxs8PDwYNq0aQB4eHgAEB4ejslkMtbPnj1Lhw4dKF++PPb29gQGBrJz506zmPKqdJcuXdqo4OZUedeuXUtQUBA2NjZ88MEHZGRk0LNnTypUqICtrS1+fn6sXr3a7DhBQUFERkYyatQoHnvsMVxdXZkwYYKx/05xHz9+nODgYBwcHHB0dKRevXocPXoUgLVr17Jy5UpWr17N66+/TmBgIB4eHnTo0IHdu3cTHBwMwJEjR2jVqhVly5bFycmJZs2a8cUXX5ide926dbz//vuYTCYiIiIA+PPPP3nhhRdwcXHB0dGR5s2bm1XK84sth4uLC66urtSvX5+ZM2fy888/c+jQoUJ9Hx4eHkyZMoWIiAicnJx4/vnnqVy5MgB16tTBZDIRFBQE5O4ev3XrVho3bkzp0qVxdnamffv2nD17FhERERGRf0t2lmWWadOm4eTkZLbk5Eu3++2338jMzKR8+fJm28uXL8/PP/9cqOucOXMmly5dolu3bnd1f5S0P0S+/fZbtm7dSokSJQBYvHgxY8eOZerUqaSkpPDmm28SFRVFTEwMAHPnzmXTpk2sXbuWU6dO8cEHHxhJ7pEjR4BbSX96erqxfvHiRUJDQ9m5cyfHjh0jJCSEsLCwO47TyM9rr71GZGQkKSkphISEcPXqVerVq8fmzZv56quveOGFF+jTpw+HDx82+1xMTAx2dnYcPnyY6dOnM2nSJHbs2JFv3L1796ZChQocOXKExMRERo8ebdynlStXUq1aNTp06JArRpPJhJOTEwB//fUX/fr1Iz4+nkOHDuHl5UVoaCh//fWXce42bdrQrVs30tPTeeedd8jOzqZdu3b8/PPPxliVunXr0qJFC37//fcCY8tLqVKlgFu9Ewr7fcyYMQNfX18SExOJiori888/B2Dnzp2kp6cTFxeX57kuXbrEsGHDOHLkCLt27cLKyorw8HCysvSuTBERERH57zZmzBj+/PNPs2XMmDH5fsZkMpmtZ2dn59qWl9WrVzNhwgTWrFlz1z12i99Va/nXbd68GXt7ezIzM7l69SpwaywFwOTJk5k5cyadOnUCoHLlyiQnJ7Nw4UL69etHWloaXl5eNG7cGJPJRKVKlYzjlitXDrhVIXd1dTW2+/v74+/vb6xPmTKF9evXs2nTJgYPHnxXsb/66qtGbDlGjBhh/HnIkCFs3bqVDz/8kCeffNLYXqtWLd544w0AvLy8mD9/Prt27TJmXswr7rS0NEaOHImPj4/xuRynT5+mWrVqBcbbvHlzs/WFCxdSpkwZ9u7dS/v27SlXrhzW1taUKlXKOPfu3bs5ceIEv/zyC9bW1gC8/fbbbNiwgY8++ogXXngh39hul5GRwcSJE3FwcKB+/fq4uLgU6vto3ry52b1NTU0FwNnZ2ew+3a5z585m60uXLsXFxYXk5GR8fX3zu12Ga9eu5epGdCM7ixImPRMUERERkaLL2tra+Dd8QcqWLUuxYsVyVdV/+eWXXNX3261Zs4bnnnuODz/8kJYtW951nPpXdREXHBxMUlIShw8fZsiQIYSEhDBkyBB+/fVXfvjhB5577jns7e2NZcqUKUb35oiICJKSkqhWrRqRkZGFGrt96dIlRo0aRY0aNShdujT29vacPHnynirtAQEBZuuZmZlMnTqVWrVq4ezsjL29Pdu3b8917Fq1apmtu7m58csvv+R7rmHDhjFgwABatmzJf/7zH7Mu3oV9+vXLL78wcOBAvL29je4xFy9ezPfaExMTuXjxonE9Oct3331nxJBfbDkqVKiAvb09ZcuWJSUlhQ8//BAXF5dCfx+33+vCOnv2LL169aJKlSo4Ojoa3erv5vvOq1vRJ6TeUzwiIiIi8ujJzjJZZLkbJUuWpF69ekYP4Bw7duzgqaeeuuPnVq9eTUREBKtWraJdu3b3dH9UaS/i7Ozs8PT0BG51dw8ODmbixIlGlXXx4sVmVWqAYsWKAVC3bl2+++47Pv30U3bu3Em3bt1o2bIlH3300R3PN3LkSLZt28bbb7+Np6cnpUqVokuXLmaTm5lMJrKzzWdbzGuiOTs7O7P1mTNnMnv2bObMmYOfnx92dna8+uqruSZOu73ruMlkKrC79oQJE+jVqxeffPIJn376KW+88QaxsbGEh4fj7e1NSkpKvp+HWw85fv31V+bMmUOlSpWwtramYcOG+U7slpWVhZubG3v27Mm1L2fCt/xiyxEfH4+jo6PxDscchfk+IPe9LqywsDDc3d1ZvHgxjz/+OFlZWfj6+uZ7zbcbM2YMw4YNM9sW65R7KIKIiIiIyMNs2LBh9OnTh4CAABo2bMiiRYtIS0tj4MCBwK1/F//444+8//77wK2EvW/fvrzzzjs0aNDAqNKXKlXKGKJbGEraHzJvvPEGbdu25aWXXuKJJ57g22+/pXfv3nds7+joSPfu3enevTtdunShTZs2/P777zz22GOUKFGCzMxMs/bx8fFEREQYCeXFixeNrtY5ypUrR3p6urF++vTpQr02LT4+ng4dOvDMM88AtxLe06dPU7169cJePkCecQN4e3vj7e3N0KFD6dmzJ8uXLyc8PJxevXrRo0cPNm7cmGtce3Z2NhcuXMDJyYn4+HgWLFhAaGgoAD/88AO//fZbvrHUrVuXn3/+meLFixvzBeTlTrHlqFy5cp6zuhfm+8hLyZIlAfK8TzkyMjJISUlh4cKFNGnSBID9+/cXeOzb5dWtSF3jRURERKSwHpbplLp3705GRgaTJk0iPT0dX19ftmzZYgxDTk9PN+uxunDhQm7evMnLL7/Myy+/bGzv16/fXb2GWUn7QyYoKIiaNWvy5ptvMmHCBCIjI3F0dKRt27Zcu3aNo0ePcv78eYYNG8bs2bNxc3Ojdu3aWFlZ8eGHH+Lq6mokhx4eHuzatYtGjRphbW1NmTJl8PT0JC4ujrCwMEwmE1FRUbmq3M2bN2f+/Pk0aNCArKwsXnvttXwnVsvh6enJunXrSEhIoEyZMsyaNYuff/75rpP22+O2sbFh5MiRdOnShcqVK3Pu3DmOHDlijNfu1q0b69evp2fPnkRFRRlj40+cOMHs2bMZMmQIHTt2xNPTkxUrVhAQEMCFCxcYOXKkMSncnbRs2ZKGDRvSsWNH3nrrLapVq8ZPP/3Eli1b6NixIzVr1sw3tsLcs4K+j7y4uLhQqlQptm7dSoUKFbCxscn1NK9MmTI4OzuzaNEi3NzcSEtLY/To0YWKS0RERETkUTRo0KA7voL79kQ8r96490LlsIfQsGHDWLx4MSEhISxZsoTo6Gj8/Pxo1qwZ0dHRxrhke3t73nrrLQICAggMDCQ1NZUtW7ZgZXXra585cyY7duzA3d2dOnXqADB79mzKlCnDU089RVhYGCEhIdStW9fs/DNnzsTd3Z2mTZvSq1cvRowYga2tbYFxR0VFUbduXUJCQggKCsLV1dXs9WOFdXvcxYoVIyMjg759++Lt7U23bt1o27YtEydOBG51r1+1ahWzZs1i/fr1NGvWjFq1ajFhwgQ6dOhASEgIAMuWLeP8+fPUqVOHPn36EBkZWeDMjiaTiS1bttC0aVP69++Pt7c3PXr0IDU1lfLlyxcYW0EK833kpXjx4sydO5eFCxfy+OOP5zlzvpWVFbGxsSQmJuLr68vQoUOZMWNGoeISEREREZF/hyn79sHJIiL/0HKrFpYOAYDH3UtaOgQAfvqh8HMEPGgRp1tbOgQAor0KnhjzUVJUvpedLfdaOgTD7NAXLB0CAG8lLbd0CADsW3R37/R9UJ7st8bSIRisre9uEqkH5YvDlywdAgC72/ezdAgAPH+6aPxGRr3wiqVDMDw/9D+WDgGAZ7N2WTqEO/rjRcv8/2DphQ/Hv0dUaRcREREREREpojSmXURERERERCwm+yGZiM5SVGkXERERERERKaJUaRcRERERERGLyc4qGnNUFFWqtIuIiIiIiIgUUUraRURERERERIoodY8XERERERERi8nSRHT5UqVdREREREREpIhSpV1EREREREQsRhPR5U+VdhEREREREZEiSkm7iIiIiIiISBGl7vEict/1We5m6RAAWPFsuqVDAKDfFm9Lh2D4pPjjlg4BgJq1bS0dAgB29sUsHQIAP4yIt3QIAEzuOcTSIRje3rrA0iEAMP+dnpYOAYAGfkstHQIAJywdQBG0fPQIS4cAFJ2/M//j1d3SIQDw4vC3LB2Coctgdf0uSLYmosuXKu0iIiIiIiIiRZQq7SIiIiIiImIx2dnqjZAfVdpFREREREREiihV2kVERERERMRiNKY9f6q0i4iIiIiIiBRRStpFREREREREiih1jxcRERERERGLycrSRHT5UaVdREREREREpIhSpV1EREREREQsRhPR5U+VdhEREREREZEiSkm7SCGYTCY2bNhg6TByKSguDw8P5syZ86/FIyIiIiIi95e6x8sjwWTKf3KLfv36ER0d/e8E8y86cuQIdnZ2lg5DREREROSOsjURXb6UtMsjIT093fjzmjVrGD9+PKdOnTK2lSpVyhJh3bPr169TsmTJAtuVK1fuX4hGREREREQeFHWPl0eCq6ursTg5OWEymcy27du3j3r16mFjY0OVKlWYOHEiN2/evOPxfvzxR7p3706ZMmVwdnamQ4cOpKamAnDixAmsrKz47bffADh//jxWVlZ07drV+Py0adNo2LChsb53717q16+PtbU1bm5ujB492uz8QUFBDB48mGHDhlG2bFlatWqVZ1yTJk2ifPnyJCUlAbm7x5tMJpYsWUJ4eDi2trZ4eXmxadMms2Ns2rQJLy8vSpUqRXBwMDExMZhMJv7444/C3GoRERERkbuSnWWZ5WGhpF0eedu2beOZZ54hMjKS5ORkFi5cSHR0NFOnTs2z/eXLlwkODsbe3p59+/axf/9+7O3tadOmDdevX8fX1xdnZ2f27t0LwL59+3B2dmbfvn3GMfbs2UOzZs2AWw8AQkNDCQwM5Pjx47z77rssXbqUKVOmmJ03JiaG4sWLc+DAARYuXGi2Lzs7m1deeYWlS5eyf/9+ateufcfrnThxIt26dePLL78kNDSU3r178/vvvwOQmppKly5d6NixI0lJSbz44ouMHTv2ru+piIiIiIjcH0ra5ZE3depURo8eTb9+/ahSpQqtWrVi8uTJuRLjHLGxsVhZWbFkyRL8/PyoXr06y5cvJy0tjT179mAymWjatCl79uwBbiXo/fr1Iysri+TkZG7evElCQgJBQUEALFiwAHd3d+bPn4+Pjw8dO3Zk4sSJzJw5k6ys//8I0NPTk+nTp1OtWjV8fHyM7Tdv3qRv375s376dAwcO4OXlle/1RkRE0LNnTzw9PXnzzTe5dOkSn3/+OQDvvfce1apVY8aMGVSrVo0ePXoQERFx7zdXRERERET+EY1pl0deYmIiR44cMausZ2ZmcvXqVS5fvoytrW2u9mfOnMHBwcFs+9WrVzl79ixwqzv7okWLgFtd3ydPnsx3333H3r17+fPPP7ly5QqNGjUCICUlhYYNG5pNlteoUSMuXrzIuXPnqFixIgABAQF5xj906FCsra05dOgQZcuWLfB6a9WqZfzZzs4OBwcHfvnlFwBOnTpFYGCgWfv69evne7xr165x7do1s23FbmRiXaJYgbGIiIiIiGRnayK6/Chpl0deVlYWEydOpFOnTrn22djY5Nm+Xr16rFy5Mte+nInfgoKCeOWVVzhz5gxfffUVTZo04ezZs+zdu5c//viDevXqGUl/dnZ2rtnts7OzAfNZ7+80C3yrVq1YvXo127Zto3fv3gVeb4kSJczWTSaTUdHPL5Y7mTZtGhMnTjTbFtXBj/Hhte7wCRERERERKSwl7fLIq1u3LqdOncLT07PQ7desWYOLiwuOjo55tskZ1z5lyhT8/f1xdHSkWbNmTJs2jfPnzxvj2QFq1KjBunXrzBLmhIQEHBwceOKJJwqM5+mnnyYsLIxevXpRrFgxevToUajryIuPjw9btmwx23b06NF8PzNmzBiGDRtmtq3Y2hfvOQYRERERebRkPUSTwlmCxrTLI2/8+PG8//77TJgwga+//pqUlBTWrFnDuHHj8mzfu3dvypYtS4cOHYiPjze6vb/yyiucO3cOwBjX/sEHHxhj12vVqsX169fZtWuXsQ1g0KBB/PDDDwwZMoSTJ0+yceNG3njjDYYNG4aVVeH+ioaHh7NixQqeffZZPvroo3u+Fy+++CInT57ktdde45tvvmHt2rXG++vv9K57a2trHB0dzRZ1jRcRERERuT+UtMsjLyQkhM2bN7Njxw4CAwNp0KABs2bNolKlSnm2t7W1Zd++fVSsWJFOnTpRvXp1+vfvz5UrV8wq78HBwWRmZhoJuslkokmTJgA0btzYaPfEE0+wZcsWPv/8c/z9/Rk4cCDPPffcHR8a3EmXLl2IiYmhT58+xMXF3eVduKVy5cp89NFHxMXFUatWLd59911j9nhra+t7OqaIiIiISH70yrf8qXu8PHIiIiJyzYgeEhJCSEjIHT9z+7huV1dXYmJi8j3P4MGDGTx4sNm2DRs25Nm2WbNmxgzuecmZib6guLp160a3bt2M9Zx3x9+pPZDr/etPP/00Tz/9tLE+depUKlSokOf4fhERERERebCUtIuImQULFhAYGIizszMHDhxgxowZuR4+iIiIiIjIv0NJu4iYOX36NFOmTOH333+nYsWKDB8+nDFjxlg6LBERERH5L5WdpVe+5UdJu4iYmT17NrNnz7Z0GCIiIiIigpJ2ERERERERsaCHaVI4S9Ds8SIiIiIiIiJFlJJ2ERERERERkSJK3eNFRERERETEYrI0EV2+VGkXERERERERKaJUaRcRERERERGL0UR0+VOlXURERERERKSIUqVdRERERERELCY7W2Pa86NKu4iIiIiIiEgRZcrOzs62dBAi8t9luVULS4dQpBQvUXSeHvdeU8nSIQAQ0ynV0iEUKf3iPCwdAgArunxv6RAMcREvWToEAJ7duMjSIQCwfX0/S4cAwMi3Vlk6BMOZr4rGINiffrhu6RCAovN3plP0u5YOAYDd7YvG3xmAoE3Rlg4BgGezdlk6hDs61bKDRc5bbedGi5z3bql7vIiIiIiIiFiMJqLLn7rHi4iIiIiIiBRRqrSLiIiIiIiIxWRnFZ2hhEWRKu0iIiIiIiIiRZSSdhEREREREZEiSt3jRURERERExGKyNBFdvlRpFxERERERESmiVGkXERERERERi8nKzLZ0CEWaKu0iIiIiIiIiRZSSdrEIk8nEhg0bLB1GLgXF5eHhwZw5c/61eB6EiIgIOnbsWOj2qampmEwmkpKSHlhMIiIiIvLoysqyzPKwUNIu98RkMuW7REREWDrEB+LIkSO88MIL9/WYe/bsMbt35cqVo23bthw/fvwfHfdOyfY777xDdHT0Pzq2iIiIiIj8OzSmXe5Jenq68ec1a9Ywfvx4Tp06ZWwrVaqUJcK6Z9evX6dkyZIFtitXrtwDi+HUqVM4OjqSlpZGZGQkbdq04eTJkzg5Od31sa5fv37HffdyPBERERERsQxV2uWeuLq6GouTkxMmk8ls2759+6hXrx42NjZUqVKFiRMncvPmzTse78cff6R79+6UKVMGZ2dnOnToQGpqKgAnTpzAysqK3377DYDz589jZWVF165djc9PmzaNhg0bGut79+6lfv36WFtb4+bmxujRo83OHxQUxODBgxk2bBhly5alVatWecY1adIkypcvb1Srb+8ebzKZWLJkCeHh4dja2uLl5cWmTZvMjrFp0ya8vLwoVaoUwcHBxMTEYDKZ+OOPP8zaubi44OrqSv369Zk5cyY///wzhw4d4uzZs3To0IHy5ctjb29PYGAgO3fuNPush4cHU6ZMISIiAicnJ55//nkqV64MQJ06dTCZTAQFBQG5u8dv3bqVxo0bU7p0aZydnWnfvj1nz57N+4sSEREREbnPMrOyLbI8LJS0y323bds2nnnmGSIjI0lOTmbhwoVER0czderUPNtfvnyZ4OBg7O3t2bdvH/v378fe3p42bdpw/fp1fH19cXZ2Zu/evQDs27cPZ2dn9u3bZxxjz549NGvWDLj1ACA0NJTAwECOHz/Ou+++y9KlS5kyZYrZeWNiYihevDgHDhxg4cKFZvuys7N55ZVXWLp0Kfv376d27dp3vN6JEyfSrVs3vvzyS0JDQ+nduze///47cKuLepcuXejYsSNJSUm8+OKLjB07tsB7mNNT4caNG1y8eJHQ0FB27tzJsWPHCAkJISwsjLS0NLPPzJgxA19fXxITE4mKiuLzzz8HYOfOnaSnpxMXF5fnuS5dusSwYcM4cuQIu3btwsrKivDwcLIepoE+IiIiIiL/pdQ9Xu67qVOnMnr0aPr16wdAlSpVmDx5MqNGjeKNN97I1T42NhYrKyuWLFmCyWQCYPny5ZQuXZo9e/bQunVrmjZtyp49e+jcuTN79uyhX79+xMTEkJycjLe3NwkJCQwdOhSABQsW4O7uzvz58zGZTPj4+PDTTz/x2muvMX78eKysbj2r8vT0ZPr06bniuXnzJn379uXo0aMcOHCAChUq5Hu9ERER9OzZE4A333yTefPm8fnnn9OmTRvee+89qlWrxowZMwCoVq0aX3311R0fYABkZGQwceJEHBwcqF+/Pi4uLvj7+xv7p0yZwvr169m0aRODBw82tjdv3pwRI0YY6zk9FZydnXF1db3j+Tp37my2vnTpUlxcXEhOTsbX1zffaxcRERER+aeyMi0dQdGmpF3uu8TERI4cOWKWmGZmZnL16lUuX76Mra1trvZnzpzBwcHBbPvVq1eNbtpBQUEsWrQIuNX1ffLkyXz33Xfs3buXP//8kytXrtCoUSMAUlJSaNiwofEAAKBRo0ZcvHiRc+fOUbFiRQACAgLyjH/o0KFYW1tz6NAhypYtW+D11qpVy/iznZ0dDg4O/PLLL8CtceqBgYFm7evXr5/ncXIeDly6dAkvLy8+/PBDXFxcuHTpEhMnTmTz5s389NNP3Lx5kytXruSqtN/pegpy9uxZoqKiOHToEL/99ptRYU9LSytU0n7t2jWuXbtmtu1GdhYlTOrIIyIiIiLyTylpl/suKyuLiRMn0qlTp1z7bGxs8mxfr149Vq5cmWtfzsRvQUFBvPLKK5w5c4avvvqKJk2acPbsWfbu3csff/xBvXr1jKQ/OzvbLGHP2QaYbbezs8sz/latWrF69Wq2bdtG7969C7zeEiVKmK2bTCYj8c0vltvFx8fj6OhIuXLlcHR0NLaPHDmSbdu28fbbb+Pp6UmpUqXo0qVLrsnm7nQ9BQkLC8Pd3Z3Fixfz+OOPk5WVha+vb76T2f3dtGnTmDhxotm2p/GgI1XuKR4REREREfn/lLTLfVe3bl1OnTqFp6dnoduvWbMGFxcXs2T173LGtU+ZMgV/f38cHR1p1qwZ06ZN4/z588Z4doAaNWqwbt06s4Q5ISEBBwcHnnjiiQLjefrppwkLC6NXr14UK1aMHj16FOo68uLj48OWLVvMth09ejTPtpUrV6Z06dK5tsfHxxMREUF4eDgAFy9eNLq+5ydnNvzMzDv3N8rIyCAlJYWFCxfSpEkTAPbv31/gsf9uzJgxDBs2zGxbrFOHuzqGiIiIiDy6sh6iSeEsQf1X5b4bP34877//PhMmTODrr78mJSWFNWvWMG7cuDzb9+7dm7Jly9KhQwfi4+ONbu+vvPIK586dA25Vr5s2bcoHH3xgzIJeq1Ytrl+/zq5du4xtAIMGDeKHH35gyJAhnDx5ko0bN/LGG28wbNgwYzx7QcLDw1mxYgXPPvssH3300T3fixdffJGTJ0/y2muv8c0337B27VrjHem3V+DvxNPTk7i4OJKSkjh+/Di9evUq1CRxLi4ulCpViq1bt/K///u//Pnnn7na5MzWv2jRIs6cOcPu3btzJeAFsba2xtHR0WxR13gRERERkftD/7KW+y4kJITNmzezY8cOAgMDadCgAbNmzaJSpUp5tre1tWXfvn1UrFiRTp06Ub16dfr378+VK1fMKu/BwcFkZmYaCbrJZDKqw40bNzbaPfHEE2zZsoXPP/8cf39/Bg4cyHPPPXfHhwZ30qVLF2JiYujTp88dZ14vSOXKlfnoo4+Ii4ujVq1avPvuu8bs8dbW1oU6xuzZsylTpgxPPfUUYWFhhISEULdu3QI/V7x4cebOncvChQt5/PHH6dAhd/XbysqK2NhYEhMT8fX1ZejQocakeSIiIiIi/4asTMssDwtT9p0G2IrIAzF16lTee+89fvjhB0uH8sAst2ph6RCKlOIlCter4t/Qe03eD8/+bTGdUi0dQpHSL87D0iEAsKLL95YOwRAX8ZKlQwDg2Y2LLB0CANvX97N0CACMfGuVpUMwnPmqaLya9KcfCjcHzINWVP7OdIp+19IhALC7fdH4OwMQtCna0iEA8GzWLkuHcEeH/MMsct4Gxz+2yHnvlsa0izxgCxYsIDAwEGdnZw4cOMCMGTPMXtUmIiIiIvIo05j2/ClpF3nATp8+zZQpU/j999+pWLEiw4cPZ8yYMZYOS0REREREHgJK2kUesNmzZzN79mxLhyEiIiIiIg8hJe0iIiIiIiJiMYV4MdIjTbPHi4iIiIiIiBRRqrSLiIiIiIiIxWRlaiK6/KjSLiIiIiIiIlJEKWkXERERERERKaLUPV5EREREREQsJlMT0eVLlXYRERERERGRIkqVdhEREREREbEYTUSXP1XaRURERERERIooVdpF5L7b83SEpUMAIGhTtKVDAODmjaLz9PjZ6CBLhwBAENGWDqFI2fT8OUuHAMDu9v0sHYKh47IFlg4BgPOWDuD/BDZdaukQANhj6QD+poxz0fhnbFH5e1NU/s582n2ApUMAIGTNEkuHYCgq/y561tIB5CNLY9rzpUq7iIiIiIiISBGlpF1ERERERESkiCoa/YpERERERETkkZSVVXSGEhZFqrSLiIiIiIiIFFGqtIuIiIiIiIjFZGVaOoKiTZV2ERERERERkSJKSbuIiIiIiIhIEaXu8SIiIiIiImIxmoguf6q0i4iIiIiIiBRRStqlSImIiKBjx44WP8aDsGfPHkwmE3/88YelQxERERERKTIysyyzPCyUtEuB3nvvPRwcHLh586ax7eLFi5QoUYImTZqYtY2Pj8dkMvHNN9/822Fa3LFjx+jatSvly5fHxsYGb29vnn/++UfyXoiIiIiIyP2hpF0KFBwczMWLFzl69KixLT4+HldXV44cOcLly5eN7Xv27OHxxx/H29v7rs6RmZlJVtZD9LjrNps3b6ZBgwZcu3aNlStXkpKSwooVK3ByciIqKsrS4Rlu3Lhh6RBERERERMxkZWZbZHlYKGmXAlWrVo3HH3+cPXv2GNv27NlDhw4dqFq1KgkJCWbbg4ODOX/+PH379qVMmTLY2trStm1bTp8+bbSLjo6mdOnSbN68mRo1amBtbc3333+f69yJiYm4uLgwdepUACZMmEDt2rVZuHAh7u7u2Nra0rVr13y7nG/dupXGjRtTunRpnJ2dad++PWfPnjVrc+7cOXr06MFjjz2GnZ0dAQEBHD582Nj/8ccfU69ePWxsbKhSpQoTJ040eh5cvnyZZ599ltDQUDZt2kTLli2pXLkyTz75JG+//TYLFy68Y2zr1q2jZs2aWFtb4+HhwcyZM832L1iwAC8vL2xsbChfvjxdunQx9nl4eDBnzhyz9rVr12bChAnGuslk4r333qNDhw7Y2dkxZcqUAq8n5z5XrFgRa2trHn/8cSIjI+94DSIiIiIi8uAoaZdCCQoK4rPPPjPWP/vsM4KCgmjWrJmx/fr16xw8eJDg4GAiIiI4evQomzZt4uDBg2RnZxMaGmpW6b18+TLTpk1jyZIlfP3117i4uJidc8+ePbRo0YKJEycyduxYY/uZM2dYu3YtH3/8MVu3biUpKYmXX375jrFfunSJYcOGceTIEXbt2oWVlRXh4eFGZf/ixYs0a9aMn376iU2bNnH8+HFGjRpl7N+2bRvPPPMMkZGRJCcns3DhQqKjo40HCdu2beO3335j1KhReZ6/dOnSeW5PTEykW7du9OjRgxMnTjBhwgSioqKIjo4G4OjRo0RGRjJp0iROnTrF1q1badq06R2v807eeOMNOnTowIkTJ+jfv3+B1/PRRx8xe/ZsFi5cyOnTp9mwYQN+fn53fV4REREREfnn9Mo3KZSgoCCGDh3KzZs3uXLlCseOHaNp06ZkZmYyd+5cAA4dOsSVK1do3LgxAwYM4MCBAzz11FMArFy5End3dzZs2EDXrl2BW121FyxYgL+/f67zbdy4kT59+rBw4UJ69uxptu/q1avExMRQoUIFAObNm0e7du2YOXMmrq6uuY7VuXNns/WlS5fi4uJCcnIyvr6+rFq1il9//ZUjR47w2GOPAeDp6Wm0nzp1KqNHj6Zfv34AVKlShcmTJzNq1CjeeOMNoweBj4/PXd3TWbNm0aJFC6P7vLe3N8nJycyYMYOIiAjS0tKws7Ojffv2ODg4UKlSJerUqXNX5wDo1asX/fv3N9b79OmT7/WkpaXh6upKy5YtKVGiBBUrVqR+/fp3fV4RERERkcJ4iEfJ/itUaZdCCQ4O5tKlSxw5coT4+Hi8vb1xcXGhWbNmHDlyhEuXLrFnzx4qVqzIqVOnKF68OE8++aTxeWdnZ6pVq0ZKSoqxrWTJktSqVSvXuQ4fPkznzp2JiYnJlbADVKxY0UjYARo2bEhWVhanTp3KM/azZ8/Sq1cvqlSpgqOjI5UrVwYgLS0NgKSkJOrUqWMk7LdLTExk0qRJ2NvbG8vzzz9Peno6ly9fJjv73sbDpKSk0KhRI7NtjRo14vTp02RmZtKqVSsqVapElSpV6NOnDytXrjSbP6CwAgIC7up6unbtypUrV6hSpQrPP/8869evN+s6f7tr165x4cIFsyUzU2PnRURERETuByXtUiienp5UqFCBzz77jM8++4xmzZoB4OrqSuXKlTlw4ACfffYZzZs3v2MSm52djclkMtZLlSpltp6jatWq+Pj4sGzZMq5fv15gbDnHyOtYAGFhYWRkZLB48WIOHz5sjFXPOXapUqXyPX5WVhYTJ04kKSnJWE6cOMHp06eNWeIBTp48WWCsf3f7/cjZlsPBwYEvvviC1atX4+bmxvjx4/H39zfG71tZWeW613lNNGdnZ3dX1+Pu7s6pU6f4n//5H0qVKsWgQYNo2rTpHSexmzZtGk5OTmbLidMf39W9EBEREZFHlyaiy5+Sdim04OBg9uzZw549ewgKCjK2N2vWjG3btnHo0CGCg4OpUaMGN2/eNJvILSMjg2+++Ybq1asXeJ6yZcuye/duzp49S/fu3XMli2lpafz000/G+sGDB7GysspzxvqMjAxSUlIYN24cLVq0oHr16pw/f96sTa1atUhKSuL333/PM566dety6tQpPD09cy1WVla0bt2asmXLMn369Dw/f6dJ8mrUqMH+/fvNtiUkJODt7U2xYsUAKF68OC1btmT69Ol8+eWXpKamsnv3bgDKlStHenq68dkLFy7w3Xff5Xmuu7keuPUg4+mnn2bu3Lns2bOHgwcPcuLEiTyPN2bMGP7880+zxc8rrMA4RERERESkYBrTLoUWHBzMyy+/zI0bN4xKO9xK2l966SWuXr1KcHAw7u7udOjQgeeff56FCxfi4ODA6NGjeeKJJ+jQoUOhzuXi4sLu3bsJDg6mZ8+exMbGUrz4rZ+rjY0N/fr14+233+bChQtERkbSrVu3PMezlylTBmdnZxYtWoSbmxtpaWmMHj3arE3Pnj1588036dixI9OmTcPNzY1jx47x+OOP07BhQ8aPH0/79u1xd3ena9euWFlZ8eWXX3LixAmmTJmCnZ0dS5YsoWvXrjz99NNERkbi6enJb7/9xtq1a0lLSyM2NjZXbMOHDycwMJDJkyfTvXt3Dh48yPz581mwYAFw6zVy3377LU2bNqVMmTJs2bKFrKwsqlWrBkDz5s2Jjo4mLCyMMmXKEBUVZST7+SnoeqKjo8nMzOTJJ5/E1taWFStWUKpUKSpVqpTn8aytrbG2tjbbVqxYiQLjEBERERGRgqnSLoUWHBzMlStX8PT0pHz58sb2Zs2a8ddff1G1alXc3d0BWL58OfXq1aN9+/Y0bNiQ7OxstmzZQokShU/mXF1d2b17NydOnKB3795kZmYCt7rqd+rUidDQUFq3bo2vr6+R6N7OysqK2NhYEhMT8fX1ZejQocyYMcOsTcmSJdm+fTsuLi6Ehobi5+fHf/7zHyMBDgkJYfPmzezYsYPAwEAaNGjArFmzzJLYDh06kJCQQIkSJejVqxc+Pj707NmTP//803jN2u3q1q3L2rVriY2NxdfXl/HjxzNp0iQiIiKA/8fencfluO3/43/dzaVUKiSVklKEDBkyZchMmWXMbCPbkHmet7HYyKzYyMwmGcqYDEmTlNBkyJAhGmh4//7o13W6Vbbz/Zxr3dc51vPx6PHQdd37rNe57qF7XWut9yqqOn/ixAm0a9cOtra28PX1xaFDh1CnTh0ARSPcrVu3Rvfu3dG1a1e4urqiZs2a/3hd/+n/j56eHnbu3AknJyfUq1cPwcHB+Pvvv2FgYPCP/9scx3Ecx3Ec9+8qLFTMz38LGf2/VtHiOAVYvHgxTp06hcjISEVH4X5guOt+RUcAALQ9s0/RESTnas8Rio4AgD8339M3kMbEt5NOQxQdQcBfI9w/4e8beVJ5z1wYMFrREQAAnQJ2KTqCQCp/e/1ODVV0hHIdqeiikHb7Z15USLv/Lml82nEcx3Ecx3Ecx3G/pMJCPo78I3x6PMdxHMdxHMdxHMdJFO+0c/9VFi9ezKfGcxzHcRzHcRz3y+DT4zmO4ziO4ziO4ziF+f/rTXPl4CPtHMdxHMdxHMdxHCdRfKSd4ziO4ziO4ziOUxheiO7H+Eg7x3Ecx3Ecx3Ecx0kUH2nnOI7jOI7jOI7jFKaQr2n/IT7SznEcx3Ecx3Ecx3E/YevWrbCwsICGhgYaNWqEGzdu/PDx165dQ6NGjaChoQFLS0v4+vr+223yTjvHcRzHcRzHcRzH/YOAgAD8/vvvmDdvHh48eIBWrVqhS5cuSE1NLfPxSUlJ6Nq1K1q1aoUHDx5g7ty58PT0xPHjx/+tdnmnneM4juM4juM4jlOYwkJSyM+/a8OGDRg1ahRGjx4NW1tbeHt7w9TUFNu2bSvz8b6+vjAzM4O3tzdsbW0xevRojBw5EuvWrfu32uWddo7jOI7jOI7jOO6X8/XrV2RmZsr9fP36tczHx1V9cAAAv1BJREFUfvv2Dffv34eLi4vccRcXF9y6davM/yYsLKzU4zt16oTw8HDk5eX9fFDiOI6TmNzcXFq0aBHl5ubyHBLKIaUsPIc0c0gpC8/Bc/y3ZOE5pJlDSlmkkuN/0aJFiwiA3M+iRYvKfOyLFy8IAIWGhsodX7FiBVlbW5f539SqVYtWrFghdyw0NJQA0MuXL386p4yI+KZ4HMdJSmZmJnR1dfHp0ydUrFiR55BIDill4TmkmUNKWXgOnuO/JQvPIc0cUsoilRz/i75+/VpqZF1dXR3q6uqlHvvy5UuYmJjg1q1baN68uXB8xYoV2L9/P+Lj40v9N9bW1vDw8MCcOXOEY6GhoWjZsiVevXqFqlWr/lROvuUbx3Ecx3Ecx3Ec98spr4NeFkNDQygrKyM9PV3u+Js3b1ClSpUy/5uqVauW+XgVFRUYGBj8dE6+pp3jOI7jOI7jOI7jfkBNTQ2NGjXCpUuX5I5funQJLVq0KPO/ad68eanHX7x4EY0bN4aqqupPt8077RzHcRzHcRzHcRz3D6ZNm4Zdu3Zhz549ePToEaZOnYrU1FSMHz8eADBnzhwMGzZMePz48eORkpKCadOm4dGjR9izZw92796NGTNm/Fvt8unxHMdJjrq6OhYtWvTT05V4jl8vC88hzRxSysJz8Bz/LVl4DmnmkFIWqeTggAEDBiAjIwNLly7Fq1evULduXQQGBsLc3BwA8OrVK7k92y0sLBAYGIipU6diy5YtqFatGjZt2oQ+ffr8W+3yQnQcx3Ecx3Ecx3EcJ1F8ejzHcRzHcRzHcRzHSRTvtHMcx3Ecx3Ecx3GcRPFOO8dxHMdxHMdxHMdJFO+0cxzHcRzHcRzHcZxE8erxHMdxHMdxHMcpRGZmZpnHZTIZ1NXVoaamxjgRx0kPrx7PcZxk5Ofn4+rVq3j69Cnc3d2ho6ODly9fomLFitDW1lZ0PI4DACQlJSE/Px+1atWSO56YmAhVVVXUqFFDMcEk5OPHj9DT01N0DI7j/gsoKSlBJpOVe7569eoYMWIEFi1aBCWl//wk4ejo6J9+bL169f7j7f+MgoICxMTEwNzcHPr6+grJwCkWH2nnOE4SUlJS0LlzZ6SmpuLr16/o2LEjdHR0sGbNGuTm5sLX11e0tvX19X/4haGk9+/fi5ajpNevX2PGjBkIDg7Gmzdv8P391YKCAtHaluL1KPbixQuEhobizZs3KCwslDvn6enJJMOIESMwcuTIUp32O3fuYNeuXbh69apobUvxufnjjz9Qo0YNDBgwAADQv39/HD9+HFWrVkVgYCDq168vWtvTpk376cdu2LBBtBzcvy8zMxMhISGwsbGBra2touMwFxERAVVVVdjb2wMATp8+jb1798LOzg6LFy/+pUaX9+3bh3nz5mHEiBFwdHQEEeHevXvw8/PD/Pnz8fbtW6xbtw7q6uqYO3fuf7z9Bg0aQCaTlfo7W6z4nEwmE/Vvb0m///477O3tMWrUKBQUFKBNmza4desWtLS0cPbsWbRt25ZJDk46eKed4zhJmDJlCho3boyoqCgYGBgIx93c3DB69GhR2/b29hb1f///xYgRI5CamooFCxbA2Nj4pztq/wlSvB4AsHfvXowfPx5qamowMDCQuyYymYxZp/3BgwdwcnIqdbxZs2aYNGmSqG1L8bnZvn07Dhw4AAC4dOkSLl26hPPnz+PIkSPw8vLCxYsXRWv7wYMHP/U4lu8fAPDz84OhoSG6desGAJg5cyZ27NgBOzs7HDp0CObm5qK2v2nTpp9+LKv3Tf/+/dG6dWtMmjQJOTk5aNy4MZKTk0FEOHz4MPr06SNa2w4ODj/9GoiIiBAtR0njxo3D7NmzYW9vj2fPnmHgwIFwc3PD0aNHkZ2dLep7XWojy35+fli/fj369+8vHOvZsyfs7e2xfft2BAcHw8zMDCtWrBCl056UlPQf/9/8vzp27BiGDBkCAPj777+RlJSE+Ph4+Pv7Y968eQgNDVVwQo41Pj2e4zhJMDQ0RGhoKGxsbKCjo4OoqChYWloiOTkZdnZ2yM7OVnREpnR0dHDjxg00aNBA0VEkw9TUFOPHj8ecOXNEmSL5s3R1dXH16lU4ODjIHb9//z7atm2Lz58/KyiZYmhqauLx48cwNTXFlClTkJubi+3bt+Px48do2rQpPnz4oOiIzNnY2GDbtm1o164dwsLC0L59e3h7e+Ps2bNQUVHBiRMnRG3fwsLipx4nk8nw7NkzUbMUq1q1Ki5cuID69evj4MGDWLRoEaKiouDn54cdO3b89A2Y/xdLliz56ccuWrRItBwl6erqIiIiAjVr1sQff/yBkJAQXLhwAaGhoRg4cCDS0tJEa7t4OrpURpa1tLQQFRVV5pKj+vXrIzs7G0lJSahTp84v811AQ0MDT548QfXq1TF27FhoaWnB29sbSUlJqF+/frl1ALj/XXykneM4SSgsLCzzy8Hz58+ho6OjgERATk4O8vLy5I5VrFiRSdumpqblfqFSFEVeDwDIzs7GwIEDFdphB4BWrVph1apVOHToEJSVlQEULVdYtWoVWrZsqZBMinxu9PX1kZaWBlNTUwQFBWH58uUAACJiNpVUatLS0mBlZQUAOHXqFPr27YuxY8fCycmJybRWKY4cfvr0CZUqVQIABAUFoU+fPtDS0kK3bt3g5eUlatusOuL/DiISlvhcvnwZ3bt3B1D02f/u3TtR25ba66N69erYvXs3Vq9eLXd89+7dMDU1BQBkZGQwXcsdFxeH1NRUfPv2Te54z549mbRfpUoVxMXFwdjYGEFBQdi6dSuAor+DxX93uF8L77RzHCcJHTt2hLe3N3bs2AGg6E7/ly9fsGjRInTt2pVZjqysLMyaNQtHjhxBRkZGqfOsOiHe3t6YPXs2tm/frtDCZlK5HgAwatQoHD16FLNnz2bWZlnWrFmD1q1bw8bGBq1atQIA3LhxQ1ijy4pUnpvevXvD3d0dtWrVQkZGBrp06QIAiIyMFDqurNy7dw9Hjx4t88u22KPbJWlrayMjIwNmZma4ePEipk6dCqBo9CwnJ4dZDikxNTVFWFgYKlWqhKCgIBw+fBgA8OHDB2hoaCg4HXuNGzfG8uXL0aFDB1y7dg3btm0DUNShrlKliqhti70849+1bt069OvXD+fPn0eTJk0gk8lw7949xMfH49ixYwCK3tvFdTPE9OzZM7i5uSEmJkZuNkLx8gpWn6seHh7o37+/sDyuY8eOAIpqp9SuXZtJBk5aeKed4zhJ2LBhA9q1awc7Ozvk5ubC3d0diYmJMDQ0xKFDh5jlmDlzJq5cuYKtW7di2LBh2LJlC168eIHt27eXGgX4T/u+yFhWVhZq1qwJLS0tqKqqyj2WVZExRV6P761atQrdu3dHUFAQ7O3tS10TVoXG7OzsEB0djT///BNRUVHQ1NTEsGHDMGnSJGEkkQWpPDcbN25EjRo1kJaWhjVr1gg7Pbx69Qq//fYbsxyHDx/GsGHD4OLigkuXLsHFxQWJiYlIT0+Hm5sbsxxA0U3I0aNHw8HBAY8fPxbWtj98+FAhN+GeP3+OM2fOlHkzg9X75vfff8fgwYOhra0NMzMzYcbB9evXhWJsLBQUFGDjxo04cuRImdeD1Wert7c3Bg8ejFOnTmHevHnCDa5jx46hRYsWTDKUpMiR5Z49eyIhIQG+vr54/PgxiAhdunTBqVOnhPfLhAkTRM8BFNXXsbCwwOXLl2FpaYm7d+8iIyMD06dPx7p165hkAIDFixejbt26SEtLQ79+/aCurg4AUFZWVviNa04x+Jp2juMkIycnB4cPH8b9+/dRWFiIhg0bYvDgwdDU1GSWwczMDP7+/mjbti0qVqyIiIgIWFlZYf/+/Th06BACAwNFa9vPz++nHzt8+HDRcpSkyOvxvWXLlmHRokWwsbFBlSpVShWiYznKLQVSem6koF69ehg3bhwmTpwo1MWwsLDAuHHjYGxs/G+ta/6/+vjxI+bPn4+0tDRMmDABnTt3BlA0TVtNTQ3z5s1jliU4OBg9e/aEhYUFEhISULduXaEAXMOGDZm+b8LDw5GWloaOHTsKN3fOnTsHPT29Mos7imHhwoXYtWsXpk2bhgULFmDevHlITk7GqVOnsHDhQmaF+cqTm5sLZWXlUjclxSKVkWWpMDQ0REhICOrVqwddXV3cvXsXNjY2CAkJwfTp00WtvVCe3NzcX3I2Cvcd4jiOU7Bv376RhYUFPXz4UNFRqEKFCpScnExERCYmJnTnzh0iInr27BlVqFBBkdEUQkrXQ09Pj/bu3cu0zfJcv36dBg8eTM2bN6fnz58TEZG/vz/duHGDWQYpPTf+/v7k5ORExsbGQqaNGzfSqVOnmGXQ0tKipKQkIiIyMDCg6OhoIiKKi4ujqlWrMsshNU2aNKEFCxYQEZG2tjY9ffqUPn/+TD179qStW7cyz/P161eKj4+nvLw85m0TEVlaWtLZs2eJqOh6PHnyhIiIfHx8aNCgQUyzfPjwgXbu3EmzZ8+mjIwMIiK6f/++8JnCQvfu3alXr1705s0b0tbWpri4OLpx4wY5OjrS9evXmeX48OEDXbhwgfbv309+fn5yPyzp6enR06dPiajotRISEkJERE+ePCFNTU1mOfLz82np0qVUrVo1UlZWFjLNnz+fdu3axSwHJx2KrebDcRwHQFVVFV+/fmW+LVNZiivWA0XToI8cOQKgaMsVPT09ZjkyMzPL/Pn8+XOp6Ytiksr1AAB1dXVmo3E/cvz4cXTq1AmampqIiIjA169fAQCfP3/GypUrmeWQynOzbds2TJs2DV26dMHHjx+FkTk9PT2mW9RVqlRJqNxvYmKC2NhYAEWj3oqoOH3jxg0MGTIELVq0wIsXLwAA+/fvx82bN5nmePTokTAzR0VFBTk5OdDW1sbSpUvxxx9/MMuRnZ2NUaNGQUtLC3Xq1EFqaiqAoi3nWC7nSE9PF6bja2tr49OnTwCA7t2749y5c8xyREdHo1atWvjjjz+wbt06fPz4EQBw8uRJzJkzh1mOsLAwLF26FEZGRlBSUoKSkhJatmyJVatWMZt18Pfff8PMzAxdunTBpEmTMGXKFOHn999/Z5KhWN26dYUt8Zo2bYo1a9YgNDQUS5cuhaWlJbMcK1aswL59+7BmzRqoqakJx+3t7bFr1y5mOTgJUfRdA47jOCKiVatW0fDhwxU2+lJsw4YN5OPjQ0REISEhpKmpSWpqaqSkpETe3t7McshkMlJSUir3x8zMjBYuXEgFBQWi5pDK9SAiWrlyJU2ePJlpm2Vp0KCBMPpTPHJJRPTgwQOqUqUKsxxSeW5sbW3p5MmTRCR/PWJiYsjAwIBZjkGDBtH69euJiGj58uVkZGREo0ePJnNzc3Jzc2OWg4jo2LFjpKmpSaNHjyZ1dXXhmmzZsoW6dOnCNEuVKlWEWUx2dnZ0+vRpIiKKjIxkOiPD09OTGjVqRDdu3KAKFSoI1+T06dPUoEEDZjmsra3p9u3bRETUsmVLWrVqFRERHT58mIyMjJjlaN++PXl5eRGR/PsmNDSUzM3NmeWQwshyrVq1aMqUKZSVlcWkvR8JCgqi48ePExHR06dPydbWlmQyGRkaGlJwcDCzHDVr1qTLly8Tkfzr49GjR6Snp8csBycdvBAdx3GScOfOHQQHB+PixYuwt7dHhQoV5M6zqvxcXOUZAJydnREfH4/w8HDUrFkT9evXZ5IBAPbt24d58+ZhxIgRcHR0BBHh3r178PPzw/z58/H27VusW7cO6urqmDt3rmg5pHI9AODu3bsICQnB2bNnUadOnVJrPlm9RhISEtC6detSxytWrCiMlrEglecmKSmp1J71QNHMiKysLGY5/vzzT+Tm5gIA5syZA1VVVdy8eRO9e/fGggULmOUAgOXLl8PX1xfDhg0TqqQDQIsWLbB06VKmWZo1a4bQ0FDY2dmhW7dumD59OmJiYnDixAk0a9aMWY5Tp04hICAAzZo1k5tVZWdnh6dPnzLL4ebmhuDgYDRt2hRTpkzBoEGDsHv3bqSmpsq9p8R27949bN++vdRxExMTpKenM8tRPLJsaWkpjCyrqalhx44dzEaWX7x4AU9PT2hpaTFp70c6deok/NvS0hJxcXF4//59qUKxYnvx4kWZu28UFhaW2t6T+zXwTjvHcZKgp6eHPn36KDpGKWZmZjAzM2Perp+fH9avX4/+/fsLx3r27Al7e3ts374dwcHBMDMzw4oVK0TttH9PUdcDKHqN9O7dWyFtl2RsbIwnT56UqgJ+8+ZNptMnv6eo58bCwgKRkZGltpE6f/487OzsmOUoWblfSUkJM2fOxMyZM5m1X5JUbuwARdXhv3z5AqCoIvWXL18QEBAAKysrbNy4kVmOt2/fonLlyqWOZ2VlMe0MlZyK37dvX1SvXh23bt2ClZUVsz24gaLt/zIzM0sdT0hIgJGREbMc8+fPF26uLV++HN27d0erVq1gYGCAgIAAJhk6deqE8PBwhX5+/gjLXUGK1alTBzdu3Cj1uXr06NEyb5Jy//t4p53jOEnYu3evwtretGkTxo4dCw0NDWzatOmHj2W1xi8sLAy+vr6ljjs4OCAsLAwA0LJlS2Fd6H+SFK8HoNjXSEnjxo3DlClTsGfPHshkMrx8+RJhYWGYMWMGFi5cKGrbUnxuvLy8MHHiROTm5oKIcPfuXRw6dAirVq0Sfe1lZmYmKlasKPz7R4ofx4KUbuyUbE9LSwtbt25l2n6xJk2a4Ny5c5g8eTKAf1Un37lzJ5o3b66QTEDRTASWMw6K9erVC0uXLhVqUchkMqSmpmL27NlMb2BLYWS5W7du8PLyQlxcXJnbeYp9M6V3797Yt28fKlas+I83hlnN6Fq0aBGGDh2KFy9eoLCwECdOnEBCQgL8/f1x9uxZJhk4aeFbvnEc98uzsLBAeHg4DAwMYGFhUe7jZDIZnj17xiSTtbU1evfuXapA0+zZs3Hy5EkkJCQgPDwcvXr1Eopc/adI8XpIzbx587Bx40ZhOra6ujpmzJiBZcuWidquVJ+bnTt3Yvny5UhLSwNQNMV38eLFGDVqlKjtKisr49WrV6hcuTKUlJTK7GQQEWQyGdOtq9asWQM/Pz/s2bMHHTt2RGBgIFJSUjB16lQsXLgQkyZNYpZFKm7duoXOnTtj8ODB2LdvH8aNG4eHDx8iLCwM165dQ6NGjURr+8yZM+jSpQtUVVVx5syZHz6W1Wh7ZmYmunbtiocPH+Lz58+oVq0a0tPT0bx5cwQGBpZaIva/TEmp/LrYLN67Hh4e2LRpE3R0dDBixIgf3qxgefP4woULWLlypdw2uAsXLoSLiwuzDJx08E47x3GScezYMRw5cgSpqamlKqRHREQoKJVinDlzBv369UPt2rXRpEkTyGQy3Lt3D/Hx8Th27Bi6d++Obdu2ITExERs2bFB0XNE0bNgQwcHB0NfXh4ODww+/TLF+jWRnZyMuLg6FhYWws7MT9p3+leTn5+Ovv/5Cp06dULVqVbx79w6FhYVlToMWw7Vr1+Dk5AQVFRVcu3bth49t06YNk0zFFHVjByiazvv48WMYGhr+44jp+/fvRc9TLCYmBuvWrZPrhMyaNUuo5i4WJSUlpKenCzd3ysP65g4AhISEICIiQrgeHTp0EL1NKY4sc/+Sn5+PFStWYOTIkTA1NVV0HE4ieKed4zhJ2LRpE+bNm4fhw4dj586d8PDwwNOnT3Hv3j1MnDgRK1asYJJj6dKlmDFjRqmCODk5OVi7dq3o059LSk5Ohq+vLx4/fgwiQu3atTFu3LhSU27FpOjrsWTJEnh5eUFLSwtLliz54WMXLVokapbypKSkICsrC7Vr1/5hh+A/TdHPTTEtLS08evSo1NpL1lJTU2Fqalqqg0pESEtLU8h6f0Xd2PHz88PAgQOhrq6Offv2/bDTXrwdHCe+kjdTRo4cCR8fH+jo6DDPIdWRZSlo164dTpw4UWrbzMzMTLi6uiIkJIRJDm1tbcTGxjL9e89JG++0cxwnCbVr18aiRYswaNAg6OjoICoqCpaWlli4cCHev3+PP//8k0mOktNtS8rIyEDlypWZj8IomlSuR0FBAW7evIl69epBX1+fSZvf8/Pzw4cPH+T2DR47dix2794NALCxscGFCxeYjYxI5blxdnbGlClT4OrqyqS98kjlegDAp0+fUFBQUKqA1fv376GiosJ0fb1UBAYGQllZWW4NNVA0BbiwsBBdunRhksPf3x8DBgyAurq63PFv377h8OHDGDZsmGhta2trC5XalZWVkZ6ezrTonJRIsT4HID8ro6Q3b97AxMSEWeV2V1dXuLq6YsSIEUza46SPF6LjOE4SUlNT0aJFCwCApqYmPn/+DAAYOnQomjVrxqzTXrz+9XtRUVGiV5CNjo5G3bp1oaSkhOjo6B8+tl69eqJmKabI61FS8Zf9R48eKazT7uvri7Fjxwq/BwUFYe/evfD394etrS0mTZqEJUuWiF58rZhUnpvffvsN06dPx/Pnz9GoUaNSa3EV/Vr98uULNDQ0mGQoNnDgQPTo0QO//fab3PEjR47gzJkzCAwMZJZFKjczZs+eXapGB1D0vM2ePZtZp93DwwOdO3cudT0+f/4MDw8PUTvtzZs3h6urKxo1agQigqenJzQ1Nct87J49e0TLUZKiRpY3btyIwYMHQ0ND44e7GMhkMiad9pJ/c+Pi4uS23SsoKEBQUBBMTExEz1GsS5cumDNnDmJjY8v8XGW50wEnDbzTznGcJFStWhUZGRkwNzeHubk5bt++jfr16yMpKQksJgQVr/uUyWSwtraW+/JfUFCAL1++YPz48aJmaNCggXCHv0GDBpDJZGX+f2ex7lIK1+N79vb2ePbs2Q8LsInp8ePHaNy4sfD76dOn0bNnTwwePBgAsHLlSnh4eIieQ2rPzYABAwDIj4YVv3ZZvFanTZsmtLlgwQK55QIFBQW4c+cOGjRoIGqG7925c6fMWhNt27bFvHnzmGYp7/Pz69evUFNTY5YjMTGxzC0Aa9eujSdPnjDLUd7NnefPn0NXV1fUtg8cOICNGzfi6dOnkMlk+PTpk1DzQFGuXr1aqoYMAOTm5uLGjRuitZuUlFTmvxWl+G+uTCZDu3btSp3X1NTE5s2bmeWZMGECAJT5OaKI2guc4vFOO8dxktCuXTv8/fffaNiwIUaNGoWpU6fi2LFjCA8PZ7I3t7e3N4gII0eOxJIlS+S+vKmpqaFGjRqib0uUlJQkTJVU9JcYKVyP761YsUIo5FXWyIPYU45zcnLk2rh16xZGjhwp/G5paSk3OiMWqT03in6tPnjwAEBRZywmJkauI6qmpob69etjxowZTDN9/foV+fn5pY7n5eUhJyeHSYbiKccymQy7du2SW09fUFCA69evo3bt2kyyAICuri6ePXtWao3ukydPmFRKLy5kKZPJ0L59e6io/OsrcEFBAZKSktC5c2dRM1SpUkWYbWBhYYH9+/fDwMBA1DbLI6WR5ejo6HJn5Jw6dYrJ0pviAQJLS0vcvXtXbtmCmpoaKleuDGVlZdFzFCssLGTWFvffgXfaOY6ThB07dgh/pMaPH49KlSrh5s2b6NGjB5NRw+HDhwtfsjt06IDq1auL3ub3ShbyUnRRLylcj+8Vf6Hu2bOn3EgZqxFdc3Nz3L9/H+bm5nj37h0ePnyIli1bCufT09NFH6kDpPfcpKSkoEWLFnKdIKCoAvKtW7dEfy1fuXIFADBixAhs3rxZIYW9vtekSRPs2LGj1Micr6+vqFublVQ85ZiI4OvrK9fhKL654+vryyQLUPS+/f3333Hy5EnUrFkTQFGHffr06Uym+hZ3/CIjI9GpUye5mxjF14Pl/uiKvtklpZHlTp06ITQ0FJaWlnLHjx8/jmHDhiErK0v0DObm5sjLy8OwYcNQqVIlhf8N5rjv8UJ0HMdxJSi6EvY/7SFcjNV6NkVfj5IUvaXXqlWrsGnTJvz2228ICQnB27dvERsbK5z39vbG2bNncfnyZVFzFJPKcyOFNdP5+fnQ0NBAZGQk6tatK3p7/yQ0NBQdOnRAkyZN0L59ewBAcHAw7t27h4sXL6JVq1bMsjg7O+PkyZOl1iyz9unTJ3Tu3Bnh4eHCjabnz5+jVatWZa6pFkNBQQH279+PTp06wdjYWPT2/klWVhauXbtW5janYq/jTklJkczI8tKlS7F3717cunVLeF4CAgIwcuRI7Nu3D/369WOSAyhafnT//v1SNxBYW7p06Q/Ps9zJhpMGPtLOcZwk7N27F9ra2qX+OB89ehTZ2dnMtiVq2rQpHjx4oLCO0PfTAMta185yPZuir0cxIkK1atWQl5cHa2vrUqO6LMyaNQvZ2dk4ceIEqlatiqNHj8qdDw0NxaBBg5jlkdJzU9Ya4YyMDCbTngFARUUF5ubmklnn6eTkhLCwMKxduxZHjhyBpqYm6tWrh927d6NWrVrMcuTl5SElJQUvX75UeKddV1cXt27dwqVLlxAVFSVck9atWzPLoKysjPHjx+PRo0fM2izPgwcP0LVrV2RnZyMrKwuVKlXCu3fvoKWlhcqVK4veaZfSyPLChQuRkZGBDh064MaNGwgKCsLo0aOxf/9+prMfgKK/wadOnRJqZSjKyZMn5X7Py8tDUlISVFRUULNmTd5p/wXxkXaO4yTBxsYGvr6+cHZ2ljt+7do1jB07FgkJCUxyHD16FLNnz8bUqVMVWgm7WMnt7xRBCtcjOTkZvXr1Eka1TU1NceLECTRs2FD0tqVM0c9Nca2J06dPo3PnznJbaBUUFCA6Oho2NjYICgoSNUexvXv34ujRozhw4ADT6vlSZ2JigsuXL8PW1lbRUSShSZMmWL16tTADQlHatm0La2trbNu2DXp6eoiKioKqqiqGDBmCKVOmMKnlAkhnZBko2i3mzp07ePHiBQ4ePIhevXoxz7BixQqsW7cO7du3L/NzleX2c9/LzMzEiBEj4ObmhqFDhyosB6cYvNPOcZwkaGhoID4+vlSRouTkZNja2jIr3qSkpFTqGMtK2N9TdKddCtdjwIABiIyMxKJFi6ChoYG1a9eioKAAd+/eFb3tsqSlpUEmkwlTfO/evYuDBw/Czs5Obks4sSn6uSmulO/n54f+/fvLbV1VvEZ4zJgxMDQ0FDVHMQcHBzx58gR5eXkwNzcv9WU7IiKCSY7v5eTklNrbmeU+7atXr0Z8fDx27dqlkBkqJSlyOnixixcvYtasWQoraFlMT08Pd+7cgY2NDfT09BAWFgZbW1vcuXMHw4cPR3x8PJMcHh4esLe3Zz6yXNZSsLy8PEydOhUuLi5yS8BYbm/2o91JZDIZnj17xixLWWJjY9G9e3ckJycrNAfHHp8ez3GcJFSuXBnR0dGlOu1RUVFMq+squjiQ1Ejhety4cQOHDh0S1qw7OjrC3NwcOTk55e5xLCZ3d3eMHTsWQ4cORXp6Ojp27Ig6dergwIEDSE9PZzZtUdHPzd69ewEANWrUwIwZM5hNhS8PiwrTPys7OxszZ87EkSNHkJGRUeo8y5t/d+7cQXBwMC5evAh7e/tSz9OJEyeY5FD0dPBiii5oWUxVVVVov0qVKkhNTYWtrS10dXWRmprKJAMAWFlZYdmyZbh16xbTkeUfvV/37Nkj7FPP+ma5oj9X/8nHjx/x6dMnRcfgFIB32jmOk4SBAwfC09MTOjo6whrHa9euYcqUKRg4cCCzHIpeHyw1Urge6enpcltTVa9eHZqamnj9+nWpmzwsxMbGwtHREQBw5MgR1K1bF6Ghobh48SLGjx/PrNMuhecGABYtWqToCACkkwMAvLy8cOXKFWzduhXDhg3Dli1b8OLFC2zfvl3Y8osVPT095uuCyzJ16lT06NFDmA5++/ZtuengrBTvNqBoDg4OCA8Ph7W1NZydnbFw4UK8e/cO+/fvh729PbMcu3btgp6eHu7fv4/79+/LnZPJZKJ12vmWZj9WvGVjMSLCq1evsH//ftG3JuSkiU+P5zhOEr59+4ahQ4fi6NGjwhTOwsJCDBs2DL6+vnJ7L7MQFxdX5hROltP0gKKpmlFRUT+csseCIq+HsrIy0tPT5aobK/K6aGtrIzY2FjVq1EDPnj3h5OSEWbNmITU1FTY2NsyWchRT9Gv19evXmDFjBoKDg/HmzZtShROlUhyOJTMzM/j7+6Nt27aoWLEiIiIiYGVlhf379+PQoUMIDAxUdETmpDIdXCrCw8Px+fNnODs74+3btxg+fDhu3rwJKysr7N27F/Xr11d0RCby8vLg4uKC7du3w9raWtFxABTtanDmzJkyP1c3bNjAJMP3f9uUlJRgZGSEdu3aYc6cOZLY2pJji4+0cxwnCWpqaggICMCyZcuEysL29vbMRxOfPXsGNzc3xMTEyFVuL57GKHYHRF9fX27K5pcvX+Dg4FBq/fL79+9FzVFM0dcDKBphsLa2/sfrwuqa1KlTB76+vujWrRsuXbqEZcuWAQBevnzJdCmHFJ4boGh/9NTUVCxYsADGxsZlVpJnoaCgABs3bsSRI0fK/LLN6vVR3Fbxl+6KFSsKbbds2RITJkxglkNKpDIdvFh2dnaZrxNWxUYbN24s/NvIyOiXvJEDFL0uYmNjFfa58b3g4GD07NkTFhYWSEhIQN26dZGcnAwiYlr8VOrT9Dn2eKed4zhJuHr1qlBNV5F326dMmQILCwtcvnxZ2L82IyMD06dPx7p160Rv39vbW/Q2/h2Kvh7Av9ZOS8Uff/wBNzc3rF27FsOHDxdGxM6cOSNMm2dBCs8NANy8eRM3btxAgwYNmLVZliVLlmDXrl2YNm0aFixYgHnz5iE5ORmnTp1ivj2SpaUlkpOTYW5uDjs7Oxw5cgSOjo74+++/FbL12rFjx8q9mcGqQJ9UpoO/ffsWHh4eOH/+fJnnxb7ZlZOTg0uXLsHZ2bnUaGlmZiauXr2KTp06ye3GIDZFjywPGzYMu3fvZr50pCxz5szB9OnTsXTpUujo6OD48eOoXLkyBg8erNBp6ZmZmQgJCYGNjQ3fCeJXRRzHcRKgrq5OlpaWtGzZMkpLS1NYDgMDA4qKiiIioooVK1J8fDwREQUHB1ODBg0UlktR+PUoW35+Pr1//17uWFJSEr1+/ZpZBqk8N7a2thQREcGsvfJYWlrS2bNniYhIW1ubnjx5QkREPj4+NGjQIKZZNmzYQD4+PkREFBISQpqamqSmpkZKSkrk7e3NNIuPjw9pa2vTxIkTSU1NjcaNG0cdOnQgXV1dmjt3LrMc9+7do5CQECIievPmDXXp0oV0dHTIwcGBIiMjmeVwd3enFi1a0N27d6lChQp08eJF2r9/P9nY2AivHzF5e3tTu3btyj3fvn17+vPPP0XPUezy5cukpaVFderUIRUVFWrQoAHp6emRrq4uOTs7M8kwadIkqlixIjVs2JDGjh1LU6dOlfthqeRnh56eHsXGxhIRUWRkJJmbmzPL0a9fP9q8eTMREWVnZ1OtWrVIVVWVVFRU6NixY8xycNLBO+0cx0lCRkYG+fj4kIODAykrK5OLiwsFBATQ169fmebQ09Ojp0+fElFRJ6D4S+aTJ09IU1OTWY7U1FS5mxd37tyhKVOm0Pbt25llIJLO9SCSzjUp9ubNG7px4wbdvHmT3rx5w7x9qTw3Fy5cIBcXF0pKSmLWZlm0tLQoJSWFiIiqVq1K9+/fJyKip0+fUsWKFRUZjZKTk+n48eNMO6fFbGxs6ODBg0RU1CEpfs0sWLCAJk6cyDyPolWtWpXu3LlDREQ6OjqUkJBARESnT58mJycn0dtv0qQJnTlzptzzf//9NzVp0kT0HCXzLFiwgIj+9fr4/Pkz9ezZk7Zu3cokQ9u2bcv9YXXjoFiVKlXo4cOHRERkZ2dHp0+fJqKiTnuFChWY5ij+vPjrr7/IysqKsrKyaOvWrb/0DfNfGe+0cxwnOQ8ePKDJkyeToaEhVapUiSZPnszsy27Lli3p5MmTREQ0aNAg6ty5M928eZOGDRtGderUYZKhOIe/vz8REb169Yp0dHSoefPmZGBgQEuWLGGaQwrXoziLFK7Jly9fyMPDg5SVlUkmk5FMJiMVFRUaOXIkZWVlMcshledGT09PGEXW1tYmfX19uR9WrK2t6fbt20RUdG1WrVpFRESHDx8mIyMjZjmkRlNTk5KTk4mIyMjISPgsffz4MVWqVIl5ntevX9P169fpxo0bCrnZpaOjI9xgMjc3p5s3bxIR0bNnz5jc7NLT0xNuLpUlJSWF9PT0RM9RTCojy1LRq1cv2rFjBxEReXl5kZWVFS1fvpwaNmxI7du3Z5ZDQ0ODUlNTiYho6NChNGvWLCIqen2wvHnASQfvtHMcJ0kvXrygRYsWkbq6OlWoUIGUlZWpZcuWwhcKsQQFBdHx48eJqGiEztbWlmQyGRkaGlJwcLCobZekp6cnTHf28fGhFi1aEFHRqKaFhQWzHFK5HkTSuSZjx44lS0tLCgwMpE+fPtGnT5/o3LlzVLNmTRo/fjyzHFJ5bvbt2/fDH1ZmzZpFK1asICKio0ePkoqKCllZWZGamprwhZely5cvU7du3cjS0pJq1qxJ3bp1o0uXLjHPYWFhIcw6aNy4Mfn6+hJR0fuG5U2VT58+0ZAhQ0hFRUXuZtfgwYPp48ePzHI0btyYgoKCiKiogzZ06FB6/vw5zZw5kywtLUVvX1tbm8LDw8s9Hx4eTtra2qLnKCaVkeViaWlp9Pz5c+btFnv69Kmw7CgrK4smTJhA9vb25ObmJtz8YqFWrVoUEBBAX758ISMjI+EzPTIykgwMDJjl4KSDd9o5jpOMb9++0dGjR6lLly6koqJCzZo1o507d9KXL18oNTWVBg0aRLa2tqJmyM3NpS9fvsgdy8jIoMLCQlHb/V6FChWE0aAePXrQ6tWriajoLruGhgazHFK5HkTSuSYGBgZ05cqVUsdDQkLI0NCQWQ4pPTdSdPv2bVq/fr3QCWFp8+bNpKKiQgMHDiQfHx9hXb2qqqqwTpWVUaNG0eLFi4mIaNu2baSpqUkdOnQgPT09GjlyJLMc/fr1o1q1alFQUBB9+vSJMjMzKSgoiGxsbKhfv37Mchw4cID27NlDREQRERFkZGRESkpKpKGhQYcPHxa9/aZNmwqfXWVZtWoVNW3aVPQcxaQwslxQUEBLliyhihUrkpKSEikpKZGuri4tXbqUCgoKmGQgIsrMzKSLFy/SuXPn6O3bt8zaLcuWLVtIRUWF9PT0qH79+sJ12LRpE7Vt21ah2TjF4J12juMkYdKkSWRgYEAGBgY0ZcoUiomJKfWYlJQUkslkorT/9u1b6tq1K6moqJCSkhI1b95cWPupCI6OjjRr1iy6fv06aWhoCFNaw8LCyMTERPT2pXY9iBR/TYppampSXFxcqeOxsbGkpaUlevtSfG6ePHlC8+bNo4EDBwrF+M6fPy/6zJhiR44cIXd3d+rXr5/CahyUVK1atTI753/++ScZGxszzVJQUEB5eXnC7wEBATR58mTy8fFhWjNES0uLbty4Uer49evXmbxvypOVlUX3799n1knbvn07VahQgf7+++9S586cOUMVKlRg+hqWwsjy7NmzycjIiLZu3UpRUVEUGRlJW7ZsISMjI2bFEqOioqhatWqkpKREMpmMdHV1FTIzpqR79+7RiRMn6PPnz8Kxs2fPCks6uF8L77RzHCcJ7dq1o4MHD/7wS2ReXh5dvXpVlPZHjx5NVapUoRUrVtD69eupVq1a1KFDB1Ha+hlXrlwhPT09UlJSIg8PD+H4nDlzyM3NTfT2pXY9iBR/TYq1a9eO+vXrRzk5OcKx7Oxs6tevH5ORKak9N1evXhVGb9XU1IQbCH/88Qf16dNH9Pa3b99OMpmMrK2tqV69eqSkpESzZ88Wvd0f0dbWpsTExFLHHz9+zHTK8e3bt2nu3Lnk5eVFFy5cYNZuWUxNTSk6OrrU8aioKCY33bKysui3336jatWqkZGREQ0aNEhho6mDBw8mmUxGtra25OrqSm5ublS7dm1SUlKigQMHMsshlZFlY2PjMmfEnDp1iqpVq8YkQ5cuXahZs2YUGhpK9+/fp549e5KNjQ2Ttv9JYWEhn0HF8U47x3EcUdEXynPnzgm/P3r0iJSVlenbt28Ky6TIbcWkeD2IpLHVWkxMDJmYmJCBgQG1a9eO2rdvTwYGBmRiYsJkZFlqz02zZs1o/fr1RCRfnfzu3btMvnDXrVuX5s+fL/y+d+9epmuCy+Lu7k5r1qwpdXzt2rXMOmUnTpwgZWVlqlChAunq6pKSkhJt3LiRSdtl2b59O3Xo0IFevnwpHHv16hW5uLgI6+zFNGPGDNLS0qIxY8YIhU779u0rervlCQgIoF69epGdnR3Z2tpSr169KCAggFn7UhpZVldXF6r4lxQfH89s6ZORkRHdu3dP+P3du3ekpKQkN8rNmp+fH9WtW5fU1dVJXV2d7O3thWKs3K9HRkSk6L3iOY7jisXFxSE1NRXfvn2TO96zZ09R21VRUUFaWhqMjY2FY1paWnj06BHMzc1FbftH3r59i4SEBMhkMlhbW8PIyIhJu1K9HoDirklJOTk5OHDgAOLj40FEsLOzw+DBg6GpqSl621J7brS1tRETEwMLCwvo6OggKioKlpaWSE5ORu3atZGbmytq+xUqVEBMTAwsLS0BAAUFBdDU1ERqaiqqVq0qatvlWb58OdatWwcnJyc0b94cAHD79m2EhoZi+vTpqFixovBYT09PUTI0adIE9evXh6+vL1RUVLB8+XJ4e3vj3bt3orT3TxwcHPDkyRN8/foVZmZmAIDU1FSoq6ujVq1aco+NiIj4j7dfs2ZNrFixAgMHDgQA3L17F05OTsjNzYWysvJ/vD2p69q1Kz58+ID169dDQ0MDS5YsQUJCAuLj45lnadq0KZo2bYpNmzbJHZ88eTLu3buH27dvi55BSUkJ6enpqFy5snBMR0cH0dHRsLCwEL39723YsAELFizApEmT4OTkBCJCaGgotmzZguXLl2Pq1KnMM3GKpaLoABzHcQDw7NkzuLm5ISYmBjKZDMX3E2UyGYCiL+JiIiKoqMh/JKqoqKCwsFDUdsuTlZWFyZMnw9/fX8igrKyMYcOGYfPmzdDS0hK1faldD0Dx16QkTU1NjBkzhll7JUntudHT08OrV69KfbF98OABTExMRG8/JycH2trawu/KyspQV1dHdna26G2XZ/fu3dDX10dcXBzi4uKE43p6eti9e7fwu0wmE63TnpCQgL/++kt4rXh5eWHx4sV49+4dDA0NRWnzR1xdXZm3WVJaWhpatWol/O7o6AgVFRW8fPkSpqamzPNERERAVVUV9vb2AIDTp09j7969sLOzw+LFi6GmpiZq++Hh4QgMDETjxo0BAHv27EHlypXx5csXufcTC2vWrEG3bt1w+fJlNG/eHDKZDLdu3UJaWhoCAwOZZJDJZPj8+TM0NDQAFH3OFh/LzMwUHlfyhpuYNm/ejG3btmHYsGHCsV69eqFOnTpYvHgx77T/gninneM4SZgyZQosLCxw+fJlWFpa4u7du8jIyMD06dOxbt060dsnIrRv316uM5SdnY0ePXrIfXkSYwSoLNOmTcO1a9fw999/w8nJCQBw8+ZNeHp6Yvr06di2bZuo7UvtegCKvSZnzpz56ceKPStEas+Nu7s7Zs2ahaNHj0Imk6GwsBChoaGYMWOG3BdOMe3atUuuo5Gfn499+/bJdU7F6hyXJSkpiVlb5fny5Qv09PSE39XV1aGpqYnMzEyFdNoXLVrEvM2SCgoKSnWEVVRUkJ+fr5A848aNw+zZs2Fvb49nz55hwIAB6N27N44ePYrs7Gx4e3uL2v67d++EGQ8AYGBgAC0tLbx9+5Z5p71NmzZISEjA1q1bhdlLvXv3xm+//YZq1aoxyUBEsLa2LnXMwcFB+LdMJhN9AKHYq1ev0KJFi1LHW7RogVevXjHJwEkLnx7PcZwkGBoaIiQkBPXq1YOuri7u3r0LGxsbhISEYPr06Xjw4IGo7S9ZsuSnHsfqi6ehoSGOHTuGtm3byh2/cuUK+vfvj7dv34ravtSuB6DYa6KkpPRTj2PxpU5qz01eXh5GjBiBw4cPC7MACgoK4O7ujn379ok+9bhGjRrCjJzyyGQyPHv2TNQcP5Kfn4/c3FymnSElJSX4+flBV1dXODZo0CB4e3ujSpUqwjGxbzKVJTc3FwEBAcjKykLHjh1LTY8Xg5KSErp06QJ1dXXh2N9//4127dqhQoUKwrETJ06IngUAdHV1ERERgZo1a+KPP/5ASEgILly4gNDQUAwcOBBpaWmitq+srIzHjx8Ly4uICKamprh58yZq1KghPI7VyLKiXbt27ace16ZNG5GTFKlbty7c3d0xd+5cuePLly9HQEAAYmJimOTgpIN32jmOkwR9fX3cv38flpaWqFmzJnbt2gVnZ2c8ffoU9vb2Cp3qqghaWlq4f/8+bG1t5Y4/fPgQjo6OyMrKUlAyxeHXRNqePXuGiIgIFBYWwsHBgUlHTGoCAwORkZGBoUOHCsdWrFiBZcuWIT8/H+3atUNAQAD09fVFz/IzN5pY3GTy8vLCt2/f4OPjAwD49u0bHB0dERcXBy0tLeTn5+PixYtljir+J3l4ePzU4/bu3StqjmIVK1bE/fv3UatWLXTs2BHdu3fHlClTkJqaChsbG+Tk5IjavpKSUqmbXcWjySX/zWJk2cnJCW3atIGzszNatGghdxPlV3X8+HEMGDAAHTp0gJOTE2QyGW7evIng4GAcOXIEbm5uio7IMcY77RzHSUKrVq0wffp0uLq6wt3dHR8+fMD8+fOxY8cO3L9/H7Gxscyy5Ofn4+rVq3j69Cnc3d2ho6ODly9fomLFisxGytq3bw8DAwP4+/sLa+xycnIwfPhwvH//HpcvX2aSQ0oUfU1CQkIwadIk3L59u9To06dPn9CiRQv4+vrKrZsVU1JSEvLz80t1jhMTE6Gqqio3WiaWzMxMaGtrl+ogFhYW4suXLwofpfv48aPcFHGxtWvXDn369MHEiRMBALdu3UKrVq2wdOlS2NraYt68eejSpQs2bNjALJOi1a1bFytXrhRG9Pfu3SvMnjIzM8PIkSPx5s0bnDt3TsFJ2WrXrh1MTU3RoUMHjBo1CnFxcbCyssK1a9cwfPhwJCcni9q+lEaWV61ahWvXruHWrVvIzc1Fo0aN0KZNG7Rt2xYtW7ZkOkOl5Pr1kmQyGdTV1UWvNVDS/fv3sXHjRjx69EgoeDp9+nRhyj73i2FUpZ7jOO6HgoKC6Pjx40RE9PTpU7K1tSWZTEaGhoYUHBzMLEdycjLVrl2btLS0SFlZWdi+asqUKTRu3DhmORS9rVix9PR0GjJkCBkbG5OysjIpKSnJ/bCk6GvSo0cP2rBhQ7nnfXx8yNXVVfQcxVq3bk379u0rdXz//v3Upk0b0ds/ceIE1apVi7Kyskqdy8rKImtrazpz5ozoOYqtXr2aDh8+LPzet29fkslkVK1aNYqMjGSSwcjIiCIiIoTfp06dSp06dRJ+P3fuHFlZWTHJIhU6Ojpye9YPHDiQxowZI/z+4MEDMjY2VkQ0IiL69OkTnTx5kh49esS03cjISKpbty5VrFiRFi9eLByfNGkSDRo0iGkWqcjPz6ewsDBatWoVderUiVRVVUlNTY1pBplMVurvXMkfMzMzWrhwIRUUFDDNxXF8pJ3jOMl6//499PX1/3G96n+Sq6srdHR0sHv3bhgYGAjbV127dg2jR49GYmIisyyK3FasWJcuXZCamopJkybB2Ni41HPRq1cvZlkAxV4Tc3NzBAUFlZqeXyw+Ph4uLi5ITU0VPQtQNL02IiICVlZWcsefPHmCxo0b4+PHj6K27+Ligv79+2P06NFlnt+zZw8CAgJw4cIFUXMUs7S0xIEDB9CiRQtcunQJ/fv3R0BAAI4cOYLU1FRcvHhR9AyamppISEgQCnw5Ojqib9++mDlzJgAgJSUFdnZ2TJdy+Pn5wdDQEN26dQMAzJw5Ezt27ICdnR0OHTok+jaBenp6uHfvnjAjxMLCAgsWLMDIkSMBAMnJybC1tRV9Onix/v37o3Xr1pg0aRJycnJQv359JCcng4hw+PBh9OnTh0mO8uTm5kJFRaXUDhFiUXQV+5Li4+Nx7do1XL16FdeuXcO3b9/QqlUrnDx5klkGf39/zJs3DyNGjICjoyOICPfu3YOfnx/mz5+Pt2/fYt26dfDy8iq13vz/qrxR/rIoehYTpwCKvGPAcRxXUmFhIb19+5bevXunsAwGBgYUHx9PRETa2trCSHtSUhJpamoqLJeiaGtr04MHDxQdQxLU1dXlRgy/l5iYSBoaGszyVKxYUW5Ut1h4eDhpa2uL3r6xsfE/Xg+WI6gaGhqUmppKRESenp40duxYIiJKSEggPT09JhksLS0pKCiIiIg+f/5MampqdPPmTeH8/fv3ydDQkEmWYtbW1sJspVu3bpGmpiZt376devToQW5ubqK337RpU1q/fj0REcXGxpKSkhI9e/ZMOH/16lUyNzcXPUexKlWqCDMv/vrrL7KysqKsrCzaunUrNWjQgFkOCwuLMv/WffjwgSwsLJjlaNy4MR07doyIima5aWho0KBBg8jKyoqmTJnCJEP//v2patWqVLlyZerbty9t2rSJoqKimLT9vXbt2lFAQECp4wEBAdSuXTsiIvL39ycbG5v/eNv/NMqvpKQkPIb79fAt3ziOU7j09HTMnDkTZ86cwefPnwEU3UV2c3PDqlWr5Codi62wsLDMwjvPnz+Hjo6OqG1LaVuxYqampiAFTsiS0jUxMTFBTExMqZHtYtHR0TA2NhY1Q0mtWrXCqlWrcOjQIaFCe0FBAVatWoWWLVuK3v6HDx9+uF1WXl4ePnz4IHqOYvr6+khLS4OpqSmCgoKwfPlyAEUFtVht09S3b1/8/vvvmDt3LgIDA1G1alU0a9ZMOB8eHg4bGxsmWYqlpaUJr9lTp06hb9++GDt2LJycnErtxCAGLy8vDBo0COfOncPDhw/RtWtXWFhYCOcDAwPh6Ogoeo5inz59QqVKlQAAQUFB6NOnD7S0tNCtWzd4eXkxy5GcnFzm6/Lr1694/vw5sxyPHz9GgwYNAABHjx5F69atcfDgQaGKvdhbzxW3a2hoiBEjRsDZ2RmtWrVivu1csbCwMPj6+pY67uDggLCwMABAy5YtRZlRdeXKlf/4/yb3v4N32jmOU6jMzEy0aNECX758gYeHB2rXrg0iQlxcHA4dOoSbN28iIiKC2R/wjh07wtvbGzt27ABQVHzmy5cvWLRoEbp27Spq266urj/1OJZ7xXp7e2P27NnYvn07k8Jm35PSNenatSsWLlyILl26CIXwiuXk5GDRokXo3r27qBlKWrNmDVq3bg0bGxuh+N2NGzeQmZmJkJAQ0duvUaMGwsPDUbt27TLPh4eHiz71uqTevXvD3d0dtWrVQkZGBrp06QIAiIyMLPdGy3/aokWL8PLlS3h6eqJq1ao4cOCA3JZ3hw4dQo8ePZhkKaatrY2MjAyYmZnh4sWLmDp1KgBAQ0ODyZT0Pn36IDAwEOfOnYOLiwsmT54sd15LSwu//fab6DmKmZqaIiwsDJUqVUJQUBAOHz4MoOgm1PfvazGUvBF54cIFuS35CgoKEBwcLHdTQ2xEhMLCQgDA5cuXhc8wU1NTvHv3jkmG9+/f4/r167h69Srmz5+Phw8fon79+mjbti3atm0rvJdZqF69Onbv3o3Vq1fLHd+9ezdMTU0BABkZGaLsAMFqOznuv5RiB/o5jvvVLV26lKysrOjNmzelzr1+/ZqsrKxoxYoVzPI8f/6crK2tydbWllRUVKhZs2ZkYGBANjY29Pr1a2Y5FElPT4/09fWFHzU1NVJSUiJtbW254/r6+oqOylR6ejpVq1aNTE1N6Y8//qBTp07R6dOnafXq1WRqakrVqlWj9PR0pplevHhBc+bMoa5du1KfPn1oyZIllJGRwaTtuXPnkpmZWZn/n1+9ekVmZmY0d+5cJlmIiL59+0Zr164lT09PuWUDGzdupJ07dzLLITXu7u7UsGFDGjVqFGlpaQlTsk+fPk116tRRcDr2tmzZQioqKqSnp0f16tUTCopt2rSJ2rZtK3r7MplMmOJc/O/iHzU1NbK2tqa///5b9BzFnJ2dadiwYeTv70+qqqrCkhfWyxZKevLkCY0YMYJUVFSYTwU/ffo0qampUb169WjUqFE0evRoql+/PqmrqwvPy9atW2nq1KmitP/48WMaOHAgffr0qdS5jx8/0qBBg4Rle9yvhRei4zhOoZo1a4Zx48aVu4funj17sHPnTmFaGgs5OTk4fPgw7t+/j8LCQjRs2JBZsTMpbCvm5+f3048dPny4aDmKSeGaFEtJScGECRNw4cIFYdmATCZDp06dsHXrVoXMRlCUz58/o3nz5khNTcWQIUNgY2MDmUyGR48e4a+//oKpqSlu374t+rIS7sc+fvyI+fPnIy0tDRMmTEDnzp0BFM0KUFNTw7x580RrOzo6+qcfW69ePdFyfC88PBxpaWno2LGjMIvr3Llz0NPTg5OTE5MMFhYWuHfvHgwNDZm0V57o6GgMHjwYqampmDZtGhYtWgQAmDx5MjIyMnDw4EHRM7x//14oQHf16lU8fPgQlSpVQuvWreHs7CxsochKcnIyfH198fjxYxARateujXHjxjH5fB87diz09PSwZs2aMs/PmjULmZmZ2LZtm+hZOGnhnXaO4xSqUqVKCAsLK3edZ3x8PFq0aIH379+LniUvLw82NjY4e/Ys7OzsRG+vLD179oSzs7MwhfV7mzZtwpUrV5hW01U0KV6TDx8+4MmTJyAi1KpVS5Spkj/jxo0b2L59O549e4ajR4/CxMQE+/fvh4WFBZN17Z8+fcKcOXMQEBAgrF/X19fHgAEDsHLlSqZ7pAPA/v37hesRFhYGc3NzeHt7w8LCQvSdDhwcHH56p4uIiAhRs0iFkpISZDKZ3A2u8rBa8lPs27dvSEpKQs2aNZlVav9vkpubC2VlZaiqqorelrKyMgwNDdGqVSthSnzdunVFb1eKateujf3796NJkyZlnr9//z7c3d2RkJDAOBmnaPxTiuM4hcrMzPzhF3s9Pb1/axuU/wtVVVV8/fqV6RZz34uKisIff/xR7nkXFxesW7eOWZ7yrr1MJoO6ujqT7YCkdk2Aoo5peV+qWDl+/DiGDh2KwYMHIyIiAl+/fgVQNAK+cuVKBAYGip5BV1cXW7duxZYtW/Du3TsQEYyMjBTyHtq2bRsWLlyI33//HStWrBA6gXp6evD29ha90/6z9RcUQVE3d5KSkoR/P3jwADNmzICXlxeaN28OoKjo1/r168sdVRRDdnY2Jk+eLMwoevz4MSwtLeHp6Ylq1aph9uzZzLIEBwcjODgYb968EdaVF9uzZw+zHB8/fsSxY8fw9OlTeHl5oVKlSoiLi0OVKlVgYmIievtRUVGS6qR//PgRd+/eLfN5GTZsmKhtp6SkoHLlyuWeNzQ0RFpamqgZOIlS2MR8juM4IlJSUipzPXux9PR0pmvaVq1aRcOHD6e8vDxmbZYktW3F/mkLGjMzM1q4cKGwLlQMUrsmUtGgQQPy8/MjIvntCR88eEBVqlRhliM7O5uysrKE35OTk2njxo3C1mes2Nra0smTJ4lI/nrExMSQgYEB0yxScuzYMdLU1KTRo0eTurq6cF22bNlCXbp0YZajSZMmdO7cuVLHz507Rw0bNmSWw9PTkxo1akQ3btygChUqCNfj9OnTTLd8W7x4MSkpKZGjoyP16tWLXF1d5X5YiYqKIkNDQ7KysiIVFRXhesyfP5+GDh3KLEdeXh5dunSJfH19KTMzk4iKanZ8/vyZWQYiojNnzpCOjg4pKSmRrq4u6enpCT8s6rhUqVJF2KKxLJcvX2b6+c5JBx9p5zhOoYgI1tbW5Y7MEeMVPHfu3EFwcDAuXrwIe3t7VKhQQe78iRMnRG1fatuK7du3D/PmzcOIESPg6OgIIsK9e/fg5+eH+fPn4+3bt1i3bh3U1dUxd+5cUTJI7ZpIRUJCAlq3bl3qeMWKFfHx40dmOXr16oXevXtj/Pjx+PjxIxwdHaGmpoZ3795hw4YNmDBhApMcSUlJcHBwKHVcXV0dWVlZTDJI0fLly+Hr64thw4YJldIBoEWLFli6dCmzHDExMWVWRbewsEBcXByzHKdOnUJAQACaNWsm93fHzs4OT58+ZZbD19cX+/btw9ChQ5m1WZZp06bBw8MDa9askas/0aVLF7i7uzPJkJKSgs6dOyM1NRVfv35Fx44doaOjgzVr1iA3N7fMLdjEMn36dIwcORIrV66ElpYWs3aLtW7dGps3b0a7du3KPL9p0yYm9Vs46eGddo7jFGrv3r2KjiBHT08Pffr0UVj7UttWzM/PD+vXr0f//v2FYz179oS9vT22b9+O4OBgmJmZYcWKFaJ12qV2TaTC2NgYT548KVUc6ebNm7C0tGSWIyIiAhs3bgQAHDt2DFWrVsWDBw9w/PhxLFy4kFmn3cLCApGRkaW2mTt//jyTGhX6+vo/vSyARY2OYlK5uWNra4vly5dj9+7dwvv469evWL58OWxtbZnlePv2bZnTj7Oyspgu6/j27RtatGjBrL3y3Lt3D9u3by913MTEBOnp6UwyTJkyBY0bN0ZUVBQMDAyE425ubhg9ejSTDMVevHgBT09PhXTYAWDOnDlo3rw5+vbti5kzZwr1fuLj47FmzRpcuHABt27dUkg2TrF4p53jOIViUX3836Homwjz58/HiRMnYG1tjUmTJslV5N6yZQsKCgpErfb8vbCwsDJHORwcHISK/i1btkRqaqpoGaR2TaRi3LhxmDJlCvbs2QOZTIaXL18iLCwMM2bMwMKFC5nlyM7OFkboLl68iN69e0NJSQnNmjVDSkoKsxxeXl6YOHEicnNzQUS4e/cuDh06hFWrVmHXrl2it+/t7S16G/8vpHJzx9fXFz169ICpqSnq168PoGgts0wmw9mzZ5nlaNKkCc6dOyfsF1/cUd+5c6ew1p6F0aNH4+DBg1iwYAGzNsuioaFRZu2ShIQEGBkZMclw8+ZNhIaGlqqRYm5ujhcvXjDJUKxTp04IDw9n+t4oycHBAceOHcPIkSNLFVc1MDDAkSNH0LBhQ4Vk4xSLd9o5jpOEtLQ0yGQyVK9eHQBw9+5dHDx4EHZ2dhg7dqyC07FTpUoV3Lp1CxMmTMCcOXPK3FasSpUqzPJUr14du3fvxurVq+WO7969G6ampgCAjIwMUaunS+2aSMXMmTPx6dMnODs7Izc3F61bt4a6ujpmzJiBSZMmMcthZWWFU6dOwc3NDRcuXBCq/L9586bUFn1i8vDwQH5+PmbOnIns7Gy4u7vDxMQEPj4+GDhwoOjt/+wNyLdv34qcRJ5Ubu44OjoiKSkJBw4cQHx8PIgIAwYMgLu7e6llSGJatWoVOnfujLi4OOTn58PHxwcPHz5EWFgYrl27xixHbm4uduzYgcuXL6NevXqlqrRv2LCBSY5evXph6dKlOHLkCICiz9XU1FTMnj2b2ayzwsLCMncPeP78OfMtI7t16wYvLy/ExcXB3t6+1PPSs2dP0TN0794dKSkpCAoKEnYpsba2houLi8JmAHCKx7d84zhOElq1aoWxY8di6NChSE9Ph7W1NerWrYvHjx/D09OT6ZfLY8eO4ciRI0hNTcW3b9/kzrHcqkkK24qdOXMG/fr1Q+3atdGkSRPIZDLcu3cP8fHxOHbsGLp3745t27YhMTGRyZdMKVwTqcnOzkZcXBwKCwthZ2cn7DvNyrFjx+Du7o6CggK0b98eFy9eBFDUObp+/TrOnz8veob8/Hz89ddf6NSpE6pWrYp3796hsLDwh1WYWSIinD9/Hrt27cK5c+eESv+szJs3Dxs3bkRubi4ACDd3li1bxjSHVMTExGDdunW4f/8+CgsL0bBhQ8yaNQv29vbMMjg7O5d7TiaTISQkhEmOzMxMdO3aFQ8fPsTnz59RrVo1pKeno3nz5ggMDGRyQ2XAgAHQ1dXFjh07oKOjg+joaBgZGaFXr14wMzNjOgNOSUmp3HMymYz51oRA0Q2e75eGcb8e3mnnOE4S9PX1cfv2bdjY2GDTpk0ICAhAaGgoLl68iPHjx+PZs2dMcmzatAnz5s3D8OHDsXPnTnh4eODp06e4d+8eJk6ciBUrVjDJISXJycnw9fXF48ePQUSoXbs2xo0bV2q6LadYKSkpyMrKQu3atX/4xVMM6enpePXqFerXry+0fffuXejq6gprMsWmpaWFR48elVrTrkjPnj3Dnj174Ofnhy9fvqBbt27o06cP3NzcmGdR9M0dANi/f7+w9VxYWBjMzc2xceNGWFpair4lH/djISEhiIiIEG5idOjQgVnbL1++hLOzM5SVlZGYmIjGjRsjMTERhoaGuH79umRuvrFUUFCAlStXwtfXF69fvxa2JlywYAFq1KiBUaNGKToixxr7gvUcx3GlVahQgZKSkoiIqEePHrR69WoiIkpJSWG6nZeNjQ0dPHiQiOS3jVqwYAFNnDiRWQ6OK8++ffto48aNcsfGjBkjbMNna2tLqampzPJ4eHgIWzSV9OXLF/Lw8GCWo23btsKWb4qUk5ND+/fvpzZt2pC6ujp1796dlJWVKSYmRiF5Pn78SBkZGaWOZ2Rk0KdPn5jl2Lp1KxkaGtLy5ctJQ0ND+Gzdu3cvtW3bllmOc+fOlbkdYVBQEAUGBjLLoUj6+vr09u1bIir//ctadnY27d69myZOnEgTJkygnTt3UnZ2tqJjKcySJUvI0tKSDhw4QJqamsL7JSAggJo1a6bgdJwi8JF2juMkoWnTpnB2dka3bt3g4uKC27dvo379+rh9+zb69u2L58+fM8lRcrSucuXKuHTpEurXr4/ExEQ0a9YMGRkZTHIoUnR0NOrWrQslJSVER0f/8LH16tVjlIor1rx5c4wdOxYeHh4AgKCgIPTo0QP79u2Dra0tJk2aBDs7OybF1wBAWVkZr169KjUa9u7dO1StWhX5+flMchw9ehSzZ8/G1KlT0ahRo1LTelm8Vn/77TccPnwYNjY2GDJkCAYOHAgDAwOoqqoiKiqKSRX773Xp0gU9evTAb7/9Jnfc19cXZ86cQWBgIJMcdnZ2WLlyJVxdXaGjo4OoqChYWloiNjYWbdu2xbt375jkqFevHlavXo2uXbvKHQ8KCsKsWbMQFRXFJAdQVLn96NGjZS7FEnN7UW1tbURHR8PS0hLKyspIT09nVnROijZt2oSxY8dCQ0MDmzZt+uFjPT09mWSysrLC9u3b0b59e7n3S3x8PJo3b44PHz4wycFJBy9Ex3GcJPzxxx9wc3PD2rVrMXz4cKG68JkzZ+Do6MgsR9WqVZGRkQFzc3OYm5sLNw+SkpKY7xmvKA0aNEB6ejoqV66MBg0aQCaTlfn/XVHr+351jx8/RuPGjYXfT58+jZ49e2Lw4MEAgJUrVwodejFlZmaCiEBE+Pz5s9yay4KCAgQGBjKd1jpgwAAA8l+qi1+7rF6rO3bswKxZszB79mzmBbTKc+fOnTLrTbRt25bprgtJSUlwcHAodVxdXR1ZWVnMciQmJpZ586R27dp48uQJsxyHDx/GsGHD4OLigkuXLsHFxQWJiYlIT08XfflE8+bN4erqikaNGoGI4OnpCU1NzTIfu2fPHlEynDlz5qcfK3bxt40bN2Lw4MHQ0NAQtq8si0wmY9Zpf/HiBaysrEodLywsRF5eHpMMnLTwTjvHcZJQPNKSmZkpV1xs7NixTKultmvXDn///TcaNmyIUaNGYerUqTh27BjCw8PRu3dvZjkUKSkpSRh1SUpKUnAa7ns5OTlyVdlv3bqFkSNHCr9bWloy2V9ZT08PMpkMMpkM1tbWpc7LZDIsWbJE9BzFpPBa9ff3x969e2FsbIxu3bph6NCh6Ny5s0Izff36tczZDnl5ecjJyWGWw8LCApGRkaVqDpw/f57pDARdXV08e/asVE2OJ0+eMK1iv3LlSmzcuBETJ06Ejo4OfHx8YGFhgXHjxsHY2FjUtg8cOICNGzfi6dOnkMlk+PTpk1CkkBVXV9efehyLG24lPzuk8DkCAHXq1MGNGzdKvV+OHj1a5s0v7n8f77RzHCcZysrKyM/Px82bN4WOAOtiZzt27EBhYSEAYPz48ahUqRJu3ryJHj16YPz48UyzKErJLwlSKurFFTE3N8f9+/dhbm6Od+/e4eHDh2jZsqVwPj09Hbq6uqLnuHLlCogI7dq1w/Hjx1GpUiXhnJqaGszNzVGtWjXRcxRLSUlBixYtoKIi/9UmPz8ft27dYvJadnd3h7u7O5KTk7F3715MnDgR2dnZKCwsRFxcnEKmxzdp0gQ7duzA5s2b5Y77+vqiUaNGzHJ4eXlh4sSJyM3NBRHh7t27OHToEFatWsVsKQdQNGr7+++/4+TJk6hZsyaAog779OnTmWznVezp06fo1q0bgH/NNpDJZJg6dSratWsn6g2vKlWqCNt4WlhYYP/+/TAwMBCtvbIU/52Vmujo6HKX0pw6deqnbzb8Xy1atAhDhw7FixcvUFhYiBMnTiAhIQH+/v44e/YskwyctPA17RzHSUJWVhYmT54Mf39/4Y+5srIyhg0bhs2bN/O9SRn72amLLL/kckVWrVqFTZs24bfffkNISAjevn2L2NhY4by3tzfOnj2Ly5cvi54lPz8fo0ePxrJly2Bqaip6ez9S3tr6jIwMVK5cWSFLOYgIFy5cwJ49e3DmzBkYGhqid+/e/7hu9j8pNDQUHTp0QJMmTdC+fXsAQHBwMO7du4eLFy+iVatWzLLs3LkTy5cvR1paGgDAxMQEixcvZloJ+9OnT+jcuTPCw8NRvXp1AEX7gbdq1QonTpyAnp4ekxympqYIDAyEvb096tevj9mzZ2PQoEEICwtD586d8enTJyY5pEbR25sZGxsjNDQUlpaWcsePHz+OYcOGMV3KceHCBaxcuVJua8KFCxfCxcWFWQZOOninneM4SRg3bhwuX76MP//8E05OTgCAmzdvwtPTEx07dsS2bduY5Ni7dy+0tbXRr18/ueNHjx5FdnY2hg8fziSHon2/ZVhZ69r5mnbFKCwsxKJFi3D27FlUrVoVGzZsgK2trXC+X79+6Ny5M7OOkI6ODmJiYhS+BaCSkhJev35dqqBWcQ2AzMxMBSUr8v79e2H6PMtiZwAQGRmJtWvXIjIyEpqamqhXrx7mzJmDWrVqMc1R7N27dygsLFTYVl5EhEuXLiEqKkq4Hq1bt2aawd3dHY0bN8a0adOwYsUK+Pj4oFevXrh06RIaNmwoaiG672VlZeHatWtlFsRjsYZbStubLV26FHv37sWtW7eEZQoBAQEYOXIk9u3bV+q7AcexwjvtHMdJgqGhIY4dO4a2bdvKHb9y5Qr69++Pt2/fMslhY2MDX19fODs7yx2/du0axo4di4SEBCY5pKZk9VqOK8nV1RWurq4YMWKEQtovrjVx+vRpdO7cGerq6sK5goICREdHw8bGBkFBQcwyXb16tdRn2a8uJycHRCTMmkpJScHJkydhZ2f3S44cvn//Hrm5uahWrRoKCwuxbt063Lx5E1ZWVliwYIFcbRcxPXjwAF27dkV2djaysrJQqVIlvHv3DlpaWqhcuTKePXsmeoalS5fCz88PS5cuxZgxYxAbGwtLS0scOXIEGzduRFhYmOgZSpoyZQouX76MGzduICgoCKNHj8b+/fvRp08fZhnu3buHwsJCNG3aVO74nTt3oKysLFeMlPs18DXtHMdJQnZ2NqpUqVLqeOXKlZGdnc0sR0pKCiwsLEodNzc3R2pqKrMcHPdP0tLSIJPJhCm+d+/excGDB2FnZ4exY8cyy9GlSxfMmTMHsbGxZW61JvYSiuL1+0QEHR0duSrYampqaNasGcaMGSNqhu917twZJiYm8PDwwPDhwxW+dKBYTk5OqcrTJYsaiqlXr17o3bs3xo8fj48fP8LR0RFqamp49+4dNmzYgAkTJjDJASh+ZDk/Px9///03OnXqBKBolsjMmTMxc+ZM0dv+3tSpU9GjRw9s27YNenp6uH37NlRVVTFkyBBMmTKFSQZ/f3/s2LED7du3l6sdU69ePcTHxzPJUJKPjw+GDh2KZs2a4cWLFzh06BB69erFNMPEiRMxc+bMUp32Fy9e4I8//sCdO3eY5uEkgOmu8BzHceVo164d9evXj3JycoRj2dnZ1K9fP2rfvj2zHKampnT69OlSx0+dOkUmJibMckiNtrY2PX36VNExuBJatmxJ/v7+RET06tUrqlixIjVv3pwMDAxoyZIlzHLIZLJyf5SUlJjlWLx4MX358oVZez+SkZFBPj4+5ODgQMrKyuTi4kIBAQH09etX5lmysrJo4sSJZGRkREpKSqV+WDEwMKDY2FgiItq5cyfVq1ePCgoK6MiRI1S7dm1mOSIiIqhq1apUsWJFUlZWJiMjI5LJZFShQgWysLBglkNTU5OSk5OZtVceXV1dio+PF/4dFxdHRES3b98mGxsbJhk0NDSEa1Hyb83Dhw+pQoUKord/+vTpUj/Hjh0jU1NTGjVqlNxxVipUqFDm39xnz56RtrY2sxycdPBOO8dxkhATE0MmJiZkYGBA7dq1o/bt25OBgQGZmJgIX/RY8PLyInNzcwoJCaH8/HzKz8+n4OBgMjc3p+nTpzPLITW80y49enp6wpdtHx8fatGiBRERXbhwgWnng/uxBw8e0OTJk8nQ0JAqVapEkydPpsjISGbt//bbb2Rra0tHjx4lTU1N2rNnDy1btoyqV69OBw4cYJZDU1OTUlJSiIioX79+tHjxYiIiSk1NJU1NTWY52rRpQ2PGjKH8/Hzhcy01NZVat25Nx48fZ5ajbdu2dPLkSWbtlcfQ0JASEhKIiMja2pqCgoKIiOjRo0fMnpdGjRrR/v37iUj+b83ixYupZcuWorf/oxuPiroJWalSJbp161ap46GhoaSnp8csBycdvNPOcZxkZGdn044dO2jatGk0depU2rlzJ2VnZzPN8PXrV+rfvz/JZDJSVVUlVVVVUlZWJg8PD4WMkkmFjo4OPXv2TNExuBIqVKhASUlJRETUo0cPWr16NRERpaSkkIaGhgKTKUZ6ejoNGTKEjI2NSVlZWWEjymV58eIFLVq0iNTV1alChQqkrKxMLVu2ZHJD0tTUlK5cuUJERe/jxMREIiLy9/enLl26iN5+MXt7e/Lx8aHU1FSqWLGi0CEJDw+nKlWqMMshhZFlIqIjR46QpaUlbd68mW7dukVRUVFyP6x07NiR/vrrLyIiGjduHDk6OtKBAweoU6dO5OjoKGrbHh4elJmZSWfOnCFdXV1avXo1aWlp0dq1a2n06NGkpqZGFy9eFDWDVA0YMIDatGlDHz9+FI59+PCB2rRpQ/369VNgMk5ReCE6juO4Mjx+/FioLGxvb//L7Veur68PmUwm/P7x40dUrFixVFX59+/fs47G/f+aNm0KZ2dndOvWDS4uLrh9+zbq16+P27dvo2/fvnj+/DmzLNeuXcO6devw6NEjyGQy2NrawsvLi+l2Yl26dEFqaiomTZoEY2NjudcvAOZrUvPy8nD69Gns2bMHly5dQuPGjTFq1CgMGjQI79+/x6xZsxAZGYm4uDhRc2hra+Phw4cwNzdH9erVceLECTg6OiIpKQn29vb48uWLqO0XO3bsGNzd3VFQUIB27drh0qVLAIq2MLx+/TrOnz/PJIeRkRFCQ0NhbW0NGxsbbNq0CZ06dUJ8fDwaNmzIrIbK95+lwL926WC5M0d4eDg+f/4MZ2dnvH37FsOHDxcK4u3duxf169cXre2S2zRKYXuzvLw8uLi4YPv27bC2tmbWbllevHiB1q1bIyMjAw4ODgCKdoGoUqUKLl26JJk6GRw7vNPOcZzC/Oxe4AC7/cB51ecifn5+P/W4X2ULPCm6evUq3NzckJmZieHDh2PPnj0AgLlz5yI+Pp7ZllEHDhyAh4cHevfuDScnJxARbt26hZMnT2Lfvn1wd3dnkkNHRwc3btxAgwYNmLT3I5MnT8ahQ4cAAEOGDMHo0aNRt25ducekpqaiRo0aKCwsFDVLvXr1sHnzZrRp0wYuLi6oV68e1q1bh02bNmHNmjVMb+6kp6fj1atXqF+/vtBpvXv3LipWrIjatWszyeDi4oIRI0bA3d0d48ePx4MHD+Dp6Yn9+/fjw4cPzAp8paSk/PD8r3CjWElJCenp6Qrb+q8sRkZGuHXrlsK2QywpKysLf/31l9zWhIMGDYKqqqqio3EKwDvtHMcpTFkjDWVhOeqgoaEhVH0eMWKEUJmb46SooKAAmZmZcttDJScnC9s1sWBra4uxY8di6tSpcsc3bNiAnTt34tGjR0xy2NnZ4a+//hJGpRSpffv2GD16NPr06QM1NbUyH5Ofn4/Q0FC0adNG1CwbN26EsrIyPD09ceXKFXTr1g0FBQXIz8/Hhg0bmFUIL+n58+eQyWQwMTFh3rYiR5alJCcnB5cuXYKzszN0dHTkzmVmZuLq1avo1KmT3BaK/2lKSkp4/fo1jIyMRGvj3zV9+nSoqqpi9erVio7CcXJ4p53jOK6E9+/f48CBA9i3bx+io6PRvn17jBo1Cq6uruV++f5fJpVtxbjyvX37FgkJCZDJZLC2tmb+BVhdXR0PHz6ElZWV3PEnT56gbt26yM3NZZLj4sWLWL9+PbZv344aNWowabMseXl5GDt2LBYsWABLS0uF5ShPSkoK7t+/j5o1azLtoBYWFmL58uVYv369MCVfR0cH06dPx7x58376Ju7/Cn9//x+eHzZsmKjt+/j44MyZMwgODi7zfIcOHeDm5oaJEyeKlkFJSQm6urqllrJ8j+UyrMmTJ8Pf3x9WVlZo3LhxqS0sN2zYwCwLAMTFxZW5NSGr2YecdPBOO8dxChUSEoJJkybh9u3bpfYL/vTpE1q0aAFfX1+ma2OLRUZGYs+ePTh06BAKCwsxePBgjBo16pcZiQGAVq1aYezYsRg6dCjS09NhbW2NunXr4vHjx/D09MTChQsVHfGXlZWVJXzBLJ5iraysjGHDhmHz5s3Q0tJiksPKygpeXl4YN26c3PHt27dj3bp1SExMZJJDX18f2dnZyM/Ph5aWVqkppCy/+Ovp6SEiIkKSnXZFmTNnDnbv3o0lS5YIyyhCQ0OxePFijBkzBitWrGCa582bN8LNLhsbG+Y3u0rOjgGKbvZkZ2dDTU0NWlpaor9eHR0dsWDBAvTo0aPM82fPnsXSpUtx9+5d0TIoKSnB29sburq6P3wcy2VYzs7O5Z6TyWQICQlhkuPZs2dwc3NDTEyMUOugOAMAZrMPOQlRRPU7juO4Yj169KANGzaUe97Hx4dcXV0ZJpKnyKrPUsC3FZOusWPHkqWlJQUGBtKnT5/o06dPdO7cOapZsyaNHz+eWY6tW7eSmpoajR8/nvz9/Wn//v00btw4UldXJ19fX2Y59u3b98MflkaMGEHr169n2uaPXL58mbp160aWlpZUs2ZN6tatG126dIlpBmNj4zL3uT516hRVq1aNWY5Pnz7RkCFDSEVFRdjKS0VFhQYPHixXqVsRHj9+TO3btxe2XROTnp6esAVfWVJSUkTfWkwmk9Hr169FbeO/Vffu3alXr1705s0b0tbWpri4OLpx4wY5OjrS9evXFR2PUwDeaec4TqHMzMyELXfK8ujRIzI1NWWYiOjbt2909OhR6tKlC6moqFCzZs1o586d9OXLF0pNTaVBgwaRra0t00yKwrcVky4DAwNhK6+SQkJCyNDQkGmWEydOkJOTE1WqVIkqVapETk5OdOrUKaYZpGT58uWkp6dHffr0oZUrV5KPj4/cD0ubN28mFRUVGjhwoND+oEGDSFVVlTZv3swsh7q6urAfeEnx8fFMP0v69etHtWrVoqCgIPr06RNlZmZSUFAQ2djYSGIrrXv37jHZek5bW5vCw8PLPR8eHk7a2tqiZlBSUpJ0pz0tLY2eP3+ukLYNDAyErf8qVqwo3DwPDg6mBg0aKCQTp1i8085xnEKpq6sL+waXJTExkekXukmTJpGBgQEZGBjQlClTKCYmptRjUlJSSCaTMcukSI6OjjRr1iy6fv06aWhoUGRkJBERhYWFkYmJiYLT/do0NTXLvOEVGxtLWlpaCkikeE+ePKF58+bRwIEDhc7A+fPnmc+MqVGjRrk/rGeoVKtWrczO+Z9//knGxsbMcjg6OtLkyZNLHZ80aRI1bdqUWQ4tLS26ceNGqePXr1+XxPsmIiKCdHR0RG+nadOmwk3YsqxatUr050WKI+0FBQW0ZMkSqlixIikpKZGSkhLp6urS0qVLqaCggFkOPT09evr0KRERWVpaUkhICBEVfcZpamoyy8FJh4qip+dzHPdrMzExQUxMTKkiVsWio6NhbGzMLE9cXBw2b978w6rP1apVw5UrV5hlUqQ//vgDbm5uWLt2LYYPHy6s5z9z5gwcHR0VnO7X1rx5cyxatAj+/v7Q0NAAUFQResmSJWjevDnzPOHh4XL7tDdq1Ihp+9euXUOXLl3g5OSE69evY8WKFahcuTKio6Oxa9cuHDt2jFmWpKQkZm39k8zMTHTu3LnUcRcXF8yaNYtZjjVr1qBbt264fPkymjdvDplMhlu3biEtLQ2BgYHMchgYGJS5hlpXV7fUOnMxfb/lKRHh1atX+PPPP+Hk5CR6+yNHjsS0adNQp04ddO/eXe7c33//jeXLl4tedE3s7Q7/X8ybNw+7d+/G6tWrS9VeyM3NZVZ7oW7duoiOjoalpSWaNm2KNWvWQE1NDTt27OC1Mn5Vir5rwHHcr23SpElUt25dysnJKXUuOzub6tatW+boDMdOfn4+vX//Xu5YUlKS5EZIfjUxMTFkYmJCBgYG1K5dO2rfvj0ZGBiQiYkJ05HltLQ0atmyJclkMtLX1yd9fX2SyWTk5OREqampzHI0a9ZMWEeura0tjFLdvXuX6Zrp7xUWFlJhYaHC2nd3d6c1a9aUOr527VoaOHAg0ywvXryguXPnUu/evcnNzY3mzZtHL168YJph+/bt1KFDB3r58qVw7NWrV+Ti4sK0BkPxevriHyUlJapSpQoNGjRILpuYBg8eTDKZjGxtbcnV1ZXc3Nyodu3apKSkxPy1IRVSqb0QFBREx48fJyKip0+fkq2tLclkMjI0NKTg4GBmOTjp4NXjOY5TqNevX6Nhw4ZQVlbGpEmTYGNjA5lMhkePHmHLli0oKChAREQEqlSpwjQX32ZFnqK3FePKlpOTgwMHDiA+Ph5EBDs7OwwePBiamprMMri4uCAzMxN+fn6wsbEBACQkJGDkyJGoUKECLl68yCSHtrY2YmJiYGFhAR0dHURFRcHS0hLJycmoXbs2s63nivn7+2Pt2rVC9Xxra2t4eXlh6NChTHMsX74c69atg5OTkzAD4/bt2wgNDcX06dPldu3w9PRkmk0RHBwc8OTJE3z9+hVmZmYAgNTUVKirq6NWrVpyj42IiFBERKaOHDmCgwcPIjExEUQEa2truLu7o3///oqOphAaGhqIjo6GtbW13PGEhAQ0aNAAOTk5CkpWtAOGvr7+P26Rx/1v4p12juMULiUlBRMmTMCFCxfktjXp1KkTtm7dynTPZb7NijypbCvGSZempiZu3boFBwcHueMRERFwcnJi9iW3evXqOHLkCFq0aCHXaT958iRmzJiBp0+fMskBFO3lvGDBAkyaNEluiu2WLVuwfPlyTJ06lVkWCwuLn3qcTCbDs2fP/qNtR0dH//Rj69Wr9x9tuzxLliz56ccuWrRIxCScFDVt2hRNmzbFpk2b5I5PnjwZ9+7dw+3btxWUjPvV8U47x3GS8eHDBzx58gREhFq1ajFdX1isR48eUFZWxs6dO2FpaYm7d+8iIyMD06dPx7p16xSyX7wijRs3DpcvX5ZbZ3nz5k14enqiY8eO2LZtm4IT/lq+Xwf7I6xmhdjY2GD//v2lahzcvXsX7u7uePLkCZMcM2fORFhYGI4ePQpra2tERETg9evXGDZsGIYNG8a0A2ZhYYElS5Zg2LBhcsf9/PywePFiSa15F5OSkpLczc/yyGSyX+6GKAA8f/4cZ86cKXNWl9jryYtFRERAVVUV9vb2AIDTp09j7969sLOzw+LFi8ut7fK/6tq1a+jWrRvMzMzKrL0g5neA3r17//RjT5w4IVoOTpp4p53jOK4EQ0NDhISEoF69etDV1cXdu3dhY2ODkJAQTJ8+HQ8ePFB0RKYMDQ1x7NgxtG3bVu74lStX0L9/f7x9+1YxwX5RSkpKP/U4lp2g06dPY+XKldiyZQsaNWoEmUyG8PBwTJ48GbNmzYKrqyuTHHl5eRgxYgQOHz4MIoKKigoKCgrg7u6Offv2QVlZmUkOoGiKbWxsbKkCm4mJibC3t2c+Vb+k/Px85ObmQltbW/S2UlJSfvqx5ubmIiYpW25uLgICApCVlYWOHTuWmh4vpuDgYPTs2RMWFhZISEhA3bp1kZycDCJCw4YNERISwiRHkyZNMHv2bPTp0wfPnj2DnZ0devfujXv37qFbt27w9vZmkkNKXrx4ga1bt8otO/rtt99QrVo1Udv18PD46cfu3btXxCScFPFOO8dxXAn6+vq4f/8+LC0tUbNmTezatQvOzs54+vQp7O3tkZ2dreiITGlpaeH+/fuwtbWVO/7w4UM4OjoiKytLQck4qdDX10d2djby8/OholK0KU3xvytUqCD32Pfv34ue59mzZ4iIiEBhYSEcHByYdsSK1a1bF+7u7pg7d67c8eXLlyMgIAAxMTGiZwgMDERGRobcGvoVK1Zg2bJlyM/PR7t27RAQEKCQGU2K4OXlhW/fvsHHxwcA8O3bNzg6OiIuLg5aWlrIz8/HxYsX0aJFCyZ5HB0d0blzZyxdulRYzlG5cmUMHjwYnTt3xoQJE5jk0NXVRUREBGrWrIk//vgDISEhuHDhAkJDQzFw4ECkpaUxycFx3I/xLd84juNK4NusyJPatmIcEBISgkmTJuH27dtyRcQA4NOnT2jRogV8fX2ZLeWQwkhcZmYmtLW1oaSkBEtLS+G9WlhYiMzMzFLXSWxLlizBgAEDcP36dTg5OUEmk+HmzZsIDg7GkSNHmGRYt24d+vTpI/x+69YtLFy4EEuXLoWtrS3mzZuHZcuWiT4N+/79+5gxYwZOnz5d5uvV1dUV3t7ewnaSYjl//jxWrlwp/P7XX38hNTUViYmJMDMzw8iRI7FixQqcO3dO1BzFHj16hEOHDgEAVFRUkJOTA21tbSxduhS9evVi1mknIqFeyeXLl4Xt30xNTfHu3TsmGaTEyckJbdq0gbOzM1q0aFHqxiNrb968kSsCW7lyZYXm4RSIaa16juM4iePbrMiTyrZi3L/06NGDNmzYUO55Hx8fcnV1ZZhIsU6cOEG1atWirKysUueysrLI2tqazpw5wzxXeHg4DR48mBo2bEgODg40ePBgioiIYNa+kZGRXHtTp06lTp06Cb+fO3eOrKysRM8xaNAgWrp0abnnV6xYQYMHDxY9h46ODiUmJgq/Dxw4kMaMGSP8/uDBAzI2NhY9R7EqVarQw4cPiYjIzs5O2GYsMjKSKlSowCyHs7MzDRs2jPz9/UlVVVW4RlevXiVzc3NmOaRi5cqV1KlTJ9LR0SFVVVVq1qwZzZo1i86fP0+fP39mluPTp080ZMgQUlFREbYFVFFRocGDB9PHjx+Z5eCkg0+P5ziO+we/+jYrUthWjPsXc3NzBAUFlVqyUCw+Ph4uLi5ITU0VNUdhYSEKCwuFKfFA0RaOvr6+yMrKQs+ePdGyZUtRMwBFW871798fo0ePLvP8nj17EBAQgAsXLoieRUo0NTWRkJAgbGvm6OiIvn37YubMmQCK1pvb2dmJvsSlZs2aOHnyZLnV4WNiYtCrV6//eOX67+np6eHevXvCcgkLCwssWLAAI0eOBAAkJyfD1taW2W4Hrq6u6NatG8aMGYOZM2fi5MmTGDFiBE6cOAF9fX1cvnyZSY6oqCgMGTIEqampmDZtmlCwcfLkycjIyMDBgweZ5JCagoIC3Lt3D1evXsXVq1cREhICmUyGr1+/Mmm/f//+iIyMxObNm+UK4k2ZMgX16tVjNmOHkw4+PZ7jOO47RISMjAzIZDIYGBigUqVKio6kUJqamhgzZoyiY3D/v9evX0NVVbXc8yoqKkwKBI4aNQqqqqrYsWMHAODz589o0qQJcnNzYWxsjI0bN+L06dPo2rWrqDliY2OxdevWcs+3bt0a8+fPFzXD95SVlfHq1atSU1kzMjJQuXJlJkUCq1WrhkePHsHMzAxfvnxBVFQUNm7cKJeFxZaNL168gI6OTrnntbW18erVK9Fz1K5dG3///TemTZuGhw8fIjU1Fc7OzsL5lJQUVKlSRfQcxTZs2IAvX74AABYvXowvX74gICAAVlZWcs+T2OrXr19mjYW1a9fK3ZD71SQmJiIqKgpRUVGIjo5GxYoVme4ec+7cOVy4cEHuxmenTp2wc+dOdO7cmVkOTjp+3Xcjx3Hcd9LT0zFz5kycOXMGnz9/BgBUrFgRbm5uWLVqFdMvdIokxW3FuH8xMTFBTExMqcrkxaKjo2FsbCx6jtDQUPz555/C7/7+/sjPz0diYiJ0dXUxa9YsrF27VvRO+4cPH5Cfn1/u+by8PHz48EHUDN8rbxLj169fmW2h1bdvX/z++++YO3cuAgMDUbVqVTRr1kw4Hx4eDhsbG9FzGBkZISEhodz94uPj42FoaCh6Di8vLwwaNAjnzp3Dw4cP0bVrV7lMgYGBpbYtFFPJGilaWlo/vPEkdo579+7BwMBA7nhubi4aNmwo+gwIqSmuRVFYWIjWrVujdevWmDNnTrkzRcRiYGAAXV3dUsd1dXV/meKRnDzeaec4jkNRIasWLVrgy5cv8PDwQO3atUFEiIuLw6FDh3Dz5k1EREQw2SZJ0X52i65fdW9lRevatSsWLlyILl26CMUBi+Xk5GDRokVCMSkxvXjxQq4ye3BwMPr06SN80Rw+fDiTbYlq1KiB8PBw1K5du8zz4eHhzLYT27RpE4Ci98auXbvkPi8KCgpw/fr1cnP+py1atAgvX76Ep6cnqlatigMHDshte3fo0CH06NFD9BwdOnTAihUryhwdJCKsXLkSHTp0ED1Hnz59EBgYiHPnzsHFxQWTJ0+WO6+lpYXffvtN9BzFyussf/z4kWlnOTk5uczP8a9fv+L58+dMMkjJ0aNHYWhoiBEjRsDZ2RmtWrVSyN/9+fPnY9q0afD39xduwqanp8PLywsLFixgnodTPL6mneM4DsCyZcvg7++PW7duwcjISO7cmzdv4OTkBA8Pj1JbOHEca69fv0bDhg2hrKyMSZMmwcbGBjKZDI8ePcKWLVtQUFCAiIgI0WeGGBgY4MaNG7CzswNQNB177dq1GDx4MICirdfq1q0r+jaJ8+bNw4EDB3D37t1S/5/T09PRtGlTDBkyBCtWrBA1BwBh5DYlJQXVq1eX6ySrqamhRo0aWLp0KZo2bSp6Fql4+vQpGjVqBBsbG0yfPl3u9bp+/Xo8fvwY4eHh5c4c+V+lpKSE9PT0UksoXr9+DTMzM9HXThfPqHJ1dYWfn5/cqG5BQQGCg4Nx6dIlJCQkiJpDaj5+/Ijr16/j6tWruHbtGh4+fIj69eujbdu2aNu2Lbp06cIkh4ODA548eYKvX78KdSlSU1Ohrq5eahvLiIgIJpk4xeKddo7jOADNmjXDuHHj4OHhUeb5PXv2YOfOnQgLC2OcTDGktq0YJy8lJQUTJkzAhQsXhKnYMpkMnTp1wtatW1GjRg3RM7Rr1w5NmzbFqlWrcOPGDbRt2xbPnz8XRoUuXbqECRMm4MmTJ6Lm+Pz5M5o3b47U1FQMGTJErlP4119/wdTUFLdv3/7huur/NGdnZ6GgGFc022HEiBGIi4sTCnoWF7Xcu3cvmjRpImr70dHRP/1YsadBS6WzrKSkBKDoc+P7roCqqipq1KiB9evXM5m1I2VPnz7F8uXLceDAARQWFjKbXbZkyZKffmxx8UDufxvvtHMcxwGoVKkSwsLCyl3jGR8fjxYtWuD9+/eMkylGz5494ezsjKlTp5Z5ftOmTbhy5QpOnjzJOBlX0ocPH/DkyRMQEWrVqsW0k3jlyhV07doV1apVw6tXrzBo0CDs3r1bOP/bb78hKysLfn5+omf59OkT5syZg4CAAGH9ur6+PgYMGICVK1dCT09P9AxS4uDg8NO7XbAcpXvw4IHwerW2tkaDBg2YtKukpCTXOf3RtRG7Uya1zrKFhQXu3bvHpK7Af4P379/j2rVrQtX4hw8folKlSmjdujWcnZ0xceJERUcEEf2yu9n8yninneM4DkUVt1+8eFHulOL09HRUr179hwWv/pdIZVsxTtri4uJw6dIlVK1aFf369RM6JACwY8cOODo6MuuYAUVfZt+9ewcigpGRkUK/2D5//hxnzpxBamoqvn37Jnduw4YNorYtxVG6q1evom3btkza+l5KSorw7wcPHmDGjBnw8vJC8+bNAQBhYWFYv3491qxZ89M1Pf6veGdZmpSVlWFoaIhWrVoJU+Lr1q3LPMeqVaswZ86cUscLCgowZMgQHDp0iHkmTrF4p53jOA5Ff6jT09NLrWcv9vr1a1SrVu2XKbymoaGB2NjYcteZPnnyBPb29sz2NOa4f5KTkwMiErYxS0lJwcmTJ2Fra4tOnToxzRIcHIyePXvCwsICCQkJqFu3LpKTk0FEaNiwIUJCQpjmkQINDQ2YmJjAw8MDI0aMQPXq1RWSw9HREYsXLy61q0FgYCAWLFiA+/fvKyQXULSeWhGzQoKDgxEcHIw3b96gsLBQ7tyePXuY51Gk2NhYhXTSv1elShUsW7YMY8eOFY4VFBRg4MCBiI2NxaNHjxSYjlMEpX9+CMdx3P++4umalSpVKvOHVcVnqSjeVqw8rLYV46TPz88P586dE36fOXMm9PT00KJFC7kRTrH16tUL/v7+AIo6P46Ojli/fj1cXV2xbds2ZjkAYM6cOZg+fTpiY2OhoaGB48ePIy0tDW3atEG/fv2YZpGKly9fYsqUKThx4gRq1KiBTp064ciRI6VmIYgtJiamzO3nLCwsEBcXxyzHH3/8gYCAAOH3fv36oVKlSjAxMUFUVBSzHEuWLIGLiwuCg4Px7t07fPjwQe7nV1O3bl3k5+fj8uXL2L59u7D968uXL/HlyxdmOQIDAzFr1iwcOXIEQNHWlf369cPDhw9x5coVZjk46eAj7RzHccBPr7sdPny4yEmkYfLkybh69Sru3btX5rZijo6OcHZ2Fra44n5dNjY22LZtG9q1a4ewsDC0b98e3t7eOHv2LFRUVHDixAkmOQwNDXHt2jXUqVMHu3btwubNm/HgwQMcP34cCxcuZDoypaOjg8jISNSsWRP6+vq4efMm6tSpg6ioKPTq1QvJycmitq+vr//TSwMUUacjMjISe/bswaFDh1BYWIjBgwdj1KhRqF+/vuhtN2zYELa2tti9e7fw2fb161eMHDkSjx49YrbG39LSEgcOHECLFi1w6dIl9O/fHwEBAThy5AhSU1Nx8eJFJjmMjY2xZs0aDB06lEl7UpeSkoLOnTsjNTUVX79+xePHj2FpaYnff/8dubm58PX1ZZbl6tWrws3I3bt34+nTpwgJCRF9ZxBOmvg+7RzHcfh1OuM/a/78+Thx4gSsra3L3VZs3rx5io7JSUBaWpqwjOLUqVPo27cvxo4dCycnJ6ZrmLOzs4UK8RcvXkTv3r2hpKSEZs2aMR3xB4AKFSoIW3ZVq1YNT58+RZ06dQAA7969E719b29v0dv4v2jQoAFmz56NSpUqYfXq1dizZw+2bt2K5s2bw9fXV7hWYvD19UWPHj1gamoq3CSIioqCTCbD2bNnRWv3e69evYKpqSkA4OzZs+jfvz9cXFxQo0YNplsCfvv2DS1atGDWntRNmTIFjRs3RlRUFAwMDITjbm5uGD16NNMsbdu2xf79+9GnTx/Y2tri2rVrvAbCL4x32jmO40pIS0uDTCYT1lvevXsXBw8ehJ2dndzasv91VapUwa1btzBhwgTMmTOnzG3F+N1+DgC0tbWRkZEBMzMzXLx4UdhxQENDg2nNAysrK5w6dQpubm64cOGCkOPNmzelti0UW7NmzRAaGgo7Ozt069YN06dPR0xMDE6cOIFmzZqJ3v7P3oR8+/atyEnk5eXl4fTp09izZw8uXbqExo0b488//8SgQYPw/v17zJo1C/369RN1mrqjoyOSkpJw4MABxMfHg4gwYMAAuLu7o0KFCqK1+z19fX2kpaXB1NQUQUFBWL58OYCipVosa6eMHj0aBw8exIIFC5i1KWU3b95EaGgo1NTU5I6bm5vjxYsXorbdu3fvMo8bGRlBT09P7jsIqxlMnHTwTjvHcVwJ7u7uGDt2LIYOHYr09HR06NABdevWxYEDB5Ceno6FCxcqOiIz5ubmCAwMVOi2Ypz0dezYEaNHj4aDgwMeP36Mbt26AQAePnzIZL/4YgsXLoS7uzumTp2K9u3bC5XBL168CAcHB2Y5gKLq8MXrXxcvXowvX74gICAAVlZW2LhxI9Ms3yMinD9/Hrt27cK5c+eEGQFimzx5slDxesiQIVizZo1cwa8KFSpg9erVTF4zWlpaCr8J27t3b7i7u6NWrVrIyMhAly5dABQtHSivAKgYcnNzsWPHDly+fBn16tWDqqqq3HmxdzqQmvL2Yn/+/Lkwk0csurq6ZR5nXUiTkya+pp3jOK4EfX193L59GzY2Nti0aRMCAgIQGhqKixcvYvz48Xj27JmiI3KcpHz8+BHz589HWloaJkyYgM6dOwMo2kpMTU2N6TKK9PR0vHr1CvXr1xe2n7t79y50dXVhY2PDLIcUPXv2DHv27IGfnx++fPmCbt26oU+fPnBzc2PSfvv27TF69Gj06dOn1Chmsfz8fISGhqJNmzaiZtm/fz+2b9+OZ8+eISwsDObm5ti4cSMsLS3Rq1cvUdsulpeXBx8fH6SlpWHEiBHCjSVvb29oa2szm4rt7Oxc7jmZTPbL7XQwYMAA6OrqYseOHdDR0UF0dDSMjIzQq1cvmJmZYe/evaJnICKkpqbCyMhI2A2D43inneM4rgRtbW3ExsaiRo0a6NmzJ5ycnDBr1iykpqbCxsaGb3HGcRI1cuRI+Pj4lBoNy8rKwuTJk3+5rauAolHUY8eOYdeuXbh9+zY6duyI8+fPIzIykum2Vnl5eRg7diwWLFgAS0tLZu2WZdu2bVi4cCF+//13LF++HA8fPoSlpSX27dsHPz8/Xpn7F/fy5Us4OztDWVkZiYmJaNy4MRITE2FoaIjr16+jcuXKomcoLCyEhoYGHj58iFq1aoneHvffgXfaOY7jSmjatCmcnZ3RrVs3uLi44Pbt26hfvz5u376Nvn374vnz54qOyHGSk5ubi+jo6FL7PMtkMvTo0YNJBmVlZbx69arUl+p3796hatWqyM/PF7V9qVVs/+2333D48GHY2NhgyJAhGDhwIAwMDKCqqoqoqCjY2dmJnqEkPT09REREKLzTbmdnh5UrV8LV1RU6OjqIioqCpaUlYmNj0bZtWyaFAouVNeLv7e0NCwsLZiP+XGk5OTk4dOgQIiIiUFhYiIYNG2Lw4MHQ1NRklqFOnTrYvXs3kxoY3H8Hvqad4ziuhD/++ANubm5Yu3Ythg8fLlQXPnPmDBwdHRWcjuOkJygoCEOHDkVGRkapczKZTPSiWpmZmSAiEBE+f/4st0VhQUEBAgMDmYyOlazYnpGRgeXLl6NTp07C2vqwsDBcuHCBWcGvHTt2YNasWZg9e7boa3F/hpubG06dOoVp06YpNEdSUlKZNQ7U1dWRlZXFLEfJEf8VK1YI7xM9PT14e3sz7bTfu3cPR48eRWpqKr59+yZ37lcseKapqYmRI0di5MiRCsuwZs0aeHl5Ydu2bUxnxXDSxTvtHMdxJRSPtGRmZsoVXBs7dixfW8ZxZZg0aRL69++PhQsXKmRHAT09PchkMshkMlhbW5c6L5PJsGTJEtFzlKzY3qdPHyxduhSTJk0Sjnl6euLPP//E5cuXhcr2YvL398fevXthbGyMbt26YejQoUK9AUWwsrLCsmXLcOvWLTRq1KhUpXZPT08mOSwsLBAZGQlzc3O54+fPn2c6+2Dz5s3YuXMnXF1dsXr1auF448aNMWPGDGY5Dh8+jGHDhsHFxQWXLl2Ci4sLEhMTkZ6ezqzegaKdOXPmpx/bs2dPEZP8y5AhQ5CdnY369etDTU2t1Cg/i9k6nLTw6fEcx3FlePv2LRISEoSOgJGRkaIjcZwkVaxYEQ8ePEDNmjUV0v61a9dARGjXrh2OHz+OSpUqCefU1NRgbm6OatWqMc2kra1dZhXwxMREODg4CJXlWUhOTsbevXuxb98+ZGdn4/379wgICEDfvn2ZZQCKOsvlkclkzIp87t27FwsWLMD69esxatQo7Nq1C0+fPsWqVauwa9cuDBw4kEkOTU1NxMfHw9zcXG6afmJiIurVq8esfkq9evUwbtw4TJw4UchhYWGBcePGwdjYmMkNL0UrLlr5T1jMHCrm5+f3w/M/u60j9z+EOI7jOMGXL1/Iw8ODlJWVSSaTkUwmIxUVFRo5ciRlZWUpOh7HSY6Hhwft2rVLoRny8vJo+PDhlJqaqtAcxczMzGjNmjWljq9Zs4bMzMwUkIiosLCQzp8/T/369SN1dXUyMTGhyZMnKySLou3YsYPMzMyEz/jq1aszfw3b2trSqVOniIhIW1ubnj59SkREPj4+5ODgwCyHlpYWJSUlERGRgYEBRUdHExFRXFwcVa1alVkOjuN+jE+P5ziOK2HatGm4du0a/v77bzg5OQEAbt68CU9PT0yfPh3btm1TcEKOk5Y///wT/fr1w40bN2Bvb19qn2cW055VVFRw/PhxLF68WPS2fsaSJUswatQoXL16VVjTfvv2bQQFBWHXrl0KySSTydC5c2d07twZ79+/F6bPKwL9/5M8f7Zw33/amDFjMGbMGLx79w6FhYVMah58z8vLCxMnTkRubi6ICHfv3sWhQ4ewcuVK7N69m1mOSpUq4fPnzwAAExMTxMbGwt7eHh8/fkR2djazHFKUm5srVyODtYKCApw6dQqPHj2CTCaDnZ0devbsCWVlZYVl4hSHT4/nOI4rwdDQEMeOHUPbtm3ljl+5cgX9+/fH27dvFROM4yRq165dGD9+PDQ1NWFgYCDXEWM57dnV1RWurq4YMWIEk/b+yZ07d7Bp0yY8evQIRAQ7Ozt4enqiadOmTHNcvXq11OeZovj7+2Pt2rVITEwEAFhbW8PLywtDhw5lliEnJwdEJNQoSUlJwcmTJ2FnZwcXFxdmOQBg586dWL58OdLS0gAUdZqXLFmCTp06wcTEhEkGd3d3NG7cGNOmTcOKFSvg4+ODXr164dKlS2jYsOEvV4iuoKAAK1euhK+vL16/fo3Hjx/D0tISCxYsQI0aNTBq1CgmOZ48eYKuXbvixYsXsLGxARHh8ePHMDU1xblz5xS2HIlTHN5p5ziOK0FLSwv379+Hra2t3PGHDx/C0dGRaXVhjvtvULVqVXh6emL27Nk/vTZUDNu3b8fixYsxePDgMgudsSogJTUaGhowMTGBh4cHhg8fDlNTU4Xk2LBhAxYsWIBJkybByckJRITQ0FBs2bIFy5cvZ1KcDwBcXFzQu3dvjB8/Hh8/foSNjQ3U1NTw7t07bNiwARMmTGCSo6TiEf/iDuOuXbuYrWl///49cnNzUa1aNRQWFmLdunW4efMmrKyssGDBArmCrL+CpUuXws/PD0uXLsWYMWMQGxsLS0tLHDlyBBs3bkRYWBiTHF27dgUR4a+//hLqdGRkZGDIkCFQUlLCuXPnmOTgJERB0/I5juMkqV27dtSvXz/KyckRjmVnZ1O/fv2offv2CkzGcdKkr69PT548UXQMYX1yWT9KSkrM8xQUFFBCQgLduHGDrl27JvfDUkZGhrBOWllZmVxcXCggIIC+fv3KNEeNGjXIz8+v1PF9+/ZRjRo1mOUwMDCg2NhYIiLauXMn1atXjwoKCujIkSNUu3Zt0dv/8OEDubu7k6GhIRkbG5OPjw8VFBTQwoULSUtLixo3bkwHDx4UPQdRUS2Iffv20atXr5i099+gZs2adPnyZSKSrzXw6NEj0tPTY5ZDS0tLqC9QUmRkJFWoUIFZDk46+Jp2juO4Enx8fNC5c2dUr14d9evXh0wmQ2RkJDQ0NHDhwgVFx+M4yRk+fDgCAgIwd+5cheYoLCxUaPsl3b59G+7u7khJSRHWbxdjWYEaKFqz7OnpCU9PT0RGRmLPnj2YOHEiJkyYgMGDB2PUqFGoX7++6DlevXqFFi1alDreokULvHr1SvT2i2VnZwv71l+8eBG9e/eGkpISmjVrhpSUFNHbnzt3Lq5fv47hw4cjKCgIU6dORVBQEHJzcxEYGIg2bdqInqGYiooKJkyYgEePHjFrU+pevHhRatcHoOjzJS8vj1kOdXV1odZASV++fIGamhqzHJx0KG4eG8dxnATVrVsXiYmJWLVqFRo0aIB69eph9erVSExMRJ06dRQdj+Mkp6CgAGvWrEGbNm0wefJkTJs2Te7nVzR+/Hg0btwYsbGxeP/+PT58+CD8KHJ/5QYNGmD27NmYOHEisrKysGfPHjRq1AitWrXCw4cPRW3bysoKR44cKXU8ICAAtWrVErXt73OcOnUKaWlpuHDhgrCO/c2bN6hYsaLo7Z87dw579+7FunXrcObMGRARrK2tERISwrTDXqxp06Z48OAB83alqk6dOrhx40ap40ePHoWDgwOzHN27d8fYsWNx584dEBGICLdv38b48eN/2aU+vzo+0s5xHPcdTU1NjBkzRtExOO6/QkxMjPBlNjY2Vu4c6+rg165dw7p164Rqy7a2tvDy8kKrVq2Y5khMTMSxY8fKHLFThLy8PJw+fRp79uzBpUuX0LhxY/z5558YNGgQ3r9/j1mzZqFfv36Ii4sTLcOSJUswYMAAXL9+HU5OTv9fe/ceFWW59g/8O0MSKiYHtUA5jSiKqKFu8ZAIqKiBqLDV1xNyqq2Eku+81ra0bWaWZp5CSzMc1Hc7uDaHTNtDIhJyUMwUUALFkYOBmiC2JUSE+f3B62wQMOy353kG+H7Wci19nlnr/i6rFddc933dkEgkSE1NxcmTJ1ss5nXlvffew4IFC7By5Up4eHhop/t/9913ghRlpaWlcHR0BADIZDIYGRkhJCRE5+u2JjQ0FHK5HDdu3GhxFsSwYcNESiasoKAg7NixA3/729+wePFi/Pzzz6ivr0dsbCzy8/Nx4MABHDt2TOc5CgoKYG9vj507d2LJkiUYO3as9kaO2tpazJw5Ezt27NB5DtI/HERHRJ3e0aNH2/xZfsNNpJ8OHTqEwMBA+Pr6agedpaenIy4uDgqFAgsWLBAsi4eHB9566y1MmzZNsDVbs3z5chw+fBgAsGjRIoSEhMDJyanJZ4qLi2Fra6vzIwbnz5/Htm3bmkzUl8vlgnYwAeDmzZsoKyvD8OHDtcMTMzMz8cILL2DQoEE6XdvAwAA3b95E7969AQA9evRAdnY27OzsdLpua1oaHimRSKDRaAQ/yiEmAwMDlJWVoU+fPkhISMDGjRtx/vx51NfXY8SIEXjvvfcEuV1AKpWib9++cHd3h7u7O8aPH4/8/Hztfy/68kUgCY9FOxF1em2deN2ZfoAhaiuFQoF58+aha9euouYYPHgwXn/99WZTyLdu3Yovv/xS0HO7cXFxWLNmDVatWtXi3fVCdi8nTZqEkJAQ+Pn5tXoW9tGjR0hLSxNle7aYbty4AYlEItj1akDD/2+mT5+O559/HgDwzTffwMPDo1mHW6ir1n7vHL+NjY0gOcQmlUpx8+ZN9OnTR9Qcp0+fxvfff4/k5GRkZGTgwYMHsLa2hoeHh7aQF/LfV9IfLNqJiIjoD7OwsEBVVRXmzJmD4ODgFoeNCeH555/H5cuXm3WiCgoK4OTkhAcPHgiWRV+6l7W1tXj99dexdu1ayGQyQdZsTeNOZmPl5eXo06ePYH8n9fX12LBhAz799FPcv38fQEO3Wy6X491339X5tYWBgYFt+tz+/ft1moOakkqluHXrlnYHhD6ora1FRkYGkpOTkZycjDNnzqCmpgb29vbIz88XOx4JjGfaiYgAJCUlISwsDGfOnGk2jOjevXsYN24cvvjiC8HPxhLpuxs3buD48eNQKBRwd3eHnZ2d9k7wl156SbAcVlZWOHnyZLOi/eTJk4LfTX79+nVB12tNly5dEBcXh7Vr14odpdkU/cdqamoEnYb97rvv4quvvsLHH3/c5L74devW4cGDB/jwww91ur6+FeMHDhx46nt/f3+Bkohv4MCBvzuHQ8hBkl26dIGrqyv+9Kc/YezYsUhISMCXX36JgoICwTKQ/mCnnYgIDWfV3d3dm22tfWznzp04deoU4uLiBE5G1H7cvn0bhw4dgkKhQF5eHqZNm4bg4GDMmDFD5x3Mzz//HG+++SaCgoIwbtw47aAzhUKBHTt24C9/+YtO19dXgYGBGDp0qGiT/Hfu3AkAWLlyJT744AMYGxtr39XV1SElJQWFhYWCTTC3tLTEF1980Ww+yddff43Q0FD8/PPPguTQF6ampk3+XFtbi99++w2Ghobo1q2bqLcdCEkqlWL79u3o2bPnUz+3ZMkSnWd58OAB0tPTcerUKSQnJ+PcuXOws7PDxIkT4erqiokTJ3KLfCfEop2ICA3n9lQqFQYPHtzi+7y8PHh6eqK4uFjgZETty9mzZxEZGYmoqChYWFigsrISJiYm2L9/P9zc3HS6dlxcHD799FPt+fXH0+Nnzpyp03Vbk5ubi+LiYjx8+LDJcyEHWn744YfYsmULJk2a1OJ08BUrVuh0/ccD1oqKitCvXz8YGBho3xkaGsLW1hbr16+Hi4uLTnM8ZmRkhOzsbAwcOLDJ8/z8fLz88suorq4WJIc+u3r1KpYtW4ZVq1Zh6tSpYscRhL6caZ84cSLOnTuH/v37awv0iRMn4sUXXxQ1F4mPRTsRERp+kLt06VKrk1kLCgowdOhQ/kBH1IJbt27h4MGD2L9/P9RqNWbNmoXg4GBMnjwZ1dXVWLNmDf7xj3/87tCrjkKtVmP27NnIycnRnmUH/n0FnpADLZ82lVwikUCtVguSw93dHbGxsc06u0JzcXGBi4uLdgfAY8uXL8e5c+dw5swZkZLplx9++AGLFi1CXl6e2FEE0drMBaF16dIFFhYWmDVrFtzc3ODq6opevXqJmon0A8+0ExEB6Nu3L3Jyclot2rOzs2FhYSFwKiL9N2PGDCQkJGDgwIF47bXX4O/vDzMzM+37rl27Qi6XY9u2bYLk+eGHH5rc0z5y5EhB1m0sPDwcdnZ2SExMhEwmQ2ZmJsrLyyGXy7FlyxZBs+jL+fpTp06JHQEAsHnzZnh5eSExMRFjx46FRCJBeno6SkpK8O2334odT28YGBigtLRU7BiC0ZceZmVlJU6fPo3k5GRs2rQJ8+fPx8CBAzFx4kS4ublh4sSJejUsj4TDTjsRERq6LI/PjhkZGTV5V11djdGjR8Pd3b1Zd4aoswsODkZISAjGjh3b6mc0Gg2Ki4t1en3UjRs3MH/+fKSlpcHExARAww/A48aNw+HDhwUdRterVy8kJSVh2LBh6NmzJzIzM+Hg4ICkpCTI5XLBzm8/6cmOv9Bu3LiBo0ePtnhkYOvWrYLlKC0txa5du5CXl6e9/zo0NBSWlpaCZdAXR48ebfJnjUaDsrIyREREwMrKCv/85z9FSkYA8K9//Qupqana8+1ZWVkYMGAALl26JHY0EhiLdiIiNGzvHTFiBAwMDBAWFgYHBwdIJBL89NNP2LVrF+rq6vDjjz/yXBnR/6mursbJkyfh7e0NAFi9ejVqamq07w0MDPDBBx80+xJMVzw9PfHrr78iKioKDg4OABrOKQcFBaF79+747rvvBMkBNAz3On/+PGQyGfr37499+/bB3d0d165dw9ChQ/Hbb78JlgVomBD+ySef4OrVqwAapmSvWrUKixcvFizDyZMn4ePjAzs7O+Tn58PJyQmFhYXQaDQYMWIEkpKSBMtC//bkgEiJRILevXvDw8MDn376KXeYiay+vh7nzp3DqVOncOrUKaSmpuLBgweCHrEh/cDt8UREAF588UWkp6dj2bJlWL16dZOO1NSpU7F7924W7ESNHDhwAMeOHdMW7RERERgyZAi6du0KoGF4o6WlZas3MvynnT59Gunp6dqCHQAcHBzw2WefYfz48YJkeMzJyQnZ2dmQyWRwcXHB5s2bYWhoiL179wp+X/rWrVuxdu1ahIWFNbnibOnSpbhz545g/3xWr14NuVyO9evXo0ePHoiJiUGfPn2wcOFCTJs2TadrZ2dnt/mzw4YN02ES/VNfXy92BGqkvr4eP/zwA5KTk3Hq1CmkpaWhqqoKffv2hbu7O3bt2gV3d3exY5II2GknInrC3bt3UVBQAI1GgwEDBog+OIlIH7m6umLlypWYPXs2AKBHjx7IysrSFqWHDh3Crl27kJGRIUgeBwcHHDx4EKNHj27yPDMzEwsWLBD0buOEhARUVVXB19cXarUa3t7eyMvLg7m5OaKjo+Hh4SFYFjs7O7z//vvN7tuOiorCunXrBDvz3qNHD1y8eBH9+/eHqakpUlNTMWTIEGRlZWHmzJkoLCzU2dpSqbTJQMDWSCQSdjBJVC+88AKqqqpgYWEBNzc3uLm5wd3dHf379xc7GomMnXYioieYmpriT3/6k9gxiPTalStXmlybZWRk1GSr7ejRo/HGG28Ilmfz5s1Yvnw5du3ahZEjR0IikeCHH35AeHi44MPfGl+TJZPJkJubi4qKCpiamgp+nrysrAzjxo1r9nzcuHEoKysTLEf37t21xycsLS1x7do1DBkyBABw584dna6tL8P49JW+zBog4JNPPoG7u3uzKwmJWLQTERHRM7t37x6ee+7fP0b88ssvTd7X19c3OeOuawEBAfjtt9/g4uKizfXo0SM899xzCAoKQlBQkPazFRUVguV6rPFEfSHZ29vjyJEjeOedd5o8j46OxoABAwTLMWbMGKSlpcHR0RFeXl6Qy+XIyclBbGwsxowZo9O1dTkAsb37vVkDJKy//OUvYkcgPcWinYiIiJ5Zv379cOnSpSZnyBvLzs5Gv379BMuzfft2wdZqTeMvBp4mMjJSx0n+7f3338e8efOQkpKC8ePHQyKRIDU1FSdPnsSRI0cEy7F161bcv38fALBu3Trcv38f0dHRsLe3F+Q6wPPnz+N//ud/8PXXX+OFF15o8u7evXuYNWsWtm/fjuHDh+s8iz4Rc9YAEbUdz7QTERHRMwsPD0diYiLOnz/f4jWJo0aNwuTJk7Fjxw6REgpPKpXCxsYGzs7OTz0/HRcXJ2CqhoJ127Zt+Omnn7RXnMnlcjg7OwuaQ0wLFizA4MGDsXbt2hbfb9y4Ebm5uTh06JDAycQl5qwBImo7Fu1ERET0zG7duoWXX34ZhoaGCAsLw8CBAyGRSJCXl4eIiAg8evQIFy5c0PmtC/X19aivr2+yVf/WrVv44osvUFVVBR8fH7zyyis6zfBYaGgolEolrK2tERQUhEWLFom2LZ6a6t+/P+Li4lqdDp+Tk4OZM2dCrVYLnExcL730EpKSkuDo6IghQ4bgo48+go+PD7KysjB+/Hjt7ggiEheLdiIiIvpDrl+/jmXLluHEiRNNrkmcMmUKdu/eLcj1ZoGBgejSpQv27t0LAPjXv/6FIUOG4MGDB7CwsEBubi6+/vprvPrqqzrPAgA1NTWIjY1FZGQk0tPT4eXlheDgYHh6ego+hA4ADAwMUFZWhj59+jR5Xl5ejj59+uh0WvqzDN7T9ZwBIyMj/PTTT7Czs2vx/fXr1+Ho6Ijq6mqd5tA3s2bNgpeXF1577TW89dZbiIuLQ0BAAGJjY2FqaorExESxIxIReKadiIiI/iA7OzuoVCpUVFRor1Szt7cXtLuclpaGiIgI7Z8PHDiAR48e4erVq+jZsyfefvttfPLJJ4IV7c8//zzmz5+P+fPno6ioCAqFAqGhoaitrUVubi6MjY0FyfFYa72ZmpoaGBoa6nTtxnMGysvLsWHDBkydOhVjx44FAGRkZCAhIaHVLev/Sb1790Z+fn6rRXteXh569eql8xz6RuxZA0TUNuy0ExERUbvVvXt3XLp0SVuM+fr6om/fvvjss88AALm5uXBzc8Pt27cFz1ZcXAyFQgGFQoGHDx8iLy9PsKJ9586dAICVK1figw8+aLJuXV0dUlJSUFhYiAsXLgiSx8/PD+7u7ggLC2vyPCIiAomJiYiPj9fp+oGBgSgoKMDp06ebvdNoNHB1dYW9vT3279+v0xxERH8Ei3YiIiJqt8zNzXH69Gk4OjoCaLgD/JNPPsHChQsBAGq1Gk5OTvjtt98EydN4e3xqaiq8vb0RGBiIadOmNbnHXtcef4lRVFSEfv36wcDAQPvO0NAQtra2WL9+PVxcXATJY2xsjIsXL8Le3r7J86tXr8LZ2VnnZ6evXbuGkSNHwsHBAXK5HA4ODpBIJPjpp5/w6aef4sqVK/jhhx+a5evoZDIZzp07B3Nz8ybPKysrMWLEiE53xp9IX3F7PBEREbVbw4cPx8GDB/HRRx/h9OnTuHXrFjw8PLTvr127BktLS0GyNB5EFxgYCKVS2awYEsr169cBAO7u7trzyWIyNzdHXFwcVq1a1eR5fHy8IH9H/fv3R2JiIgICAvBf//Vf2rP2j6fpnzhxotMV7ABQWFjY4lyDmpoa/PzzzyIkIqKWsNNORERE7dapU6fw6quvwtLSEmVlZZg/fz6++uor7fvQ0FBUVVUhKipK51mkUimsra3h7Oz81AFssbGxOs+ibxQKBYKDgzFt2jTtmfYzZ85ApVJh3759CAgIECzLhQsXUFBQAI1Gg4EDB+Lll18WbG19cfToUQANg+iioqLQs2dP7bu6ujqcPHkSJ06cQH5+vlgRiagRFu1ERETUruXm5uLEiRN46aWXMGfOnCbb0Pfu3YvRo0cLUpgFBAS0aVq60Oemb9y4gaNHj6K4uBgPHz5s8m7r1q2C5Th79ix27tzZ5L74FStWCLZFHwCSk5Ph5uYm2Hr66vF/IxKJpNmwwi5dusDW1haffvopvL29xYhHRE9g0U5ERETUQZ08eRI+Pj6ws7NDfn4+nJycUFhYCI1GgxEjRiApKUnsiIIyMjJC3759ERgYiICAAPTr10/sSKKys7PDuXPnOuXkfKL2RLiJKEREREQ6EhUVhePHj2v//NZbb8HExATjxo1DUVGRiMmAX3/9FfHx8cjLyxN87dWrV0Mul+PSpUswMjJCTEwMSkpKMHHiRMyZM0fQLPX19bhy5QpSU1ORkpLS5JdQSktLER4ejtjYWNja2mLq1Kk4cuRIsx0IncX169ebFeyVlZXihCGiVrHTTkRERO2eg4MDPv/8c3h4eCAjIwOTJk3C9u3bcezYMTz33HOCniOfO3cuXF1dERYWhurqagwfPlzb3VYqlfDz8xMsS48ePXDx4kX0798fpqamSE1NxZAhQ5CVlYWZM2eisLBQkBxnzpzBggULUFRU1Gw7tkQiaXEYmq5dvHgRkZGROHz4MOrr67Fw4UIEBwdj+PDhgmcRy6ZNm2Bra4t58+YBAObMmYOYmBhYWFjg22+/7VR/F0T6jJ12IiIiavdKSkq007/j4+Px5z//Ga+//rp2qryQUlJSMGHCBABAXFwcNBoNKisrsXPnTmzYsEHQLN27d0dNTQ2Ahuvwrl27pn13584dwXIsXboUo0aNwqVLl1BRUYG7d+9qf1VUVAiWo7GXX34Zf/3rX/HGG2+gqqoKkZGRGDlyJCZMmIDLly+Lkkloe/bsgZWVFQDgxIkTSExMhEqlwvTp05tN+ici8bBoJyIionbP2NgY5eXlAIDvvvsOkydPBtBwhrm6ulrQLPfu3YOZmRkAQKVSwc/PD926dYOXlxeuXr0qaJYxY8YgLS0NAODl5QW5XI4PP/wQQUFBGDNmjGA5rl69io0bN2Lw4MEwMTFBz549m/wSUm1tLf7xj3/g1VdfhY2NDRISEhAREYFbt27h+vXrsLKyEvzogFjKysq0RfuxY8cwd+5ceHp64q233sK5c+dETkdEj/GediIiImr3pkyZgpCQEDg7O+PKlSvw8vICAFy+fBm2traCZrGyskJGRgbMzMygUqmgVCoBAHfv3oWRkZGgWbZu3Yr79+8DANatW4f79+8jOjoa9vb22LZtm2A5XFxcUFBQIPpd6MuXL8fhw4cBAIsWLcLmzZvh5OSkfd+9e3d8/PHHgv87IxZTU1OUlJTAysoKKpVKuxNEo9GIcmSBiFrGop2IiIjavV27dmHNmjUoKSlBTEwMzM3NAQDnz5/H/PnzBc3y5ptvYuHChTA2NoaNjY32irGUlBQMHTpU0CwymUz7+27dumH37t2Crv/Y8uXLIZfLcfPmTQwdOhRdunRp8n7YsGGC5MjNzcVnn30GPz8/GBoatvgZS0tLnDp1SpA8YvP19cWCBQswYMAAlJeXY/r06QAazvuL/QULEf0bB9ERERER/YedP38excXFmDJlCoyNjQEAx48fh4mJCcaPHy9yOuE9vhe8scd3hAs1iK62thavv/461q5d2+TLjM6strYWO3bsQElJCQICAuDs7AwA2L59O4yNjRESEiJyQiICWLQTERFRB/HgwQNkZ2fj9u3bqK+v1z6XSCSYMWOGYDmys7Nb7RzHx8dj1qxZOl3f1NQUEomkTZ8Vagjc7127Z2NjI0gOExMT/Pjjjyzaiahd4fZ4IiIiavdUKhUWL16sHUbXmNBXik2dOhVpaWnNCsOYmBj4+/ujqqpKp+tv375d+/vy8nJs2LABU6dOxdixYwEAGRkZSEhIwNq1a3WaozGhivLfM3v2bMTHx+O///u/xY6iNw4ePIg9e/ZArVYjIyMDNjY22L59O+zs7DBz5kyx4xER2GknIiKiDsDe3h5Tp07Fe++9hxdffFHULOvXr8f+/fuRnp4OCwsLAEB0dDSCgoKgUCgEnUzu5+cHd3d3hIWFNXkeERGBxMRExMfHC5YFaDhTXlxcjIcPHzZ57uPjI8j6H374IbZs2YJJkyZh5MiR6N69e5P3K1asECSHvvj888/x3nvv4c0338SHH36IS5cuQSaTQaFQICoqqtOc7SfSdyzaiYiIqN174YUXcOHCBfTv31/sKACA8PBwJCYm4vTp01CpVAgJCcHBgwfh5+cnaA5jY+MWh4pdvXoVzs7O2snyuqZWqzF79mzk5ORoz7ID0G7jF2onhJ2dXavvJBIJ1Gq1IDn0haOjIzZu3IhZs2ahR48eyMrKgkwmw6VLl+Dm5oY7d+6IHZGIwHvaiYiIqAP485//jOTkZLFjaO3YsQMjRozAmDFj8Nprr+Hw4cOCF+wAYG5ujri4uGbP4+PjtRP2hRAeHg47OzvcunUL3bp1w+XLl5GSkoJRo0YJ+s/t+vXrrf7qbAU70PD38Xj4XGPPP/+8zo9xEFHb8Uw7ERERtXsRERGYM2cOTp8+3eKVYrre9nz06NFmz2bNmoXvv/8e8+fPh0Qi0X5GqK3gAPD+++8jODgYycnJ2jPtZ86cgUqlwr59+wTLkZGRgaSkJPTu3RtSqRRSqRSvvPIKPvroI6xYsQIXLlwQLMtjT3b7OyM7OztcvHix2cyBf/7znxg8eLBIqYjoSSzaiYiIqN37+9//joSEBHTt2hXJyclNCjGJRKLzov1pE+EjIyMRGRmpzSLkULyAgAAMHjwYO3fuRGxsLDQaDRwdHZGWlgYXFxfBctTV1WmvvuvVqxdKS0vh4OAAGxsb5OfnC5YDAA4cOIBPPvkEV69eBQAMHDgQq1atwuLFiwXNoQ9WrVqFN954Aw8ePIBGo0FmZiYOHz6MjRs34quvvhI7HhH9HxbtRERE1O6tWbMG69evx1//+tcW7wTXtcZXzOkbFxcX/O///q+oGZycnJCdnQ2ZTAYXFxds3rwZhoaG2Lt3r6DXr23duhVr165FWFgYxo8fD41Gg7S0NCxduhR37tzBypUrBcuiDwIDA/Ho0SO89dZb+O2337BgwQL07dsXn332GSZMmCB2PCL6PxxER0RERO2emZkZzp07pzeD6J5UWVkJExMTUdaur69HQUFBs/vrAcDV1VWQDAkJCaiqqoKvry/UajW8vb2Rl5cHc3NzREdHw8PDQ5AcdnZ2eP/99+Hv79/keVRUFNatW4fr168LkkMf3blzB/X19airq8PGjRuxb98+VFdXix2LiMBBdERERNQBLFmyBNHR0WLHAABs2rSpSZY5c+bAzMwMffv2RVZWlqBZzpw5A3t7ewwePBiurq5wc3PT/nJ3dxcsx9SpU+Hr6wsAkMlkyM3NxZ07d3D79m3BCnYAKCsrw7hx45o9HzduHMrKygTLIbbKykosXLgQvXv3hqWlJXbu3AkzMzPs2rUL9vb2OHPmjPZIBxGJj9vjiYiIqN2rq6vD5s2bkZCQgGHDhjUbRLd161bBsuzZsweHDh0CAJw4cQKJiYlQqVQ4cuQIVq1ahe+++06wLEuXLsWoUaNw/PhxWFhY6NXQNTMzM8HXtLe3x5EjR/DOO+80eR4dHY0BAwYInkcs77zzDlJSUrBkyRKoVCqsXLkSKpUKDx48wLfffouJEyeKHZGIGuH2eCIiImr3ntY1lkgkSEpKEixL165dceXKFVhZWSE8PBwPHjzAnj17cOXKFbi4uODu3buCZenevTuysrKa3dMulKCgoDZ9TqiubkxMDObNm4fJkydj/PjxkEgkSE1NxcmTJ3HkyBHMnj1bkBxis7GxwVdffYXJkydDrVbD3t4eK1aswPbt28WORkQtYKediIiI2r1Tp06JHUHL1NQUJSUlsLKygkqlwoYNGwA0XDEm5OR4oGEIXUFBgWhFu0KhgI2NDZydnaEPfSI/Pz+cPXsW27ZtQ3x8vHaafmZmZov3lXdUpaWlcHR0BNBwXMHIyAghISEipyKi1rBoJyIionZPoVBg3rx56Nq1q9hR4OvriwULFmDAgAEoLy/H9OnTAQAXL14UvHhevnw55HI5bt682eL99cOGDdPp+kuXLoVSqYRarUZQUBAWLVokyrb4xkaOHKk9vtBZ1dfXN/l3wcDAAN27dxcxERE9DbfHExERUbtnYWGBqqoqzJkzB8HBwS0OGxNKbW0tduzYgZKSEgQEBGg7uNu3b4exsbGgHc2Wrr+TSCTQaDSC3RlfU1OD2NhYREZGIj09HV5eXggODoanp6fgZ+wNDAxQVlaGPn36NHleXl6OPn36CL4TQixSqRTTp0/H888/DwD45ptv4OHh0axwj42NFSMeET2BRTsRERG1e3V1dTh+/DgUCgWOHz8OOzs7BAYGYsmSJXjppZfEjieaoqKip763sbERKEmDoqIiKBQKHDhwALW1tcjNzYWxsbFg60ulUty8ebNZ0V5aWor+/ft3mivOAgMD2/S5/fv36zgJEbUFt8cTERFRu2dgYAAfHx/4+Pjg9u3bOHToEBQKBdauXYtp06YhODgYM2bMaLHzrCu5ubkoLi7Gw4cPmzz38fERLIPQRfnvkUgk2k7/k3fG69LOnTu16+/bt6/JFwV1dXVISUnBoEGDBMsjNhbjRO0LO+1ERETU4Zw9exaRkZGIioqChYUFKisrYWJigv3798PNzU2na6vVasyePRs5OTnaAhWAdiu4GFuwxfwCofH2+NTUVHh7eyMwMBDTpk0T7EsUOzs7AA2d/n79+sHAwED7ztDQELa2tli/fj1cXFwEyUNE9CzYaSciIqIO4datWzh48CD2798PtVqNWbNm4dixY5g8eTKqq6uxZs0aLFmy5He3jP//Cg8Ph52dHRITEyGTyZCZmYny8nLI5XJs2bJFp2s/SewvEEJDQ6FUKmFtbY3AwEAolUqYm5vrdM2WXL9+HUDD1YCxsbEwNTUVPAMR0R/FTjsRERG1ezNmzEBCQgIGDhyIkJAQ+Pv7N5tSXlpain79+ul8W3avXr2QlJSEYcOGoWfPnsjMzISDgwOSkpIgl8tx4cIFna7f2IwZM2BgYIAvv/yyxS8QJkyYoNP1pVIprK2t4ezs/NShcxx4RkTUOnbaiYiIqN3r06cPvv/+e4wdO7bVz1hYWGg7rrpUV1enPTPdq1cvlJaWwsHBATY2NsjPz9f5+o1lZGQgKSkJvXv3hlQqhVQqxSuvvIKPPvoIK1as0PkXCP7+/oJPiP89N27cwNGjR1s8LrB161aRUhERtY5FOxEREbVb1dXVOHnyJL766isAwOrVq1FTU6N9b2BggA8++ABGRkaQSCSCDGZzcnJCdnY2ZDIZXFxcsHnzZhgaGmLv3r2QyWQ6X78xsb9AUCgUOl/jWZw8eRI+Pj6ws7NDfn4+nJycUFhYCI1GgxEjRogdj4ioRSzaiYiIqN06cOAAjh07Bm9vbwBAREQEhgwZgq5duwIA8vLyYGlpiZUrVwqWac2aNaiqqgIAbNiwAd7e3pgwYQLMzc2hVCoFywHo1xcIjf36669ISkrCoEGDBJ3avnr1asjlcqxfvx49evRATEwM+vTpg4ULF2LatGmC5SAiehY8005ERETtlqurK1auXInZs2cDAHr06IGsrCxtQXro0CHs2rULGRkZYsZERUUFTE1NBd8qnpCQgKqqKvj6+kKtVsPb2xt5eXkwNzdHdHQ0PDw8BMkxd+5cuLq6IiwsDNXV1Rg+fLi2w61UKuHn5ydIjh49euDixYvo378/TE1NkZqaiiFDhiArKwszZ85EYWGhIDmIiJ4FO+1ERETUbl25cgUDBw7U/tnIyKjJNWKjR4/GG2+8IUiWoKCgNn0uMjJSx0n+berUqdrfy2Qy5ObmivIFQkpKCt59910AQFxcHDQaDSorKxEVFYUNGzYIVrR3795de3zC0tIS165dw5AhQwAAd+7cESQDEdGzYtFORERE7da9e/fw3HP//nHml19+afK+vr6+yRl3XVIoFLCxsYGzszP0eSPjk1P1hXDv3j3tuiqVCn5+fujWrRu8vLywatUqwXKMGTMGaWlpcHR0hJeXF+RyOXJychAbG4sxY8YIloOI6FmwaCciIqJ2q1+/frh06RIcHBxafJ+dnY1+/foJkmXp0qVQKpVQq9UICgrCokWLRCmQAf3r+ltZWSEjIwNmZmZQqVTas/13796FkZGRIBmAhunw9+/fBwCsW7cO9+/fR3R0NOzt7bFt2zbBchARPQueaSciIqJ2Kzw8HImJiTh//nyz4q+6uhqjRo3C5MmTsWPHDkHy1NTUIDY2FpGRkUhPT4eXlxeCg4Ph6ekp6HZ0qVTapq5/XFycIHl2796N8PBwGBsbw8bGBj/++COkUik+++wzxMbG4tSpU4LkICJqj1i0ExERUbt169YtvPzyyzA0NERYWBgGDhwIiUSCvLw8RERE4NGjR7hw4QJefPFFwbMVFRVBoVDgwIEDqK2tRW5urvb6NV0LDQ2FUqmEtbW16F3/x86fP4/i4mJMmTJF+/dw/PhxmJiYYPz48aJmIyLSZyzaiYiIqF27fv06li1bhhMnTmi7yhKJBFOmTMHu3btFu9qsuLgYCoUCCoUCDx8+RF5enmBFO6A/XX+g4ZjCsGHDWnwXHx+PWbNm6WztZxm6V1FRobMcRER/FIt2IiIi6hAqKipQUFAAALC3txels9y4UE5NTYW3tzcCAwMxbdq0JlPthSZm1x8ALCwskJaW1uwLlJiYGPj7+2vvtdeFqKgo7e/Ly8uxYcMGTJ06FWPHjgUAZGRkICEhAWvXrsXKlSt1loOI6I/iIDoiIiLqEMzMzDB69GjR1m+8JT0wMBBKpRLm5uai5WlMIpFAIpFAo9Ggvr5e8PWXLVuGSZMmIT09HRYWFgCA6OhoBAUFQaFQ6HTtJUuWaH/v5+eH9evXIywsTPtsxYoViIiIQGJiIot2ItJL7LQTERER/QdIpVJYW1vD2dn5qduxY2NjBcmjb13/x0MDT58+DZVKhZCQEBw8eFCwO9oBwNjYGBcvXoS9vX2T51evXoWzs7N2sjwRkT5hp52IiIjoP8Df31/ws+Kt0ceu/44dO7B48WKMGTMGP//8Mw4fPoyZM2cKmsHc3BxxcXHN7oaPj48X/e+HiKg17LQTERERdTD60PU/evRos2e1tbVYuXIlPD094ePjo33e+Pe6pFAoEBwcjGnTpmnPtJ85cwYqlQr79u1DQECAIDmIiJ4Fi3YiIiKiDiYgIKBNXf/9+/frLENbt+BLJBLU1dXpLMeTzp49i507d+Knn36CRqOBo6MjVqxYARcXF8EyEBE9CxbtRERERERERHqKZ9qJiIiIOolff/0VSUlJGDRoEAYNGiRqlsrKSpiYmAi+bn19PQoKCnD79u1mk/RdXV0Fz0NE9HvYaSciIiLqoObOnQtXV1eEhYWhuroaw4cPR2FhITQaDZRKpWCT2zdt2gRbW1vMmzcPADBnzhzExMTAwsIC3377LYYPHy5IjjNnzmDBggUoKirCkz8CC71Nn4iorYS/74OIiIiIBJGSkoIJEyYAAOLi4qDRaFBZWYmdO3diw4YNguXYs2cPrKysAAAnTpxAYmIiVCoVpk+f3mySuy4tXboUo0aNwqVLl1BRUYG7d+9qf1VUVAiWg4joWbDTTkRERNRBde3aFVeuXIGVlRX8/f1haWmJjz/+GMXFxXB0dBTsXvLGOcLDw/HgwQPs2bMHV65cgYuLC+7evStIju7duyMrK6vZPe1ERPqMnXYiIiKiDsrKygoZGRmoqqqCSqWCp6cnAODu3bswMjISLIepqSlKSkoAACqVCpMnTwYAaDQaQbeku7i4oKCgQLD1iIj+EziIjoiIiKiDevPNN7Fw4UIYGxvDxsYGbm5uABq2zQ8dOlSwHL6+vliwYAEGDBiA8vJyTJ8+HQBw8eJFQbvey5cvh1wux82bNzF06FB06dKlyfthw4YJloWIqK24PZ6IiIioAzt//jyKi4sxZcoUGBsbAwCOHz8OExMTjB8/XpAMtbW12LFjB0pKShAQEABnZ2cAwPbt22FsbIyQkBBBcrR0d7xEIoFGo+EgOiLSWyzaiYiIiDqo7OzsVrvH8fHxmDVrlrCBRFZUVPTU9zY2NgIlISJqOxbtRERERB2UhYUF0tLSIJPJmjyPiYmBv78/qqqqBM2Tm5uL4uJiPHz4sMlzHx8fQXMQEbUnPNNORERE1EEtW7YMkyZNQnp6OiwsLAAA0dHRCAoKgkKhECyHWq3G7NmzkZOTo92ODjRsTQcg+LZ0fnlARO0JO+1EREREHVh4eDgSExNx+vRpqFQqhISE4ODBg/Dz8xMsw4wZM2BgYIAvv/wSMpkMmZmZKC8vh1wux5YtW7R3yeuavn15QETUFrzyjYiIiKgD27FjB0aMGIExY8bgtddew+HDhwUt2AEgIyMD69evR+/evSGVSiGVSvHKK6/go48+wooVKwTLER4eDjs7O9y6dQvdunXD5cuXkZKSglGjRiE5OVmwHEREz4Lb44mIiIg6kKNHjzZ7NmvWLHz//feYP38+JBKJ9jNCbQevq6vTTq7v1asXSktL4eDgABsbG+Tn5wuSAWj48iApKanVLw8uXLggWBYiorZi0U5ERETUgTxtInxkZCQiIyMBQNArzpycnJCdnQ2ZTAYXFxds3rwZhoaG2Lt3b7MhebqkL18eEBE9CxbtRERERB1IfX292BGaWbNmjXZS/YYNG+Dt7Y0JEybA3NwcSqVSsBz68uUBEdGz4CA6IiIiok6ksrISJiYmYsdARUUFTE1NtUPghJCQkICqqir4+vpCrVbD29sbeXl5MDc3R3R0NDw8PATLQkTUVizaiYiIiDqoTZs2wdbWFvPmzQMAzJkzBzExMbCwsMC3336L4cOH63T9oKCgNn3u8ZZ9MYjx5QER0bNg0U5ERETUQclkMhw6dAjjxo3DiRMnMHfuXERHR+PIkSMoLi7Gd999p9P1pVIpbGxs4OzsjKf9yBkXF6fTHERE7RnPtBMRERF1UGVlZbCysgIAHDt2DHPnzoWnpydsbW3h4uKi8/WXLl0KpVIJtVqNoKAgLFq0CGZmZjpf90ntoeNPRNQa3tNORERE1EGZmpqipKQEAKBSqTB58mQAgEajEWRy/O7du1FWVoa3334b33zzDaysrDB37lwkJCQ8tfP+n6ZQKHDq1ClUVlbi7t27rf4iItJH3B5PRERE1EGFhYXh2LFjGDBgAC5cuIDCwkIYGxsjOjoamzZtwo8//ihonqKiIigUChw4cAC1tbXIzc3VXsGmS6GhoVAqlbC2tha1409E9Eew005ERETUQW3btg1hYWFwdHTEiRMntAVyWVkZQkNDBc8jkUggkUig0WgEvZpOXzr+RER/BDvtRERERKQzNTU1iI2NRWRkJFJTU+Ht7Y3AwEBMmzYNUqk4/SOxOv5ERH8EB9ERERERdXC5ubkoLi7Gw4cPmzz38fHR6bqNt6UHBgZCqVTC3Nxcp2u2hVgdfyKiP4KddiIiIqIOSq1WY/bs2cjJydEWqQC0d5LrehidVCqFtbU1nJ2dn3oPemxsrE5zAPrZ8Sciagt22omIiIg6qPDwcNjZ2SExMREymQyZmZkoLy+HXC7Hli1bdL6+v7//U4t1oehrx5+IqC3YaSciIiLqoHr16oWkpCQMGzYMPXv2RGZmJhwcHJCUlAS5XI4LFy6IHVEQ+tTxJyJ6Vuy0ExEREXVQdXV12gFrvXr1QmlpKRwcHGBjY4P8/HyR0wlHXzr+RER/BIt2IiIiog7KyckJ2dnZkMlkcHFxwebNm2FoaIi9e/dCJpOJHU8wCoVC7AhERH8Yt8cTERERdVAJCQmoqqqCr68v1Go1vL29kZeXB3NzcyiVSkyaNEnsiKL69ddfkZSUhEGDBmHQoEFixyEiahGLdiIiIqJOpKKiAqampp1yu/jcuXPh6uqKsLAwVFdXY/jw4SgsLIRGo4FSqYSfn5/YEYmImuH2eCIiIqIOJigoqE2fi4yM1HES/ZKSkoJ3330XABAXFweNRoPKykpERUVhw4YNLNqJSC+x005ERETUwUilUtjY2MDZ2RlP+1EvLi5OwFTi69q1K65cuQIrKyv4+/vD0tISH3/8MYqLi+Ho6Ij79++LHZGIqBl22omIiIg6mKVLl0KpVEKtViMoKAiLFi2CmZmZ2LFEZ2VlhYyMDJiZmUGlUkGpVAIA7t69CyMjI5HTERG1TCp2ACIiIiL6z9q9ezfKysrw9ttv45tvvoGVlRXmzp2LhISEp3beO7o333wTCxcuRL9+/WBpaQk3NzcADdvmhw4dKm44IqJWcHs8ERERUQdXVFQEhUKBAwcOoLa2Frm5udr72zub8+fPo7i4GFOmTNH+HRw/fhwmJiYYP368yOmIiJpjp52IiIiog5NIJJBIJNBoNKivrxc7jmiys7MxcuRIzJ49u8mXFl5eXvjll19ETEZE1DoW7UREREQdUE1NDQ4fPowpU6bAwcEBOTk5iIiIQHFxcaftsk+dOhVqtbrZ85iYGCxcuFCEREREv4+D6IiIiIg6mNDQUCiVSlhbWyMwMBBKpRLm5uZixxLdsmXLMGnSJKSnp8PCwgIAEB0djaCgICgUCnHDERG1gmfaiYiIiDoYqVQKa2trODs7QyKRtPq52NhYAVPph/DwcCQmJuL06dNQqVQICQnBwYMHeUc7EektFu1EREREHUxAQMBTi/XH9u/fL0Aa/bN48WKcPXsWP//8M/7+979j5syZYkciImoVi3YiIiIi6rCOHj3a7FltbS1WrlwJT09P+Pj4aJ83/j0Rkb5g0U5EREREHZZU2ra5yxKJBHV1dTpOQ0T07Fi0ExEREREREekpXvlGRERERJ1WZWWl2BGIiJ6KRTsRERERdQqbNm1CdHS09s9z5syBmZkZ+vbti6ysLBGTERG1jkU7EREREXUKe/bsgZWVFQDgxIkTSExMhEqlwvTp07Fq1SqR0xERtew5sQMQEREREQmhrKxMW7QfO3YMc+fOhaenJ2xtbeHi4iJyOiKilrHTTkRERESdgqmpKUpKSgAAKpUKkydPBgBoNBpOjicivcVOOxERERF1Cr6+vliwYAEGDBiA8vJyTJ8+HQBw8eJF2Nvbi5yOiKhlLNqJiIiIqFPYtm0bbG1tUVJSgs2bN8PY2BhAw7b50NBQkdMREbWM97QTERERERER6Sl22omIiIioU8nNzUVxcTEePnzY5LmPj49IiYiIWseinYiIiIg6BbVajdmzZyMnJwcSiQSPN5xKJBIA4DA6ItJLnB5PRERERJ1CeHg47OzscOvWLXTr1g2XL19GSkoKRo0aheTkZLHjERG1iGfaiYiIiKhT6NWrF5KSkjBs2DD07NkTmZmZcHBwQFJSEuRyOS5cuCB2RCKiZthpJyIiIqJOoa6uTjsxvlevXigtLQUA2NjYID8/X8xoRESt4pl2IiIiIuoUnJyckJ2dDZlMBhcXF2zevBmGhobYu3cvZDKZ2PGIiFrE7fFERERE1CkkJCSgqqoKvr6+UKvV8Pb2Rl5eHszNzaFUKjFp0iSxIxIRNcOinYiIiIg6rYqKCpiammonyBMR6RtujyciIiKiDi0oKKhNn4uMjNRxEiKiZ8dOOxERERF1aFKpFDY2NnB2dsbTfvSNi4sTMBURUduwaCciIiKiDi00NBRKpRLW1tYICgrCokWLYGZmJnYsIqI2YdFORERERB1eTU0NYmNjERkZifT0dHh5eSE4OBienp48z05Eeo1FOxERERF1KkVFRVAoFDhw4ABqa2uRm5urvb+diEjfSMUOQEREREQkJIlEAolEAo1Gg/r6erHjEBE9FYt2IiIiIurwampqcPjwYUyZMgUODg7IyclBREQEiouL2WUnIr3GK9+IiIiIqENrPIguMDAQSqUS5ubmYsciImoTnmknIiIiog5NKpXC2toazs7OTx06FxsbK2AqIqK2YaediIiIiDo0f39/TognonaLnXYiIiIiIiIiPcVBdERERERERER6ikU7ERERERERkZ5i0U5ERERERESkp1i0ExEREREREekpFu1EREREREREeopFOxEREREREZGeYtFOREREREREpKdYtBMRERERERHpqf8Huxkp6R0z0oUAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 1000x800 with 2 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA88AAAN+CAYAAAArHTkTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxN1/7/8ddJxEkkJBIkQUpCImZqaEl7I4YGFUNpTUUMFzW1pmraq4YOamipmqpFaOMSLaqTWVQJQqWoEFrito1qUSqIDPv3R3853x4ZTkw9oe9nH/vxaPZee63PHk7kc9baa5sMwzAQERERERERkXw52DsAERERERERkaJOybOIiIiIiIiIDUqeRURERERERGxQ8iwiIiIiIiJig5JnERERERERERuUPIuIiIiIiIjYoORZRERERERExAYlzyIiIiIiIiI2KHkWERERERERsUHJs4j8o0VGRlK5cmW7tH3q1ClMJhPR0dGWdbt27WLixIn8/vvvf0sMJpOJiRMn/i1t3Sx7Xhso2ufmZl25coWJEycSFxd3y3X8/PPPTJw4kcTExFzbJk6ciMlkuvUA/wHi4uIwmUy3dA2OHDnCxIkTOXXqVK5t9v6cFMb58+fp1q0b5cqVw2Qy0bFjR3uH9I9nMpkYNmyY5eeCPt+FdTv3uMi9QsmziPyjjR8/njVr1tg7DItdu3YxadKkvy15jo+PZ8CAAX9LWzerqF2be9mVK1eYNGnSbSfPkyZNyvOP6wEDBhAfH3/rAUqBjhw5wqRJk/JMnu+Fz8krr7zCmjVrmDlzJvHx8UybNs3eIckNCvp8i8j/KWbvAERE7KlKlSr2DsGuHn74YXuHkK9/+rW5l1SsWJGKFSvaO4y74sqVK5QoUSLX+qysLDIzMzGbzXaI6v/cC5+Tw4cPU6VKFXr27HlL+1+9ehUXF5c7HJWIyM1Tz7OI3Ld+/fVXBg4ciJ+fH2azmbJlyxISEsLmzZstZfIa8pgznG3JkiVUq1YNFxcXGjZsyO7duzEMg+nTp+Pv74+bmxvNmzfnxIkTVvtXrlyZyMjIXPE0a9aMZs2a5RvvxIkTGTt2LAD+/v6YTCarIXArV67ksccew9fXFxcXF6pXr84LL7xAWlqaVT2RkZG4ublx4sQJ2rZti5ubG35+fowePZr09PRcx3rj0OTDhw/ToUMHSpcujbOzM/Xq1WPp0qVWZaKjozGZTLl6wvIatnfgwAHatWtHuXLlMJvNlC9fnscff5wff/wx33ORcxx3+to0a9aMWrVqsWPHDh5++GFcXFyoUKEC48ePJysrq8B4AM6cOcOgQYOoWLEixYsXx9/fn0mTJpGZmWkpkzMcf/r06UydOpXKlSvj4uJCs2bNSE5OJiMjgxdeeIHy5cvj7u5Op06dOHv2bK62Vq5cSZMmTXB1dcXNzY3w8HAOHDiQ6xzZutanTp2ibNmyAEyaNMlyX+XcoydOnKBv374EBgZSokQJKlSoQEREBIcOHbK0ExcXR6NGjQDo27evpY6ceyevYdvZ2dlMmzaN4OBgzGYz5cqVo3fv3rmue841SUhI4NFHH6VEiRIEBATwxhtvkJ2dbfOaZGdn884771CvXj1cXFzw8PDg4YcfZt26dbccy1dffUXTpk0pUaIE/fr1s1zTadOm8eqrr+Lv74/ZbGbbtm0A7Nu3j/bt2+Pp6YmzszP169cnNjbWZuz79u2jW7dulnukcuXKdO/enZSUFEuZ6OhonnzySQDCwsIs5z7ncY+8PifXrl0jKioKf39/ihcvToUKFRg6dGiuES2VK1emXbt2rF+/ngcffBAXFxeCg4NZvHixzdjhz+HYQ4YMoUKFChQvXpyAgABeeuklq3vPZDKxefNmkpKScv1Oy0tOTKtXr6Z+/fo4OzszadIkoHCfP4D58+dTt25d3NzcKFmyJMHBwbz44otW59RkMrFp0yb69u2Lp6cnrq6uRERE8MMPP+SKafHixdStWxdnZ2c8PT3p1KkTSUlJVmVu5veurfju5LEWhq3Pd2Hu07x88MEHmEymPEelTJ48GScnJ37++eebilXE7gwRkftUeHi4UbZsWWPhwoVGXFycsXbtWuPll182VqxYYSnTp08fo1KlSlb7AUalSpWMpk2bGqtXrzbWrFljBAUFGZ6ensbIkSONDh06GJ999pkRExNjeHt7G3Xq1DGys7Mt+1eqVMno06dPrnhCQ0ON0NBQy88nT540AGPJkiWGYRjG//73P2P48OEGYKxevdqIj4834uPjjYsXLxqGYRivvPKKMXPmTOPzzz834uLijAULFhj+/v5GWFiYVTt9+vQxihcvblSvXt2YMWOGsXnzZuPll182TCaTMWnSpFzHOmHCBMvPR48eNUqWLGlUqVLFWLZsmfH5558b3bt3NwBj6tSplnJLliwxAOPkyZNW9W3bts0AjG3bthmGYRiXL182vLy8jIYNGxqxsbHG9u3bjZUrVxqDBw82jhw5ktdlszqOO31tQkNDDS8vL6N8+fLG7NmzjQ0bNhgjRowwAGPo0KEFnpvU1FTDz8/PqFSpkvHuu+8amzdvNl555RXDbDYbkZGRlnI517VSpUpGRESE8dlnnxkffvih4e3tbQQFBRm9evUy+vXrZ3z55ZfGggULDDc3NyMiIsKq7ddee80wmUxGv379jM8++8xYvXq10aRJE8PV1dX47rvvrM6RrWt97do1Y/369QZg9O/f33JfnThxwjAMw9i+fbsxevRo46OPPjK2b99urFmzxujYsaPh4uJiHD161DAMw7h48aLlmv/nP/+x1PG///3PMAzDmDBhgnHjnxQDBw40AGPYsGHG+vXrjQULFhhly5Y1/Pz8jF9//TXXNQkMDDQWLFhgbNq0yRgyZIgBGEuXLi3wHjEMw+jVq5dhMpmMAQMGGJ988onx5ZdfGq+99prx9ttv31Isnp6ehp+fn/HOO+8Y27ZtM7Zv3265phUqVDDCwsKMjz76yNi4caNx8uRJY+vWrUbx4sWNRx991Fi5cqWxfv16IzIy0uqzbRi5PxuGYRirVq0yXn75ZWPNmjXG9u3bjRUrVhihoaFG2bJlLXGdPXvWeP311w3AmDt3ruXcnz171nIP/PVzkp2dbYSHhxvFihUzxo8fb2zcuNGYMWOG4erqatSvX9+4du2apWylSpWMihUrGjVq1DCWLVtmbNiwwXjyyScNwNi+fXuB5/3q1atGnTp1DFdXV2PGjBnGxo0bjfHjxxvFihUz2rZtaxjGn/defHy8Ub9+fSMgICDX77S8VKpUyfD19TUCAgKMxYsXG9u2bTP27t1b6M/ff//7XwMwhg8fbmzcuNHYvHmzsWDBAmPEiBGWMjn3sp+fn+WzuHDhQqNcuXKGn5+fceHCBUvZnHPfvXt34/PPPzeWLVtmBAQEGO7u7kZycrKlXGF/7xYmvjt5rPn56+88W5/vwtynhpH7Hk9PTzd8fHyMnj17WrWdkZFhlC9f3njyySdtxilS1Ch5FpH7lpubm/Hcc88VWCa/BM3Hx8e4fPmyZd3atWsNwKhXr55VMjZr1iwDMA4ePGhZd6vJs2EYxvTp0/NMSm+UnZ1tZGRkGNu3bzcA49tvv7U6JsCIjY212qdt27ZGtWrVch3rXxPEbt26GWaz2Th9+rRVuTZt2hglSpQwfv/9d8MwCp8879u3zwCMtWvXFng8ebkb1yY0NNQAjE8++cSq3n//+9+Gg4ODkZKSYtXWX8/NoEGDDDc3N6syhmEYM2bMMABLUptzXevWrWtkZWXliqd9+/ZW+z/33HMGYEkoTp8+bRQrVswYPny4Vbk//vjD8PHxMZ566imrc1SYa/3rr7/mOp78ZGZmGtevXzcCAwONkSNHWtYnJCTkul9z3Jg8JyUlGYAxZMgQq3J79uwxAOPFF1+0rMu5Jnv27LEqW6NGDSM8PLzAWL/66isDMF566aV8y9xKLFu2bLEqm3NNq1SpYly/ft1qW3BwsFG/fn0jIyPDan27du0MX19fyz2QV/J8o8zMTOPy5cuGq6urVfK/atWqfPe98XOS80XJtGnTrMqtXLnSAIyFCxda1lWqVMlwdna2uqevXr1qeHp6GoMGDco3TsMwjAULFuR5702dOtUAjI0bN1rWhYaGGjVr1iywvr/G5OjoaBw7dsxqfWE/f8OGDTM8PDwKbCPn91enTp2s1u/cudMAjFdffdUwDMO4cOGC4eLiYvkyIMfp06cNs9ls9OjRw7KusJ/FwsR3J481Pzd+YVjQ5/tG+d2ned3jEyZMMIoXL2788ssvlnU596KtL2hEiiIN2xaR+1bjxo2Jjo7m1VdfZffu3WRkZBR637CwMFxdXS0/V69eHYA2bdpYDU/NWW9r+Nqd8MMPP9CjRw98fHxwdHTEycmJ0NBQgFxDCE0mExEREVbr6tSpYzPOrVu30qJFC/z8/KzWR0ZGcuXKlZueFKpq1aqULl2acePGsWDBAo4cOXJT++fldq9NyZIlad++vdW6Hj16kJ2dzVdffZVvu5999hlhYWGUL1+ezMxMy9KmTRsAtm/fblW+bdu2ODj83z+zOfE8/vjjVuVy1p8+fRqADRs2kJmZSe/eva3acXZ2JjQ0NNeQ11u91jkyMzN5/fXXqVGjBsWLF6dYsWIUL16c48eP57qvCitnOPONjy80btyY6tWrs2XLFqv1Pj4+NG7c+KaP4csvvwRg6NChdyyW0qVL07x58zzrat++PU5OTpafT5w4wdGjRy3P8v71erVt25bU1FSOHTuWb2yXL19m3LhxVK1alWLFilGsWDHc3NxIS0u75XO/detWIPfxPvnkk7i6uuY63nr16vHAAw9YfnZ2diYoKKhQvytcXV3p0qWL1fqcdm9s52bUqVOHoKAgq3WF/fw1btyY33//ne7du/PJJ5/w22+/5dvOjc9gN23alEqVKlnumfj4eK5evZrrXPr5+dG8efNcx1iYz2Jh4rsbx3o7buc+feaZZwB47733LOvmzJlD7dq1+de//nVX4hW5m5Q8i8h9a+XKlfTp04f333+fJk2a4OnpSe/evTlz5ozNfT09Pa1+Ll68eIHrr127doeiztvly5d59NFH2bNnD6+++ipxcXEkJCSwevVq4M8Jdf6qRIkSODs7W60zm8024zx37hy+vr651pcvX96y/Wa4u7uzfft26tWrx4svvkjNmjUpX748EyZMuKkvM/7qdq+Nt7d3rjp9fHyAgo/vl19+4dNPP8XJyclqqVmzJkCuP1xvNc5ffvkFgEaNGuVqa+XKlbnaudVrnWPUqFGMHz+ejh078umnn7Jnzx4SEhKoW7durvuqsHLOY3730o3n2cvLK1c5s9lss/1ff/0VR0dHy/W7E7HkVS6/bTnXasyYMbmu1ZAhQ4Dc98Vf9ejRgzlz5jBgwAA2bNjA3r17SUhIoGzZsrd17osVK2Z5zj2HyWTCx8fnjp37c+fO4ePjk+tZ93LlylGsWLGb/l3xV3ldg8J+/nr16sXixYtJSUmhc+fOlCtXjoceeohNmzblqjOv++av5+hm753CfBYLE9/dONbbcTv3qbe3N127duXdd98lKyuLgwcPsmPHDqvXZIncSzTbtojct8qUKcOsWbOYNWsWp0+fZt26dbzwwgucPXuW9evX37V2nZ2dc00QA3/+wVOmTJlbqnPr1q38/PPPxMXFWXqbgTv+SisvLy9SU1Nzrc+Z1CUn/pw/EG88zrwShdq1a7NixQoMw+DgwYNER0czefJkXFxceOGFF+5o/IWRk/D8Vc4XKnklEjnKlClDnTp1eO211/LcnvMFw+3KOccfffQRlSpVuiN1FuTDDz+kd+/evP7661brf/vtNzw8PG6pzpzzmJqammsW7p9//vmWPwc3Klu2LFlZWZw5cybfpPdmYynofdU3bsvZNyoqiieeeCLPfapVq5bn+osXL/LZZ58xYcIEq89Beno658+fzzcGW7y8vMjMzOTXX3+1SqANw+DMmTOWiaFul5eXF3v27MEwDKvzcvbsWTIzM2/rGud1DW7m89e3b1/69u1LWloaX331FRMmTKBdu3YkJydbfaby+iL1zJkzVK1a1XKMQL6/E2/1GG3FdzeO9Vbdifv02Wef5YMPPuCTTz5h/fr1eHh43PLM6yL2pp5nEflHeOCBBxg2bBitWrXim2++uattVa5cmYMHD1qtS05OLnD4Zo6c197c+G1+zh+TN74W5913372dUHNp0aKFJVH/q2XLllGiRAnLq61yZve98Tj/OsPxjUwmE3Xr1mXmzJl4eHjc9euQnz/++CNXnMuXL8fBwaHAYYTt2rWzvHKnYcOGuZY7lTyHh4dTrFgxvv/++zzbadiw4U3Xmd99BX9elxvvq88//5yffvqp0HXcKGfY84cffmi1PiEhgaSkJFq0aFH44AuQM4x1/vz5domlWrVqBAYG8u233+Z7rUqWLJnnviaTCcMwcp37999/P9fM7zdz7nOO58bj/fjjj0lLS7tj575FixZcvnyZtWvXWq1ftmyZVRx3yq18/lxdXWnTpg0vvfQS169f57vvvrPaHhMTY/Xzrl27SElJsbwVoUmTJri4uOQ6lz/++KPlEZfbkV98d+NYbSno357C3qf5adCgAU2bNmXq1KnExMQQGRlp9eiNyL1EPc8icl+6ePEiYWFh9OjRg+DgYEqWLElCQgLr16/Pt4foTunVqxdPP/00Q4YMoXPnzqSkpDBt2rRcwyjzUrt2bQDefvtt+vTpg5OTE9WqVaNp06aULl2awYMHM2HCBJycnIiJieHbb7+9o7FPmDDB8rzdyy+/jKenJzExMXz++edMmzYNd3d34M8hxdWqVWPMmDFkZmZSunRp1qxZw9dff21V32effca8efPo2LEjAQEBGIbB6tWr+f3332nVqtUdjb2wvLy8eOaZZzh9+jRBQUF88cUXvPfeezzzzDNWz37eaPLkyWzatImmTZsyYsQIqlWrxrVr1zh16hRffPEFCxYsuCPvOq5cuTKTJ0/mpZde4ocffqB169aULl2aX375hb179+Lq6mp5dU9hlSxZkkqVKvHJJ5/QokULPD09KVOmjOW1QNHR0QQHB1OnTh3279/P9OnTcx1LlSpVcHFxISYmhurVq+Pm5kb58uXz/EO+WrVqDBw4kHfeeQcHBwfatGnDqVOnGD9+PH5+fowcOfK2zlGORx99lF69evHqq6/yyy+/0K5dO8xmMwcOHKBEiRIMHz78rsfy7rvv0qZNG8LDw4mMjKRChQqcP3+epKQkvvnmG1atWpXnfqVKleJf//oX06dPt1yL7du3s2jRolw9/rVq1QJg4cKFlCxZEmdnZ/z9/fMcKdGqVSvCw8MZN24cly5dIiQkhIMHDzJhwgTq169Pr169but4c/Tu3Zu5c+fSp08fTp06Re3atfn66695/fXXadu2LS1btrwj7eQo7Ofv3//+Ny4uLoSEhODr68uZM2eYMmUK7u7uuXrd9+3bx4ABA3jyySf53//+x0svvUSFChUsQ+49PDwYP348L774Ir1796Z79+6cO3eOSZMm4ezszIQJE276OAoT3904VlsK+nwX9j4tyLPPPkvXrl0xmUyW8ytyT7LnbGUiInfLtWvXjMGDBxt16tQxSpUqZbi4uBjVqlUzJkyYYKSlpVnK5Tej842vLcqZbXf69OlW63NmF121apVlXXZ2tjFt2jQjICDAcHZ2Nho2bGhs3bq1ULNtG4ZhREVFGeXLlzccHBysZi7dtWuX0aRJE6NEiRJG2bJljQEDBhjffPNNrjr69OljuLq65joneb1OiDxmYD506JARERFhuLu7G8WLFzfq1q2b5wysycnJxmOPPWaUKlXKKFu2rDF8+HDj888/t4r56NGjRvfu3Y0qVaoYLi4uhru7u9G4cWMjOjo6V303uhvXJmfW37i4OKNhw4aG2Ww2fH19jRdffDHXbMl5nZtff/3VGDFihOHv7284OTkZnp6eRoMGDYyXXnrJMgP4zcRjGP83829CQoLV+rVr1xphYWFGqVKlDLPZbFSqVMno0qWLsXnzZqtzVNhrvXnzZqN+/fqG2Ww2AMuM8BcuXDD69+9vlCtXzihRooTxyCOPGDt27Mh1vxrGn6/GCQ4ONpycnKzOT17tZWVlGVOnTjWCgoIMJycno0yZMsbTTz9tef1NjvxmYs7r+uclKyvLmDlzplGrVi2jePHihru7u9GkSRPj008/vWOx5HdNc3z77bfGU089ZZQrV85wcnIyfHx8jObNmxsLFiywlMlrJuIff/zR6Ny5s1G6dGmjZMmSRuvWrY3Dhw/nOWP/rFmzDH9/f8PR0dHqM5/Xebp69aoxbtw4o1KlSoaTk5Ph6+trPPPMM1avYDKMP2e2fvzxx3MdT17XPi/nzp0zBg8ebPj6+hrFihUzKlWqZERFRVm9DiunvpuZbTuvmAyjcJ+/pUuXGmFhYYa3t7dRvHhxo3z58sZTTz1lNet+zmdu48aNRq9evQwPDw/LrNrHjx/P1e77779v1KlTx3J/dejQweqVcYZR+M9iYeK7k8ean7x+l+b3+S7sfVrQjPLp6emG2Ww2WrdubTM2kaLMZBiG8fek6SIiIvbVrFkzfvvtNw4fPmzvUETETqKjo+nbty8JCQm39BiE3LxPP/2U9u3b8/nnn9O2bVt7hyNyyzRsW0RERERE7rgjR46QkpLC6NGjqVevnmWeApF7lSYMExERERGRO27IkCG0b9+e0qVL89///rfA2exF7gUati0iIiIiIiJig3qeRURERERE5J7x1VdfERERQfny5TGZTLlem5eX7du306BBA5ydnQkICGDBggU33a6SZxEREREREblnpKWlUbduXebMmVOo8idPnqRt27Y8+uijHDhwgBdffJERI0bw8ccf31S7GrYtIiIiIiIi9ySTycSaNWvo2LFjvmXGjRvHunXrSEpKsqwbPHgw3377LfHx8YVuSz3PIiIiIiIiYlfp6elcunTJaklPT78jdcfHx/PYY49ZrQsPD2ffvn1kZGQUuh69qkrkPtan4wf2DsGi5ZdL7R0CAJvb9LF3CAA8vrVoXJvPm/eydwgWOifWmq2LtncIAMS1j7R3CEDROR8AW78YbO8QAJi3bqG9QwCg5LwX7R0CAEscXrV3CJKPn/f3t3cIAHw7o2j0G8bGdLN3CPmy59+O/vW+Z9KkSVbrJkyYwMSJE2+77jNnzuDt7W21ztvbm8zMTH777Td8fX0LVY+SZxEREREREbGrqKgoRo0aZbXObDbfsfpvfFVaztPLN/MKNSXPIiIiIiIiQraD/d7FbTab72iy/Fc+Pj6cOXPGat3Zs2cpVqwYXl5eha6naIxdEBEREREREbkLmjRpwqZNm6zWbdy4kYYNG+Lk5FToepQ8i4iIiIiICIaDyW7Lzbh8+TKJiYkkJiYCf76KKjExkdOnTwN/DgHv3bu3pfzgwYNJSUlh1KhRJCUlsXjxYhYtWsSYMWNuql0N2xYREREREZF7xr59+wgLC7P8nPOsdJ8+fYiOjiY1NdWSSAP4+/vzxRdfMHLkSObOnUv58uWZPXs2nTt3vql2lTyLiIiIiIjIPaNZs2aWCb/yEh0dnWtdaGgo33zzzW21q+RZREREREREyHa034Rh9wI98ywiIiIiIiJig3qeRURERERExK6vqroXqOf5Lps4cSL16tWzdxgFKgoxLly4ED8/PxwcHJg1a9bf2nZ0dDQeHh52r0NERERERIouJc+3YNeuXTg6OtK6dWu7tH/q1ClMJpNlavabYTKZWLt2rdW6MWPGsGXLljsT3F9kZWUxc+ZM6tSpg7OzMx4eHrRp04adO3dalbt06RLDhg1j3Lhx/PTTTzz22GOYTCb27NljVe6hhx7CbDZz5coVy7rr169TokQJFi5ceMfjFxERERERyaHk+RYsXryY4cOH8/XXX1tNgX6vcnNzw8vL647WaRgG3bp1Y/LkyYwYMYKkpCS2b9+On58fzZo1s0rgT58+TUZGBo8//ji+vr7UqFEDX19ftm3bZilz+fJlDhw4QLly5di1a5dl/Z49e7h69arVVPU3IyMj45aPUURERETkfpLtYLLbci9Q8nyT0tLSiI2N5ZlnnqFdu3a5pkF/44038Pb2pmTJkvTv359r165ZbU9ISKBVq1aUKVMGd3f3PKdMN5lMzJ8/nzZt2uDi4oK/vz+rVq2ybPf39wegfv36mEwmmjVrVqi6K1euDECnTp0wmUyWn28ctp2dnc3kyZOpWLEiZrOZevXqsX79esv2nJ7v1atXExYWRokSJahbty7x8fGWMrGxsXz00UcsW7aMAQMG4O/vT926dVm4cCHt27dnwIABpKWlER0dTe3atQEICAjAZDJx6tQpmjVrRlxcnKW+HTt2EBQURPv27a3Wx8XFUaFCBQIDAwsdd2xsLM2aNcPZ2ZkPP/ww1zU+d+4cjRs3pn379ly7do24uDhMJhOff/45devWxdnZmYceeohDhw7l2jfH999/T4cOHfD29sbNzY1GjRqxefNmqzLp6ek8//zz+Pn5YTabCQwMZNGiRZbtR44coW3btri5ueHt7U2vXr347bff8m1TRERERETuHiXPN2nlypVUq1aNatWq8fTTT7NkyRLLO8ZiY2OZMGECr732Gvv27cPX15d58+ZZ7f/HH3/Qp08fduzYwe7duwkMDKRt27b88ccfVuXGjx9P586d+fbbb3n66afp3r07SUlJAOzduxeAzZs3k5qayurVqwtVd0JCAgBLliwhNTXV8vON3n77bd58801mzJjBwYMHCQ8Pp3379hw/ftyq3EsvvcSYMWNITEwkKCiI7t27k5mZCcDy5csJCgoiIiIiV/2jR4/m3LlzbNq0ia5du1qSyr1795Kamoqfnx9hYWF8/fXXlvq2bdtGs2bNCA0NteqR3rZtm6XXubBxjxs3ztIbHh4ebrXtxx9/5NFHHyU4OJjVq1fj7Oxs2TZ27FhmzJhBQkIC5cqVo3379vn2XF++fJm2bduyefNmDhw4QHh4OBEREVYjFXr37s2KFSuYPXs2SUlJLFiwADc3NwBSU1MJDQ2lXr167Nu3j/Xr1/PLL7/w1FNP5dmeiIiIiMjtMhxMdlvuBUqeb9KiRYt4+umnAWjdujWXL1+2PC88a9Ys+vXrx4ABA6hWrRqvvvoqNWrUsNq/efPmPP3001SvXp3q1avz7rvvcuXKFbZv325V7sknn2TAgAEEBQXxyiuv0LBhQ9555x0AypYtC4CXlxc+Pj54enoWqu6c/Tw8PPDx8bH8fKMZM2Ywbtw4unXrRrVq1Zg6dSr16tXLNZHXmDFjePzxxwkKCmLSpEmkpKRw4sQJAJKTk6levXqe9eesT05OxsXFxTJkvGzZsvj4+ODo6EizZs1IS0uzJPhxcXGEhoYSGhrKvn37uHLlCtevX2f37t2W5LmwcT/33HM88cQT+Pv7U758ecv65ORkQkJCaNmyJUuXLqVYMevJ6CdMmECrVq2oXbs2S5cu5ZdffmHNmjV5HmPdunUZNGgQtWvXJjAwkFdffZWAgADWrVtnaSs2NpbFixfTqVMnAgICaNGiBV27dgVg/vz5PPjgg7z++usEBwdTv359Fi9ezLZt20hOTs6zTRERERERuXuUPN+EY8eOsXfvXrp16wZAsWLF6Nq1K4sXLwYgKSmJJk2aWO1z489nz55l8ODBBAUF4e7ujru7O5cvX8717HRe9eT0POensHUX5NKlS/z888+EhIRYrQ8JCcnVfp06dSz/7+vra4mhsEym/L9hCgwMpGLFisTFxXHp0iUOHDhAaGgo3t7e+Pv7s3PnTnbv3s3Vq1dp3rz5TcXdsGHDXO1dvXqVRx55hI4dOzJ79uw8Y/vrNfH09KRatWr5XpO0tDSef/55atSogYeHB25ubhw9etRyLRITE3F0dCQ0NDTP/ffv38+2bdtwc3OzLMHBwcCfQ8Lzkp6ezqVLl6yWrCw90y0iIiIihZPtaLLbci/Qe55vwqJFi8jMzKRChQqWdYZh4OTkxIULFwpVR2RkJL/++iuzZs2iUqVKmM1mmjRpwvXr123uW1Cyebt122rLMIxc65ycnHKVz87OBiAoKIgjR47kWXdOwhkYGFhgDM2aNWPbtm3UqVOHwMBAypUrB2AZum02m6lUqRKVK1fm0qVLhY7b1dU1V1tms5mWLVvy+eefM3bsWCpWrFhgbDnyuyZjx45lw4YNzJgxg6pVq+Li4kKXLl0s18LFxaXAerOzs4mIiGDq1Km5tuV8UXGjKVOmMGnSJKt1dap1pF7wE4U5FBERERERKYB6ngspMzOTZcuW8eabb5KYmGhZvv32WypVqkRMTAzVq1dn9+7dVvvd+POOHTsYMWIEbdu2pWbNmpjN5jwngcqrnpyex+LFiwN/vgrqZut2cnLKtd9flSpVivLly/P1119brd+1a1e+w7Dz0q1bN44fP86nn36aa9ubb76Jl5cXrVq1KrCOsLAwdu3axaZNmyyTosGfyXNcXBxxcXE0b978jsTt4ODABx98QIMGDWjevDk///xzrjJ/vSYXLlwgOTnZck1utGPHDiIjI+nUqRO1a9fGx8eHU6dOWbbXrl2b7OzsXMP1czz44IN89913VK5cmapVq1oteSX/AFFRUVy8eNFqqR2Y+5lzERERERG5eep5LqTPPvuMCxcu0L9/f9zd3a22denShUWLFvHCCy/Qp08fGjZsyCOPPEJMTAzfffcdAQEBlrJVq1blgw8+oGHDhly6dImxY8fm2Qu5atUqq3r27t1rmYm5XLlyuLi4sH79eipWrIizszPu7u6Fqrty5cps2bKFkJAQzGYzpUuXztX22LFjmTBhAlWqVKFevXosWbKExMREYmJiCn2+unXrxqpVq+jTpw/Tp0+nRYsWXLp0iblz57Ju3TpWrVqVbxKYIywsjLS0NBYvXsx7771nWR8aGkpkZCSOjo7069fvjsXt6OhITEwM3bt3p3nz5sTFxeHj42PZPnnyZLy8vPD29uall16iTJkydOzYMc+6qlatyurVq4mIiMBkMjF+/HhLrzz8eR369OlDv379mD17NnXr1iUlJYWzZ8/y1FNPMXToUN577z26d+/O2LFjKVOmDCdOnGDFihW89957ODo65mrTbDZjNptvOCanXOVERERERPJyr7wyyl7U81xIixYtomXLlrkSZ4DOnTuTmJhIYGAgL7/8MuPGjaNBgwakpKTwzDPPWJVdvHgxFy5coH79+vTq1YsRI0ZYhiP/1aRJk1ixYgV16tRh6dKlxMTEWCYfK1asGLNnz+bdd9+lfPnydOjQodB1v/nmm2zatAk/Pz/q16+f57GOGDGC0aNHM3r0aGrXrs369etZt26dzWHWf5XzSqiXXnqJmTNnEhwczKOPPkpKSgrbtm3LN+n8K39/fypVqsQff/xh9WxwhQoVeOCBB7h27ZrV+53vRNzFihXjv//9LzVr1qR58+ZWz3C/8cYbPPvsszRo0IDU1FTWrVtnGQVwo5kzZ1K6dGmaNm1KREQE4eHhPPjgg1Zl5s+fT5cuXRgyZAjBwcH8+9//Ji0tDYDy5cuzc+dOsrKyCA8Pp1atWjz77LO4u7vj4KCPrYiIiIjI381k5LxnSYoMk8nEmjVrCpVgyt0XFxdHWFgYFy5cwMPDw97h3JQ+HT+wdwgWLb9cau8QANjcpo+9QwDg8a1F49p83ryXvUOw0Dmx1mxdtL1DACCufaS9QwCKzvkA2PrFYHuHAMC8dQvtHQIAJee9aO8QAFji8Kq9Q5B8/Ly/v71DAODbGUWjAyI2ppu9Q8hXhwEf263tT97vbLe2C6to3EEiIiIiIiIiRZiSZxEREREREREbNGFYEaSR9EVLs2bNdE1ERERE5L5naMKwAqnnWURERERERMQG9TyLiIiIiIgI2Y7qeS6Iep5FREREREREbFDPs4iIiIiIiJCtZ54LpJ5nERERERERERuUPIuIiIiIiIjYoGHbIiIiIiIioldV2aCeZxEREREREREb1PMsIiIiIiIimjDMBiXPIvexll8utXcIFpvb9LF3CEDROSdH4/vZOwQAWjZZbO8QLIrKOWnvYdg7BAA6DQy0dwgAPNwk3d4hAFBqkNneIfyftgvsHQEAw9pH2jsEAJbs+sLeIQAQ+fOT9g7BIuOjrfYOAYCYEefsHQIA5RsssncIADzgVEQSw5hu9o5AbpGGbYuIiIiIiIjYoJ5nERERERERIduxiPTOF1HqeRYRERERERGxQT3PIiIiIiIiognDbFDPs4iIiIiIiIgN6nkWERERERERDPU8F0g9zyIiIiIiIiI2KHkWERERERERsUHDtkVEREREREQThtmgnmcRERERERERG+655HnixInUq1fP3mEUqCjEuHDhQvz8/HBwcGDWrFl/a9vR0dF4eHjYvY6izmQysXbt2kKXLwr3lYiIiIjcv7IdTHZb7gVFInnetWsXjo6OtG7d2i7tnzp1CpPJRGJi4k3vm1cCNGbMGLZs2XJngvuLrKwsZs6cSZ06dXB2dsbDw4M2bdqwc+dOq3KXLl1i2LBhjBs3jp9++onHHnsMk8nEnj17rMo99NBDmM1mrly5Yll3/fp1SpQowcKFC+94/EVdZGQkJpMJk8mEk5MTAQEBjBkzhrS0tNuqN7+kNzU1lTZt2txW3SIiIiIi8vcoEsnz4sWLGT58OF9//TWnT5+2dzi3zc3NDS8vrztap2EYdOvWjcmTJzNixAiSkpLYvn07fn5+NGvWzCqBP336NBkZGTz++OP4+vpSo0YNfH192bZtm6XM5cuXOXDgAOXKlWPXrl2W9Xv27OHq1auEhYXdUpwZGRm3fIxFQevWrUlNTeWHH37g1VdfZd68eYwZM+aW6jIMg8zMzHy3+/j4YDabbzVUERERERH5G9k9eU5LSyM2NpZnnnmGdu3aER0dbbX9jTfewNvbm5IlS9K/f3+uXbtmtT0hIYFWrVpRpkwZ3N3dCQ0N5ZtvvrEqYzKZmD9/Pm3atMHFxQV/f39WrVpl2e7v7w9A/fr1MZlMNGvWrFB1V65cGYBOnTphMpksP9/Y05idnc3kyZOpWLEiZrOZevXqsX79esv2nJ7v1atXExYWRokSJahbty7x8fGWMrGxsXz00UcsW7aMAQMG4O/vT926dVm4cCHt27dnwIABpKWlER0dTe3atQEICAjAZDJx6tQpmjVrRlxcnKW+HTt2EBQURPv27a3Wx8XFUaFCBQIDAwsdd2xsLM2aNcPZ2ZkPP/ww1zU+d+4cjRs3pn379ly7do24uDhMJhOff/45devWxdnZmYceeohDhw7l2jfH999/T4cOHfD29sbNzY1GjRqxefNmqzLp6ek8//zz+Pn5YTabCQwMZNGiRZbtR44coW3btri5ueHt7U2vXr347bffrOowm834+Pjg5+dHjx496Nmzp+WLiQ8//JCGDRtSsmRJfHx86NGjB2fPnrU6dyaTiQ0bNtCwYUPMZjMffPABkyZN4ttvv7X0aufc4zeOWhg3bhxBQUGUKFGCgIAAxo8ff89/GSEiIiIi945sR5PdlnuB3ZPnlStXUq1aNapVq8bTTz/NkiVLMAwD+DNhnDBhAq+99hr79u3D19eXefPmWe3/xx9/0KdPH3bs2MHu3bsJDAykbdu2/PHHH1blxo8fT+fOnfn22295+umn6d69O0lJSQDs3bsXgM2bN5Oamsrq1asLVXdCQgIAS5YsITU11fLzjd5++23efPNNZsyYwcGDBwkPD6d9+/YcP37cqtxLL73EmDFjSExMJCgoiO7du1t6LpcvX05QUBARERG56h89ejTnzp1j06ZNdO3a1ZJU7t27l9TUVPz8/AgLC+Prr7+21Ldt2zaaNWtGaGioVY/0tm3bLL3OhY173Lhxlt7w8PBwq20//vgjjz76KMHBwaxevRpnZ2fLtrFjxzJjxgwSEhIoV64c7du3zzdZvHz5Mm3btmXz5s0cOHCA8PBwIiIirEYq9O7dmxUrVjB79mySkpJYsGABbm5uwJ9DpENDQ6lXrx779u1j/fr1/PLLLzz11FN5tpfDxcXFEtP169d55ZVX+Pbbb1m7di0nT54kMjIy1z7PP/88U6ZMISkpiccee4zRo0dTs2ZNUlNTSU1NpWvXrnm2VbJkSaKjozly5Ahvv/027733HjNnziwwPhERERER+XvY/VVVixYt4umnnwb+HDJ7+fJltmzZQsuWLZk1axb9+vVjwIABALz66qts3rzZqve5efPmVvW9++67lC5dmu3bt9OuXTvL+ieffNJSzyuvvMKmTZt45513mDdvHmXLlgXAy8sLHx+fQteds5+Hh4fVfjeaMWMG48aNo1u3bgBMnTqVbdu2MWvWLObOnWspN2bMGB5//HEAJk2aRM2aNTlx4gTBwcEkJydTvXr1POvPWZ+cnEzHjh0tQ8bLli1riatZs2akpaWRkJBAkyZNiIuLY+zYsfzrX/+iV69eXLlyhWLFirF7927mzJlzU3E/99xzPPHEE7niSk5OplWrVnTo0IG3334bk8n6G6UJEybQqlUrAJYuXUrFihVZs2ZNnglt3bp1qVu3ruXnV199lTVr1rBu3TqGDRtGcnIysbGxbNq0iZYtWwJ/9rznmD9/Pg8++CCvv/66Zd3ixYvx8/MjOTmZoKCgXG3u3buX5cuX06JFCwD69etn2RYQEMDs2bNp3Lgxly9ftiTpAJMnT7YcF/w5jL9YsWIF3iMA//nPfyz/X7lyZUaPHs3KlSt5/vnnC9wvR3p6Ounp6VbrMoxsnEx2/45MRERERO4Bxj0ycZe92PWv6mPHjrF3715LclasWDG6du3K4sWLAUhKSqJJkyZW+9z489mzZxk8eDBBQUG4u7vj7u7O5cuXcz07nVc9OT3P+Sls3QW5dOkSP//8MyEhIVbrQ0JCcrVfp04dy//7+vpaYiisG5PTvwoMDKRixYrExcVx6dIlDhw4QGhoKN7e3vj7+7Nz5052797N1atXad68+U3F3bBhw1ztXb16lUceeYSOHTsye/bsPGP76zXx9PSkWrVq+V6TtLQ0nn/+eWrUqIGHhwdubm4cPXrUci0SExNxdHQkNDQ0z/3379/Ptm3bcHNzsyzBwcHAn0PCc3z22We4ubnh7OxMkyZN+Ne//sU777wDwIEDB+jQoQOVKlWiZMmSluH9N94PeZ2Pwvjoo4945JFH8PHxwc3NjfHjx9/UvTZlyhTLfZqzfJp16pZiERERERERa3bteV60aBGZmZlUqFDBss4wDJycnLhw4UKh6oiMjOTXX39l1qxZVKpUCbPZTJMmTbh+/brNfQtKNm+3blttGYaRa52Tk1Ou8tnZ2QAEBQVx5MiRPOvOSTgDAwMLjKFZs2Zs27aNOnXqEBgYSLly5QAsQ7fNZjOVKlWicuXKXLp0qdBxu7q65mrLbDbTsmVLPv/8c8aOHUvFihULjC1Hftdk7NixbNiwgRkzZlC1alVcXFzo0qWL5Vq4uLgUWG92djYRERFMnTo117acLyoAwsLCmD9/Pk5OTpQvX95yTdLS0njsscd47LHH+PDDDylbtiynT58mPDw81/2Q1/mwZffu3XTr1o1JkyYRHh6Ou7s7K1as4M033yx0HVFRUYwaNcpq3UdlOt50LCIiIiLyz3SvvDLKXuzW85yZmcmyZct48803SUxMtCzffvstlSpVIiYmhurVq7N7926r/W78eceOHYwYMYK2bdtSs2ZNzGZzrkmg8tpv9+7dlp7H4sWLA3++Cupm63Zycsq131+VKlWK8uXL8/XXX1ut37VrV77DsPPSrVs3jh8/zqeffppr25tvvomXl5fVUOG8hIWFsWvXLjZt2mTpNYU/k+e4uDji4uIsQ9VvN24HBwc++OADGjRoQPPmzfn5559zlfnrNblw4QLJycmWa3KjHTt2EBkZSadOnahduzY+Pj6cOnXKsr127dpkZ2ezffv2PPd/8MEH+e6776hcuTJVq1a1Wv6a7Lq6ulK1alUqVapk9WXG0aNH+e2333jjjTcsz3AXdlRA8eLFC7xHAHbu3EmlSpV46aWXaNiwIYGBgaSkpBSq/hxms5lSpUpZLRqyLSIiIiJyZ9jtL+vPPvuMCxcu0L9/f2rVqmW1dOnShUWLFvHss8+yePFiFi9eTHJyMhMmTOC7776zqqdq1ap88MEHJCUlsWfPHnr27JlnL+SqVaus6tm7dy/Dhg0DoFy5cri4uFgmkbp48WKh665cuTJbtmzhzJkz+faWjx07lqlTp7Jy5UqOHTvGCy+8QGJiIs8++2yhz1e3bt3o1KkTffr0YdGiRZw6dYqDBw8yaNAg1q1bx/vvv2+zxzMsLIy0tDQWL15sNbw5NDSUffv2sXv3bqtXVN1u3I6OjsTExFC3bl2aN2/OmTNnrLZPnjyZLVu2cPjwYSIjIylTpgwdO3bMs66qVauyevVqyxcsPXr0sPTKw5/XoU+fPvTr188ymVdcXByxsbEADB06lPPnz9O9e3f27t3LDz/8wMaNG+nXr5/NxBbggQceoHjx4rzzzjv88MMPrFu3jldeeaVQ56Fy5cqcPHmSxMREfvvtt1zPJecc3+nTp1mxYgXff/89s2fPZs2aNYWqX0RERERE7j67Jc+LFi2iZcuWuLu759rWuXNnEhMTCQwM5OWXX2bcuHE0aNCAlJQUnnnmGauyixcv5sKFC9SvX59evXoxYsQIy3Dkv5o0aRIrVqygTp06LF26lJiYGGrUqAH8+az17NmzeffddylfvjwdOnQodN1vvvkmmzZtws/Pj/r16+d5rCNGjGD06NGMHj2a2rVrs379etatW2dzmPVf5bwS6qWXXmLmzJkEBwfz6KOPkpKSwrZt2/JNOv/K39+fSpUq8ccff1glzxUqVOCBBx7g2rVrVsnznYi7WLFi/Pe//6VmzZo0b97cqrf2jTfe4Nlnn6VBgwakpqaybt06yyiAG82cOZPSpUvTtGlTIiIiCA8P58EHH7QqM3/+fLp06cKQIUMIDg7m3//+N2lpaQCUL1+enTt3kpWVRXh4OLVq1eLZZ5/F3d0dBwfbH4OyZcsSHR3NqlWrqFGjBm+88QYzZswo1Dno3LkzrVu3JiwsjLJly/Lf//43V5kOHTowcuRIhg0bRr169di1axfjx48vVP0iIiIiIndCtoPJbsu9wGTkvBfqPmYymVizZk2hEky5++Li4ggLC+PChQt4eHjYO5z72gfmlvYOwWJzmz72DgGAll8utXcIAJyM72e70N/Av8lie4dgUVTOSU2PovHPYqejO+wdAgDHmtzaJIh3WqlBq+0dgsXGj3KPILKHuPaR9g4BgCXPH7R3CACYAqrYOwSLjI+22jsEAGJGnLN3CEVKMaeikaD1St9s7xDy9dArm+zW9p7xBT+CWhTY/VVVIiIiIiIiYn+GY9H4gqGo0mxCIiIiIiIiIjb8I3qe/wEj0+8pzZo10zUREREREZF7yj8ieRYREREREZGC3SsTd9mLhm2LiIiIiIiI2KCeZxEREREREQH1PBdIPc8iIiIiIiIiNqjnWURERERERHBw0KS+BVHPs4iIiIiIiIgNSp5FREREREREbNCwbREREREREcHBUcO2C6LkWeQ+trlNH3uHYNHyy6X2DgEoOufk8WbR9g4BgM+LyPmAonNO1jXvZe8QALi07ri9QwAgrn2IvUMAoNm6dHuHYLH1i8H2DgGAeesW2jsEAByavmjvEABY4vCqvUOQfPy8v7+9QwDg2xlFY9Bt0fhXRm6FkmcRERERERHRhGE2FI2vX0RERERERESKMCXPIiIiIiIiIjZo2LaIiIiIiIho2LYN6nkWERERERERsUE9zyIiIiIiIqJXVdmgnmcRERERERERG5Q8i4iIiIiIiNigYdsiIiIiIiKiCcNsUM+ziIiIiIiIiA1KnqVIMJlMrF271t5hiIiIiIj8Yzk4GHZb7gVKnuVvcebMGYYPH05AQABmsxk/Pz8iIiLYsmXLHW8rOjoak8mEyWTC0dGR0qVL89BDDzF58mQuXrx4x9sTEREREZH7n555lrvu1KlThISE4OHhwbRp06hTpw4ZGRls2LCBoUOHcvTo0TveZqlSpTh27BiGYfD777+za9cupkyZwpIlS9i5cyfly5e/423eKdevX6d48eL2DkNERERE/mHulR5ge1HPs9x1Q4YMwWQysXfvXrp06UJQUBA1a9Zk1KhR7N69O899Dh06RPPmzXFxccHLy4uBAwdy+fJly/a4uDgaN26Mq6srHh4ehISEkJKSYtluMpnw8fHB19eX6tWr079/f3bt2sXly5d5/vnnLeXWr1/PI488goeHB15eXrRr147vv//esr158+YMGzbMKrZz585hNpvZunUrAOnp6Tz//PP4+flhNpsJDAxk0aJFAGRlZdG/f3/8/f1xcXGhWrVqvP3221b1RUZG0rFjR6ZMmUL58uUJCgoC4KeffqJr166ULl0aLy8vOnTowKlTp27hCoiIiIiIyO1S8ix31fnz51m/fj1Dhw7F1dU113YPD49c665cuULr1q0pXbo0CQkJrFq1is2bN1uS2MzMTDp27EhoaCgHDx4kPj6egQMHYjKZCoylXLly9OzZk3Xr1pGVlQVAWloao0aNIiEhgS1btuDg4ECnTp3Izs4GYMCAASxfvpz09HRLPTExMZQvX56wsDAAevfuzYoVK5g9ezZJSUksWLAANzc3ALKzs6lYsSKxsbEcOXKEl19+mRdffJHY2Fir2LZs2UJSUhKbNm3is88+48qVK4SFheHm5sZXX33F119/jZubG61bt+b69euFPPsiIiIiInKnaNi23FUnTpzAMAyCg4MLvU9MTAxXr15l2bJlloR7zpw5REREMHXqVJycnLh48SLt2rWjSpUqAFSvXr1QdQcHB/PHH39w7tw5ypUrR+fOna22L1q0iHLlynHkyBFq1apF586dGT58OJ988glPPfUUAEuWLCEyMhKTyURycjKxsbFs2rSJli1bAhAQEGCpz8nJiUmTJll+9vf3Z9euXcTGxlrqA3B1deX999+3DNdevHgxDg4OvP/++5YvBZYsWYKHhwdxcXE89thjuY4tPT3dKskHyMrKwNHRqVDnRkRERET+2RwcNWy7IOp5lrvKMP78ANrqFf6rpKQk6tata9VTHRISQnZ2NseOHcPT05PIyEjCw8OJiIjg7bffJjU19Zbi+f777+nRowcBAQGUKlUKf39/AE6fPg2A2Wzm6aefZvHixQAkJiby7bffEhkZafnZ0dGR0NDQfNtcsGABDRs2pGzZsri5ufHee+9Z6s9Ru3Ztq+ec9+/fz4kTJyhZsiRubm64ubnh6enJtWvXrIaV/9WUKVNwd3e3Wg4d/7RQ50VERERERAqm5FnuqsDAQEwmE0lJSYXexzCMfJPtv/bCxsfH07RpU1auXElQUFC+z0//VVJSEqVKlcLLywuAiIgIzp07x3vvvceePXvYs2cPgNXQ6AEDBrBp0yZ+/PFHFi9eTIsWLahUqRIALi4uBbYXGxvLyJEj6devHxs3biQxMZG+ffvmGnp945D27OxsGjRoQGJiotWSnJxMjx498mwrKiqKixcvWi21AyNsnhMREREREdCrqmxR8ix3laenJ+Hh4cydO5e0tLRc23///fdc62rUqEFiYqJV+Z07d+Lg4GCZTAugfv36REVFsWvXLmrVqsXy5csLjOXs2bMsX76cjh074uDgwLlz50hKSuI///kPLVq0oHr16ly4cCHXfrVr16Zhw4a89957LF++nH79+llty87OZvv27Xm2uWPHDpo2bcqQIUOoX78+VatWzbfn+K8efPBBjh8/Trly5ahatarV4u7unuc+ZrOZUqVKWS0asi0iIiIicmcoeZa7bt68eWRlZdG4cWM+/vhjjh8/TlJSErNnz6ZJkya5yvfs2RNnZ2f69OnD4cOH2bZtG8OHD6dXr154e3tz8uRJoqKiiI+PJyUlhY0bN5KcnGz13LNhGJw5c4bU1FSSkpJYvHgxTZs2xd3dnTfeeAPAMov1woULOXHiBFu3bmXUqFF5HsOAAQN44403yMrKolOnTpb1lStXpk+fPvTr14+1a9dy8uRJ4uLiLBOCVa1alX379rFhwwaSk5MZP348CQkJNs9Zz549KVOmDB06dGDHjh2cPHmS7du38+yzz/Ljjz/e1PkXEREREZHbp+RZ7jp/f3+++eYbwsLCGD16NLVq1aJVq1Zs2bKF+fPn5ypfokQJNmzYwPnz52nUqBFdunShRYsWzJkzx7L96NGjdO7cmaCgIAYOHMiwYcMYNGiQpY5Lly7h6+tLhQoVaNKkCe+++y59+vThwIED+Pr6AuDg4MCKFSvYv38/tWrVYuTIkUyfPj3PY+jevTvFihWjR48eODs7W22bP38+Xbp0YciQIQQHB/Pvf//b0ms+ePBgnnjiCbp27cpDDz3EuXPnGDJkiM1zVqJECb766iseeOABnnjiCapXr06/fv24evUqpUqVKtyJFxERERG5CRq2XTDNti1/C19fX+bMmWNJgG+UM5FXjtq1a1veo3wjb29v1qxZk29bkZGRlgm9bGnZsiVHjhwpMBaACxcucO3aNfr3759rm7OzM2+99RZvvfVWrm1ms5klS5awZMkSq/VTpkyx/H90dHSesfn4+LB06dLCHIaIiIiIiNxlSp5FCpCRkUFqaiovvPACDz/8MA8++KC9QxIRERERuSvulR5ge9GwbZEC7Ny5k0qVKrF//34WLFhg73BERERERMRO1PMsUoBmzZrlOYxbREREROR+4+iov3sLop5nERERERERERuUPIuIiIiIiIjYoGHbIiIiIiIiognDbFDPs4iIiIiIiIgN6nkWERERERER9TzboJ5nERERERERERuUPIuIiIiIiIjYoGHbIiIiIiIigoPe81wgJc8i97E2m5fZOwSLhc+OtHcIAAycN8veIQDwecve9g4BKFr3SFE5J8n1ve0dAgDPprraOwQAPnvazd4hANCxrKO9Q7Ao1uFde4cAQIci8nt181ef2jsEAPp89IC9Q/g/JZztHQEAS9sm2zsEAB54eLG9QwCgyNwhMd3sHYHcIiXPIiIiIiIigoMe6i2QTo+IiIiIiIiIDep5FhEREREREb2qygb1PIuIiIiIiIjYoORZRERERERExAYN2xYREREREREN27ZBPc8iIiIiIiIiNqjnWURERERERHBwVM9zQdTzLCIiIiIiImKDkmcRERERERERG5Q836dMJhNr1661dxhSgMqVKzNr1qxCl4+OjsbDw+OuxSMiIiIi/2wODobdlnuBkud71JkzZxg+fDgBAQGYzWb8/PyIiIhgy5Ytd7yt6OhoTCYTJpMJR0dHSpcuzUMPPcTkyZO5ePHiHW/PXiZOnGh1nH5+fgwYMIBff/31turNL+lNSEhg4MCBt1W3iIiIiIj8PTRh2D3o1KlThISE4OHhwbRp06hTpw4ZGRls2LCBoUOHcvTo0TveZqlSpTh27BiGYfD777+za9cupkyZwpIlS9i5cyfly5e/423eKdevX6d48eKFKluzZk02b95MVlYWBw4coH///vz00098+eWXt9R2RkZGvtvKli17S3WKiIiIiNwN90oPsL2o5/keNGTIEEwmE3v37qVLly4EBQVRs2ZNRo0axe7du/Pc59ChQzRv3hwXFxe8vLwYOHAgly9ftmyPi4ujcePGuLq64uHhQUhICCkpKZbtJpMJHx8ffH19qV69Ov3792fXrl1cvnyZ559/3lJu/fr1PPLII3h4eODl5UW7du34/vvvLdubN2/OsGHDrGI7d+4cZrOZrVu3ApCens7zzz+Pn58fZrOZwMBAFi1aBEBWVhb9+/fH398fFxcXqlWrxttvv21VX2RkJB07dmTKlCmUL1+eoKAgAH766Se6du1K6dKl8fLyokOHDpw6dcpq32LFiuHj40OFChVo164dI0aMYOPGjVy9etXmsZ06dQqTyURsbCzNmjXD2dmZDz/8kL59+3Lx4kVLr/bEiROB3MO233rrLWrXro2rqyt+fn4MGTLE6hqJiIiIiIj9KHm+x5w/f57169czdOhQXF1dc23Pa3jwlStXaN26NaVLlyYhIYFVq1axefNmSxKbmZlJx44dCQ0N5eDBg8THxzNw4EBMJlOBsZQrV46ePXuybt06srKyAEhLS2PUqFEkJCSwZcsWHBwc6NSpE9nZ2QAMGDCA5cuXk56ebqknJiaG8uXLExYWBkDv3r1ZsWIFs2fPJikpiQULFuDm5gZAdnY2FStWJDY2liNHjvDyyy/z4osvEhsbaxXbli1bSEpKYtOmTXz22WdcuXKFsLAw3Nzc+Oqrr/j6669xc3OjdevWXL9+Pd9jdHFxITs7m8zMTJvHlmPcuHGMGDGCpKQkWrRowaxZsyhVqhSpqamkpqYyZsyYPNtycHBg9uzZHD58mKVLl7J161arLyZERERERO4mPfNcMA3bvsecOHECwzAIDg4u9D4xMTFcvXqVZcuWWRLuOXPmEBERwdSpU3FycuLixYu0a9eOKlWqAFC9evVC1R0cHMwff/zBuXPnKFeuHJ07d7bavmjRIsqVK8eRI0eoVasWnTt3Zvjw4XzyySc89dRTACxZsoTIyEhMJhPJycnExsayadMmWrZsCUBAQIClPicnJyZNmmT52d/fn127dhEbG2upD8DV1ZX333/fMlx78eLFODg48P7771u+FFiyZAkeHh7ExcXx2GOP5Tq2o0ePMn/+fBo3bkzJkiVtHluO5557jieeeMLys7u7u6XnviDPPfec1XG98sorPPPMM8ybN6/A/XKkp6dbfSkBkGFk42TSd2QiIiIiIrdLf1XfYwzjz29lbPUK/1VSUhJ169a16qkOCQkhOzubY8eO4enpSWRkJOHh4URERPD222+Tmpp6S/F8//339OjRg4CAAEqVKoW/vz8Ap0+fBsBsNvP000+zePFiABITE/n222+JjIy0/Ozo6EhoaGi+bS5YsICGDRtStmxZ3NzceO+99yz156hdu7bVc8779+/nxIkTlCxZEjc3N9zc3PD09OTatWtWQ68PHTqEm5sbLi4u1KhRAz8/P2JiYgp1bDkaNmxYqHN3o23bttGqVSsqVKhAyZIl6d27N+fOnSMtLa1Q+0+ZMgV3d3er5ZOMk7cUi4iIiIhIUTdv3jz8/f1xdnamQYMG7Nixo8DyMTEx1K1blxIlSuDr60vfvn05d+5codtT8nyPCQwMxGQykZSUVOh9DMPIN9n+ay9sfHw8TZs2ZeXKlQQFBeX7/PRfJSUlUapUKby8vACIiIjg3LlzvPfee+zZs4c9e/YAWA2NHjBgAJs2beLHH39k8eLFtGjRgkqVKgF/DpMuSGxsLCNHjqRfv35s3LiRxMRE+vbtm2vo9Y1D2rOzs2nQoAGJiYlWS3JyMj169LCUq1atGomJiRw5coSrV6+ydetWqlatWuhjy6vtwkhJSaFt27bUqlWLjz/+mP379zN37lyg4EnH/ioqKoqLFy9aLR2c/G86FhERERH5Z3JwNOy23KyVK1fy3HPP8dJLL3HgwAEeffRR2rRpk6tjK8fXX39N79696d+/P9999x2rVq0iISGBAQMGFP783HSUYleenp6Eh4czd+7cPHskf//991zratSoQWJiolX5nTt34uDgYJlMC6B+/fpERUWxa9cuatWqxfLlywuM5ezZsyxfvpyOHTvi4ODAuXPnSEpK4j//+Q8tWrSgevXqXLhwIdd+tWvXpmHDhrz33nssX76cfv36WW3Lzs5m+/bteba5Y8cOmjZtypAhQ6hfvz5Vq1a16jnOz4MPPsjx48cpV64cVatWtVrc3d0t5YoXL07VqlXx9/fHbDZb1hf22PJSvHhxyzPh+dm3bx+ZmZm8+eabPPzwwwQFBfHzzz8Xqv4cZrOZUqVKWS0asi0iIiIi96O33nqL/v37M2DAAKpXr86sWbPw8/Nj/vz5eZbfvXs3lStXZsSIEfj7+/PII48waNAg9u3bV+g29Zf1PWjevHlkZWXRuHFjPv74Y44fP05SUhKzZ8+mSZMmucr37NkTZ2dn+vTpw+HDh9m2bRvDhw+nV69eeHt7c/LkSaKiooiPjyclJYWNGzeSnJxs9dyzYRicOXOG1NRUkpKSWLx4MU2bNsXd3Z033ngDwDKL9cKFCzlx4gRbt25l1KhReR7DgAEDeOONN8jKyqJTp06W9ZUrV6ZPnz7069ePtWvXcvLkSeLi4iwTglWtWpV9+/axYcMGkpOTGT9+PAkJCTbPWc+ePSlTpgwdOnRgx44dnDx5ku3bt/Pss8/y448/2tz/Zo7tRpUrV+by5cts2bKF3377jStXruQqU6VKFTIzM3nnnXf44Ycf+OCDD1iwYEGh6hcRERERuRPsOWFYeno6ly5dslpunM8nx/Xr19m/f3+ueYsee+wxdu3alec+TZs25ccff+SLL77AMAx++eUXPvroIx5//PHCn5/Cn0opKvz9/fnmm28ICwtj9OjR1KpVi1atWrFly5Y8v2kpUaIEGzZs4Pz58zRq1IguXbrQokUL5syZY9l+9OhROnfuTFBQEAMHDmTYsGEMGjTIUselS5fw9fWlQoUKNGnShHfffZc+ffpw4MABfH19gT9ni16xYgX79++nVq1ajBw5kunTp+d5DN27d6dYsWL06NEDZ2dnq23z58+nS5cuDBkyhODgYP79739bes0HDx7ME088QdeuXXnooYc4d+4cQ4YMsXnOSpQowVdffcUDDzzAE088QfXq1enXrx9Xr16lVKlSNve/mWO7UdOmTRk8eDBdu3albNmyTJs2LVeZevXq8dZbbzF16lRq1apFTEwMU6ZMKVT9IiIiIiL3urzm78nv7+HffvuNrKwsvL29rdZ7e3tz5syZPPdp2rQpMTExdO3aleLFi+Pj44OHhwfvvPNOoWM0GTkzPon8jf73v/9RuXJlEhISePDBB+0dzn1rhVsre4dgsXDIc/YOAYCB82bZOwQAvmzZ294hANBm8zJ7h2BRVM5Jcn1v24X+BnO/mGPvEAB4bWxfe4cAwPsb8h6GZw+fLcu2XehvsOTZkfYOAYDN7bbYO4Q//Va4x6n+FiWcbZf5Gyxtm2zvEAAo5lT4iW7/CXqlb7Z3CPkatKPgxzbvptmNO+fqaTabzVaPUub4+eefqVChArt27bIaefvaa6/xwQcfcPTo0Vz7HDlyhJYtWzJy5EjCw8NJTU1l7NixNGrUiEWLFhUqRr2qSv5WGRkZpKam8sILL/Dwww8rcRYRERERKSIc7fg9R36Jcl7KlCmDo6Njrl7ms2fP5uqNzjFlyhRCQkIYO3YsAHXq1MHV1ZVHH32UV1991TKatiAati1/q507d1KpUiX279+vZ3pFREREROSmFS9enAYNGrBp0yar9Zs2baJp06Z57nPlyhUcHKzTX0dHR+D/Xr9ri3qe5W/VrFmzQt+cIiIiIiLy93G4h0bYjxo1il69etGwYUOaNGnCwoULOX36NIMHDwb+fI3rTz/9xLJlfz6iFhERwb///W/mz59vGbb93HPP0bhxY8qXL1+oNpU8i4iIiIiIyD2la9eunDt3jsmTJ5OamkqtWrX44osvqFSpEgCpqalW73yOjIzkjz/+YM6cOYwePRoPDw+aN2/O1KlTC92mkmcRERERERGx6zPPt2LIkCH5vnknOjo617rhw4czfPjwW25PzzyLiIiIiIiI2KDkWURERERERMQGDdsWERERERGRe27Y9t9NPc8iIiIiIiIiNqjnWURERERERNTzbIN6nkVERERERERsUM+zyH2s1JHe9g7Bok/ATHuHAECpH/rYOwQAHqu2zN4hAPBleNG5Rx7f+oG9QwCg6+xe9g4BgHoPVbB3CAD8vtnJ3iEA8MWHhr1DsHhv5lh7hwDA0i/fsXcIAOwa1cXeIQBwvFnR+B1SlDRp5mbvEABY//ZT9g4BgHpemfYOQe5xSp5FREREREQEBw3bLpCGbYuIiIiIiIjYoJ5nERERERER0YRhNqjnWURERERERMQG9TyLiIiIiIiIep5tUM+ziIiIiIiIiA1KnkVERERERERs0LBtERERERERwUFdqwXS6RERERERERGxQT3PIiIiIiIiognDbFDPs/yjmEwm1q5d+7e2eerUKUwmE4mJiYXeJzo6Gg8Pj7sWk4iIiIiI3Bwlz3JfOXPmDMOHDycgIACz2Yyfnx8RERFs2bLljrdVUIL71yTdz8+P1NRUatWqdcdjEBERERGRv4eGbct949SpU4SEhODh4cG0adOoU6cOGRkZbNiwgaFDh3L06FG7xOXo6IiPj49d2hYRERERKSwN2y6Yep7lvjFkyBBMJhN79+6lS5cuBAUFUbNmTUaNGsXu3bvz3OfQoUM0b94cFxcXvLy8GDhwIJcvX7Zsj4uLo3Hjxri6uuLh4UFISAgpKSk3FVdew7bXrVtHYGAgLi4uhIWFsXTpUkwmE7///rvVvhs2bKB69eq4ubnRunVrUlNTb6ptERERERG5M5Q8y33h/PnzrF+/nqFDh+Lq6ppre17Dq69cuULr1q0pXbo0CQkJrFq1is2bNzNs2DAAMjMz6dixI6GhoRw8eJD4+HgGDhyIyXR7X8mdOnWKLl260LFjRxITExk0aBAvvfRSnvHNmDGDDz74gK+++orTp08zZsyY22pbRERERCQ/Dib7LfcCDduW+8KJEycwDIPg4OBC7xMTE8PVq1dZtmyZJeGeM2cOERERTJ06FScnJy5evEi7du2oUqUKANWrV7eq4+LFi7i5ud1UrAsWLKBatWpMnz4dgGrVqnH48GFee+01q3IZGRksWLDA0vawYcOYPHnyTbUlIiIiIiJ3hpJnuS8YhgFwU73CSUlJ1K1b16qnOiQkhOzsbI4dO8a//vUvIiMjCQ8Pp1WrVrRs2ZKnnnoKX19fS/mSJUvyzTff5Ko7MDAw33aPHTtGo0aNrNY1btw4V7kSJUpYEmcAX19fzp49m2+96enppKenW63LSM/AyeyU7z4iIiIiIlI4GrYt94XAwEBMJhNJSUmF3scwjHyT7Zz1S5YsIT4+nqZNm7Jy5UqCgoKsnp92cHCgatWquZabbTcn+f8rJyfrpNdkMuVZLseUKVNwd3e3WmLnfVpgLCIiIiIiORxNht2We4GSZ7kveHp6Eh4ezty5c0lLS8u1/caJuABq1KhBYmKiVfmdO3fi4OBAUFCQZV39+vWJiopi165d1KpVi+XLl99WrMHBwSQkJFit27dv323VCRAVFcXFixetlqeGRNx2vSIiIiIiouRZ7iPz5s0jKyuLxo0b8/HHH3P8+HGSkpKYPXs2TZo0yVW+Z8+eODs706dPHw4fPsy2bdsYPnw4vXr1wtvbm5MnTxIVFUV8fDwpKSls3LiR5OTkXM8936xBgwZx9OhRxo0bR3JyMrGxsURHRwM3N+z8RmazmVKlSlktGrItIiIiIoXlaLLfci9Q8iz3DX9/f7755hvCwsIYPXo0tWrVolWrVmzZsoX58+fnKl+iRAk2bNjA+fPnadSoEV26dKFFixbMmTPHsv3o0aN07tyZoKAgBg4cyLBhwxg0aNBtx/nRRx+xevVq6tSpw/z58y2zbZvN5tuqW0RERERE7g5NGCb3FV9fX+bMmWNJgG904zPDtWvXZuvWrXmW9fb2Zs2aNfm2FRkZSWRkpM12KleunKvd9u3b0759e8vPr732GhUrVsTZ2Tnfujt27FjgM88iIiIiIrfjXukBthclzyJ2MG/ePBo1aoSXlxc7d+5k+vTplvdLi4iIiIhI0aPkWcQOjh8/zquvvsr58+d54IEHGD16NFFRUfYOS0RERERE8qHkWcQOZs6cycyZM+0dhoiIiIiIhYOGbRdIE4aJiIiIiIiI2KCeZxEREREREdGEYTao51lERERERETEBiXPIiIiIiIiIjZo2LaIiIiIiIho2LYN6nkWERERERERsUE9zyIiIiIiIqJXVdmgnmcRERERERERG9TzLCIiIiIiInrm2QYlzyL3sQvVltk7BIv0Q33tHQIAF6pF2zsEAA7GFY3z8XiraHuHYPF58172DgGAx9KLxqCs7N8u2zsEAEzBReN8/KtNcXuHYNH5tzn2DgGAZdO62zsEAAaWKWPvEABoOLGEvUOwMLk62TsEAJaPvWjvEAAYvGaFvUMAYOXkq/YO4U+ZfewdgdyiovEvooiIiIiIiEgRpp5nERERERER0bBtG9TzLCIiIiIiImKDep5FREREREREPc82qOdZRERERERExAYlzyIiIiIiIiI2aNi2iIiIiIiI4KBh2wVSz7OIiIiIiIiIDep5FhEREREREU0YZoN6nkVERERERERsUPIst8VkMrF27dq/tc1Tp05hMplITEws9D7R0dF4eHjctZhuReXKlZk1a1ahyxfFYxARERGR+4ejyX7LvUDJsxTozJkzDB8+nICAAMxmM35+fkRERLBly5Y73lZByeFfk3Q/Pz9SU1OpVavWHW1/4sSJmEwmTCYTjo6O+Pn5MWDAAH799dfbqje/40pISGDgwIG3VbeIiIiIiPw99Myz5OvUqVOEhITg4eHBtGnTqFOnDhkZGWzYsIGhQ4dy9OhRu8Tl6OiIj4/PXam7Zs2abN68maysLA4cOED//v356aef+PLLL2+pvoyMjHy3lS1b9lbDFBERERGRv5l6niVfQ4YMwWQysXfvXrp06UJQUBA1a9Zk1KhR7N69O899Dh06RPPmzXFxccHLy4uBAwdy+fJly/a4uDgaN26Mq6srHh4ehISEkJKSclNx5TVse926dQQGBuLi4kJYWBhLly7FZDLx+++/W+27YcMGqlevjpubG61btyY1NdVqe7FixfDx8aFChQq0a9eOESNGsHHjRq5evcr69et55JFH8PDwwMvLi3bt2vH999/niis2NpZmzZrh7OzMhx9+SN++fbl48aKlV3vixIlA7mHbb731FrVr18bV1RU/Pz+GDBlide5ERERERO4mB5P9lnuBkmfJ0/nz51m/fj1Dhw7F1dU11/a8hiFfuXKF1q1bU7p0aRISEli1ahWbN29m2LBhAGRmZtKxY0dCQ0M5ePAg8fHxDBw4EJPp9j4tp06dokuXLnTs2JHExEQGDRrESy+9lGd8M2bM4IMPPuCrr77i9OnTjBkzpsC6XVxcyM7OJjMzk7S0NEaNGkVCQgJbtmzBwcGBTp06kZ2dbbXPuHHjGDFiBElJSbRo0YJZs2ZRqlQpUlNTSU1NzbdNBwcHZs+ezeHDh1m6dClbt27l+eefv/UTIyIiIiIid4yGbUueTpw4gWEYBAcHF3qfmJgYrl69yrJlyywJ95w5c4iIiGDq1Kk4OTlx8eJF2rVrR5UqVQCoXr26VR0XL17Ezc3tpmJdsGAB1apVY/r06QBUq1aNw4cP89prr1mVy8jIYMGCBZa2hw0bxuTJk/Ot9+jRo8yfP5/GjRtTsmRJOnfubLV90aJFlCtXjiNHjlg9f/3cc8/xxBNPWH52d3fHZDLZHGr+3HPPWf7f39+fV155hWeeeYZ58+YVfAL+v/T0dNLT063WZRjZOJn0HZmIiIiI2OZgMuwdQpGmv6olT4bx5wfnZnqFk5KSqFu3rlVPdUhICNnZ2Rw7dgxPT08iIyMJDw8nIiKCt99+O9ew6ZIlS5KYmJhrKcixY8do1KiR1brGjRvnKleiRAlL4gzg6+vL2bNnrcocOnQINzc3XFxcqFGjBn5+fsTExADw/fff06NHDwICAihVqhT+/v4AnD592qqOhg0bFhhvfrZt20arVq2oUKECJUuWpHfv3pw7d460tLRC7T9lyhTc3d2tlnWZJ28pFhERERERsabkWfIUGBiIyWQiKSmp0PsYhpFvsp2zfsmSJcTHx9O0aVNWrlxJUFCQ1fPTDg4OVK1aNddys+3mJP9/5eTklCumG8tVq1aNxMREjhw5wtWrV9m6daul/YiICM6dO8d7773Hnj172LNnDwDXr1+3qiOvYe62pKSk0LZtW2rVqsXHH3/M/v37mTt3LlDwpGN/FRUVxcWLF62W9sX8bzoWERERERHJTcmz5MnT05Pw8HDmzp2bZ8/njRNxAdSoUYPExESr8jt37sTBwYGgoCDLuvr16xMVFcWuXbuoVasWy5cvv61Yg4ODSUhIsFq3b9++W6qrePHiVK1aFX9/f8xms2X9uXPnSEpK4j//+Q8tWrSgevXqXLhwodB1ZmVlFVhm3759ZGZm8uabb/Lwww8TFBTEzz//fFOxm81mSpUqZbVoyLaIiIiIFJbe81ww/WUt+Zo3bx5ZWVk0btyYjz/+mOPHj5OUlMTs2bNp0qRJrvI9e/bE2dmZPn36cPjwYbZt28bw4cPp1asX3t7enDx5kqioKOLj40lJSWHjxo0kJyfneu75Zg0aNIijR48ybtw4kpOTiY2NJTo6Gri5YecFKV26NF5eXixcuJATJ06wdetWRo0aVah9K1euzOXLl9myZQu//fYbV65cyVWmSpUqZGZm8s477/DDDz/wwQcfsGDBgjsSu4iIiIiI3D4lz5Ivf39/vvnmG8LCwhg9ejS1atWiVatWbNmyhfnz5+cqX6JECTZs2MD58+dp1KgRXbp0oUWLFsyZM8ey/ejRo3Tu3JmgoCAGDhzIsGHDGDRo0G3H+dFHH7F69Wrq1KnD/PnzLbNt/7X3+HY4ODiwYsUK9u/fT61atRg5cqRlgjJbmjZtyuDBg+natStly5Zl2rRpucrUq1ePt956i6lTp1KrVi1iYmKYMmXKHYldRERERKQwHEyG3ZZ7gcnI6+FQkXvca6+9xoIFC/jf//5n71DsKsallb1DsEj7JtLeIQDg+mC0vUMA4GBcX3uHAECDVtH2DsHi8+a97B0CAI9NLxrfK3fds97eIQDQ+lp3e4cAwJIv5to7BIuy9YrGPbLsyW72DgGAgYFl7B0CANden2PvECxMrk62C/0Nlo+9aO8QAOg+sYS9QwBg5eSr9g4BgD6Zm+0dQr4+S/nAbm23q1Q0/g4oiF5VJfeFefPm0ahRI7y8vNi5cyfTp0+3vF9aRERERERsc7hHnj22FyXPcl84fvw4r776KufPn+eBBx5g9OjRREVF2TssERERERG5Tyh5lvvCzJkzmTlzpr3DEBERERGR+5SSZxEREREREcHxHpm4y16KxowXIiIiIiIiIkWYep5FREREREREE4bZoJ5nERERERERERuUPIuIiIiIiIjYoGHbIiIiIiIigoMmDCuQep5FREREREREbFDPs4iIiIiIiOCoCcMKpORZ5D7W8+qL9g7h/1y7bO8I/lREzkl3I8veIQDgcCnK3iFYdCki56Rvp1R7hwBA5mdFI44/JjjZOwQALp8vGnEAVOzf3N4hAPBkGXtH8Cfjwv/sHQIAP8XbO4L/U7p8mr1DKFLMTz5k7xAA6PNS0YhD7l1KnkVERERERESvqrJBzzyLiIiIiIiI2KDkWURERERERMQGDdsWERERERERvarKBvU8i4iIiIiIiNignmcRERERERHRq6psUM+ziIiIiIiIiA1KnkVERERERERs0LBtERERERER0YRhNqjnWURERERERMQGJc/yj2MymVi7dq1dY5g4cSL16tWzawwiIiIiIn/lYLLfci9Q8iz3nTNnzjB8+HACAgIwm834+fkRERHBli1b7nhb0dHRmEwmy+Lr68tTTz3FyZMnC9xvzJgxdyUeERERERG5O/TMs9xXTp06RUhICB4eHkybNo06deqQkZHBhg0bGDp0KEePHr3jbZYqVYpjx45hGAZHjx5l0KBBtG/fnsTERBwdHa3KGoZBVlYWbm5uuLm53fFYRERERERulaOeeS6Qep7lvjJkyBBMJhN79+6lS5cuBAUFUbNmTUaNGsXu3bvz3OfQoUM0b94cFxcXvLy8GDhwIJcvX7Zsj4uLo3Hjxri6uuLh4UFISAgpKSmW7SaTCR8fH3x9fQkLC2PChAkcPnyYEydOEBcXh8lkYsOGDTRs2BCz2cyOHTtyDduOjIykY8eOvP7663h7e+Ph4cGkSZPIzMxk7NixeHp6UrFiRRYvXnzXzp2IiIiIiORPybPcN86fP8/69esZOnQorq6uubZ7eHjkWnflyhVat25N6dKlSUhIYNWqVWzevJlhw4YBkJmZSceOHQkNDeXgwYPEx8czcOBATKb8H8xwcXEBICMjw7Lu+eefZ8qUKSQlJVGnTp0899u6dSs///wzX331FW+99RYTJ06kXbt2lC5dmj179jB48GAGDx7M//73v5s5LSIiIiIicgdo2LbcN06cOIFhGAQHBxd6n5iYGK5evcqyZcssCfecOXOIiIhg6tSpODk5cfHiRdq1a0eVKlUAqF69er71/fjjj0yfPp2KFSsSFBTEb7/9BsDkyZNp1apVgbF4enoye/ZsHBwcqFatGtOmTePKlSu8+OKLAERFRfHGG2+wc+dOunXrlmv/9PR00tPTrdaZzdcxm4sX+nyIiIiIyD/XvTJxl72o51nuG4bx5zMaBfUK3ygpKYm6deta9VSHhISQnZ3NsWPH8PT0JDIykvDwcCIiInj77bdJTU21quPixYu4ubnh6uqKn58f169fZ/Xq1RQv/n9Ja8OGDW3GUrNmTRwc/u8j6e3tTe3atS0/Ozo64uXlxdmzZ/Pcf8qUKbi7u1stU6YsL/S5EBERERGR/Cl5lvtGYGAgJpOJpKSkQu9jGEa+yXbO+iVLlhAfH0/Tpk1ZuXIlQUFBVs9PlyxZksTERA4dOsTly5fZv38/jRo1sqorr2HkN3JycsrVfl7rsrOz89w/KiqKixcvWi1RUT1stisiIiIiAuBgMuy23AuUPMt9w9PTk/DwcObOnUtaWlqu7b///nuudTVq1CAxMdGq/M6dO3FwcCAoKMiyrn79+kRFRbFr1y5q1arF8uX/16Pr4OBA1apVCQgIKFSSfLeYzWZKlSpltWjItoiIiIjInaHkWe4r8+bNIysri8aNG/Pxxx9z/PhxkpKSmD17Nk2aNMlVvmfPnjg7O9OnTx8OHz7Mtm3bGD58OL169cLb25uTJ08SFRVFfHw8KSkpbNy4keTk5AKfexYRERERkfuPJgyT+4q/vz/ffPMNr732GqNHjyY1NZWyZcvSoEED5s+fn6t8iRIl2LBhA88++yyNGjWiRIkSdO7cmbfeesuy/ejRoyxdupRz587h6+vLsGHDGDRo0N99aCIiIiIid5V6VgtmMnJmWRKR+9A2ewfwf65dtl3m7+DsZu8IAMg2suwdAgAOJkd7h2BRVM5J306ptgv9DZp/ttTeIQAwb8I4e4cAQPSWufYOwSI4prm9QwDg9zJe9g4BAI9LV+0dAgA/9P7E3iFYlC5/3d4hAPDJkkx7hwBA5Hdh9g4BAFPQQ/YO4U+OBb+BxZ4On19kt7Zrefa3W9uFpZ5nERERERERwfEembjLXtQzLyIiIiIiImKDkmcRERERERERGzRsW0RERERERHAw2TuCok09zyIiIiIiIiI2qOdZREREREREcNCEYQVSz7OIiIiIiIiIDep5FhERERERERz1zHOB1PMsIiIiIiIiYoOSZxEREREREREbNGxbRERERERENGGYDUqeRe5jSxxetXcIFm17FLd3CAB8sfy6vUMAwKuck71DAOCRx4vOP5LX0hztHQIAzT8rGvfI1nZ97B0CALuCY+wdAgDZZcz2DsHilV/K2DsEAAa/sMzeIQAweGBve4cAwAvFis7vs6N7i8bv+MpVi8af+iud/O0dAgBXnd6wdwgA9M1uZe8Q5BYVjU+UiIiIiIiI2JWDJgwrkJ55FhEREREREbFBybOIiIiIiIjcc+bNm4e/vz/Ozs40aNCAHTt2FFg+PT2dl156iUqVKmE2m6lSpQqLFy8udHsati0iIiIiIiI43kMThq1cuZLnnnuOefPmERISwrvvvkubNm04cuQIDzzwQJ77PPXUU/zyyy8sWrSIqlWrcvbsWTIzMwvdppJnERERERERuae89dZb9O/fnwEDBgAwa9YsNmzYwPz585kyZUqu8uvXr2f79u388MMPeHp6AlC5cuWbalPDtkVERERERAQHk/2W9PR0Ll26ZLWkp6fnGef169fZv38/jz32mNX6xx57jF27duW5z7p162jYsCHTpk2jQoUKBAUFMWbMGK5evVr481P4UykiIiIiIiJy502ZMgV3d3erJa8eZIDffvuNrKwsvL29rdZ7e3tz5syZPPf54Ycf+Prrrzl8+DBr1qxh1qxZfPTRRwwdOrTQMWrYtoiIiIiIiGCyY99qVFQUo0aNslpnNpsL3Mdksn63lmEYudblyM7OxmQyERMTg7u7O/Dn0O8uXbowd+5cXFxcbMao5FlERERERETsymw220yWc5QpUwZHR8dcvcxnz57N1Rudw9fXlwoVKlgSZ4Dq1atjGAY//vgjgYGBNtvVsG0RERERERG5ZxQvXpwGDRqwadMmq/WbNm2iadOmee4TEhLCzz//zOXLly3rkpOTcXBwoGLFioVqV8mz3DaTycTatWvtGsPEiROpV6+eXWO4WdHR0Xh4eNzUPpUrV2bWrFl3JR4RERER+WczmUx2W27WqFGjeP/991m8eDFJSUmMHDmS06dPM3jwYODPYeC9e/e2lO/RowdeXl707duXI0eO8NVXXzF27Fj69etXqCHboORZCuHMmTMMHz6cgIAAzGYzfn5+REREsGXLljveVnR0tNWHyNfXl6eeeoqTJ08WuN+YMWPuSDx/bbtkyZI0bNiQ1atX33a9eSW9Xbt2JTk5+bbrFhERERH5p+natSuzZs1i8uTJ1KtXj6+++oovvviCSpUqAZCamsrp06ct5d3c3Ni0aRO///47DRs2pGfPnkRERDB79uxCt6lnnqVAp06dIiQkBA8PD6ZNm0adOnXIyMhgw4YNDB06lKNHj97xNkuVKsWxY8cwDIOjR48yaNAg2rdvT2JiIo6OjlZlDcMgKysLNzc33Nzc7kj7S5YsoXXr1vz+++9Mnz6dJ598kq+//pomTZrcdF3Xr1+nePHieW5zcXEp9LdcIiIiIiJ3mz0nDLsVQ4YMYciQIXlui46OzrUuODg411Dvm3FvnR352w0ZMgSTycTevXvp0qULQUFB1KxZk1GjRrF79+489zl06BDNmzfHxcUFLy8vBg4caPVsQVxcHI0bN8bV1RUPDw9CQkJISUmxbDeZTPj4+ODr60tYWBgTJkzg8OHDnDhxgri4OEwmExs2bKBhw4aYzWZ27NiRa9h2ZGQkHTt25PXXX8fb2xsPDw8mTZpEZmYmY8eOxdPTk4oVK7J48eJc8Xt4eODj40NwcDALFizA2dmZdevWkZWVRf/+/fH398fFxYVq1arx9ttvW+2b0+6UKVMoX748QUFBNGvWjJSUFEaOHGk1LOXGYdvff/89HTp0wNvbGzc3Nxo1asTmzZtv5bKJiIiIiMgdpuRZ8nX+/HnWr1/P0KFDcXV1zbU9r+d1r1y5QuvWrSldujQJCQmsWrWKzZs3M2zYMAAyMzPp2LEjoaGhHDx4kPj4eAYOHFjgcw45vbMZGRmWdc8//zxTpkwhKSmJOnXq5Lnf1q1b+fnnn/nqq6946623mDhxIu3ataN06dLs2bOHwYMHM3jwYP73v//l27aTkxPFihUjIyOD7OxsKlasSGxsLEeOHOHll1/mxRdfJDY21mqfLVu2kJSUxKZNm/jss89YvXo1FStWZPLkyaSmppKamppnW5cvX6Zt27Zs3ryZAwcOEB4eTkREhNVwExERERERsQ8N25Z8nThxAsMwCA4OLvQ+MTExXL16lWXLllkS7jlz5hAREcHUqVNxcnLi4sWLtGvXjipVqgB/ThGfnx9//JHp06dTsWJFgoKC+O233wCYPHkyrVq1KjAWT09PZs+ejYODA9WqVWPatGlcuXKFF198EfhzEoE33niDnTt30q1bt1z7p6enM336dC5dukSLFi1wcnJi0qRJlu3+/v7s2rWL2NhYnnrqKct6V1dX3n//favh2o6OjpQsWRIfH598461bty5169a1/Pzqq6+yZs0a1q1bZ/nyoSDp6emkp6dbrcswsnEy6TsyEREREbHtVibu+ifRX9WSL8MwgJv7ECUlJVG3bl2rnuqQkBCys7M5duwYnp6eREZGWnpV33777Vw9sRcvXsTNzQ1XV1f8/Py4fv06q1evtkpGGzZsaDOWmjVr4uDwf7e4t7c3tWvXtvzs6OiIl5cXZ8+etdqve/fuuLm5UaJECd566y1mzJhBmzZtAFiwYAENGzakbNmyuLm58d577+XqGa5du3a+zzkXJC0tjeeff54aNWrg4eGBm5sbR48eLXTP85QpU3B3d7daPufUTcchIiIiIiK5KXmWfAUGBmIymUhKSir0PoZh5Jts56xfsmQJ8fHxNG3alJUrVxIUFGT1/HTJkiVJTEzk0KFDXL58mf3799OoUSOruvIaRn4jJyenXO3ntS47O9tq3cyZM0lMTCQ1NZXz588zevRoAGJjYxk5ciT9+vVj48aNJCYm0rdvX65fv37TseVl7NixfPzxx7z22mvs2LGDxMREateunav+/ERFRXHx4kWr5XEq31IsIiIiIvLPY8LBbsu9QMO2JV+enp6Eh4czd+5cRowYkSsp/P3333M991yjRg2WLl1KWlqapfzOnTtxcHAgKCjIUq5+/frUr1+fqKgomjRpwvLly3n44YcBcHBwoGrVqnf34Arg4+OTZ/s7duygadOmVjP6ff/994Wqs3jx4mRlZRVYZseOHURGRtKpUyfgz2egT506Vei4zWYzZrPZap2GbIuIiIiI3Bn6y1oKNG/ePLKysmjcuDEff/wxx48fJykpidmzZ+f56qaePXvi7OxMnz59OHz4MNu2bWP48OH06tULb29vTp48SVRUFPHx8aSkpLBx40aSk5MLfO65qKhatSr79u1jw4YNJCcnM378eBISEgq1b+XKlfnqq6/46aefLM9t51X/6tWrSUxM5Ntvv6VHjx65esVFRERERO4Wkx3/uxcoeZYC+fv788033xAWFsbo0aOpVasWrVq1YsuWLcyfPz9X+RIlSrBhwwbOnz9Po0aN6NKlCy1atGDOnDmW7UePHqVz584EBQUxcOBAhg0bxqBBg/7uQ7tpgwcP5oknnqBr16489NBDnDt3Lt/3yt1o8uTJnDp1iipVqlC2bNk8y8ycOZPSpUvTtGlTIiIiCA8P58EHH7yThyAiIiIiIrfIZOTMCiUi950lDi3sHYJF2x43P4na3fDF8sI9Q363eZVzsl3ob/DI40Xnn4BraY72DgGATR8VjXtka7s+9g4BgMU9t9g7BACyf7tq7xAspjzUwd4hADB45jJ7hwDA+IG97R0CAC9MW27vECxST9k7gj+lpxeN3/G/fNHD3iEAcDVosb1DAKBvdtH4vZqXc9fs93vFy7lo/C4piJ55FhEREREREUyaL6dAOjsiIiIiIiIiNqjnWURERERERO6ZibvsRT3PIiIiIiIiIjYoeRYRERERERGxQcO2RURERERERBOG2aCzIyIiIiIiImKDep5FREREREREE4bZoJ5nERERERERERvU8ywiIiIiIiKY1LdaIJ0dERERERERERvU8yxyH4s81tLeIVgY/0u1dwgARE7wtXcIf7qUZu8IAEiv95C9Q7DwzCwa3+eWeO13e4cAwJJvN9s7BAD6Lmth7xAAaPnlUnuHYDHkYoa9QwDA69Wi8Tv+nYoe9g4BgB+zi86zmuUDDHuHAMDJJHtH8KduVcvbOwQAjO/C7B2C3OOUPIuIiIiIiAgmU9H5EqooKhpf84uIiIiIiIgUYep5FhEREREREU0YZoPOjoiIiIiIiIgNSp5FREREREREbNCwbREREREREcGEJgwriHqeRURERERERGxQz7OIiIiIiIhgMqlvtSA6OyIiIiIiIiI2qOdZRERERERE9MyzDep5Fvn/TCYTa9eutXcYIiIiIiJSBCl5ln+MM2fOMHz4cAICAjCbzfj5+REREcGWLVvueFtZWVlMmTKF4OBgXFxc8PT05OGHH2bJkiV3vC0REREREbn7NGxb/hFOnTpFSEgIHh4eTJs2jTp16pCRkcGGDRsYOnQoR48evaPtTZw4kYULFzJnzhwaNmzIpUuX2LdvHxcuXLij7YiIiIiI3CmaMKxgOjvyjzBkyBBMJhN79+6lS5cuBAUFUbNmTUaNGsXu3bvz3OfQoUM0b94cFxcXvLy8GDhwIJcvX7Zsj4uLo3Hjxri6uuLh4UFISAgpKSkAfPrppwwZMoQnn3wSf39/6tatS//+/Rk1apRlf8MwmDZtGgEBAbi4uFC3bl0++ugjqxi+++47Hn/8cUqVKkXJkiV59NFH+f777+/CGRIRERERkYIoeZb73vnz51m/fj1Dhw7F1dU113YPD49c665cuULr1q0pXbo0CQkJrFq1is2bNzNs2DAAMjMz6dixI6GhoRw8eJD4+HgGDhyIyfTnJAs+Pj5s3bqVX3/9Nd+4/vOf/7BkyRLmz5/Pd999x8iRI3n66afZvn07AD/99BP/+te/cHZ2ZuvWrezfv59+/fqRmZl5B86KiIiIiIg1Ew52W+4FGrYt970TJ05gGAbBwcGF3icmJoarV6+ybNkyS8I9Z84cIiIimDp1Kk5OTly8eJF27dpRpUoVAKpXr27Z/6233qJLly74+PhQs2ZNmjZtSocOHWjTpg0AaWlpvPXWW2zdupUmTZoAEBAQwNdff827775LaGgoc+fOxd3dnRUrVuDk5ARAUFBQvjGnp6eTnp5uta749UzMxfUxFxERERG5XfdGii9yGwzDALD0ChdGUlISdevWteqpDgkJITs7m2PHjuHp6UlkZCTh4eFERETw9ttvk5qaailbo0YNDh8+zO7du+nbty+//PILERERDBgwAIAjR45w7do1WrVqhZubm2VZtmyZZVh2YmIijz76qCVxtmXKlCm4u7tbLVMWxBX6mEVEREREJH9KnuW+FxgYiMlkIikpqdD7GIaRb7Kds37JkiXEx8fTtGlTVq5cSVBQkNXz0w4ODjRq1IiRI0eyZs0aoqOjWbRoESdPniQ7OxuAzz//nMTERMty5MgRy3PPLi4uN3WcUVFRXLx40WqJGtzspuoQERERkX8ukx3/uxcoeZb7nqenJ+Hh4cydO5e0tLRc23///fdc62rUqEFiYqJV+Z07d+Lg4GA1dLp+/fpERUWxa9cuatWqxfLly/ONo0aNGsCfQ7Zr1KiB2Wzm9OnTVK1a1Wrx8/MDoE6dOuzYsYOMjIxCHafZbKZUqVJWi4Zsi4iIiIjcGUqe5R9h3rx5ZGVl0bhxYz7++GOOHz9OUlISs2fPtjxz/Fc9e/bE2dmZPn36cPjwYbZt28bw4cPp1asX3t7enDx5kqioKOLj40lJSWHjxo0kJydbnnvu0qULM2fOZM+ePaSkpBAXF8fQoUMJCgoiODiYkiVLMmbMGEaOHMnSpUv5/vvvOXDgAHPnzmXp0qUADBs2jEuXLtGtWzf27dvH8ePH+eCDDzh27Njfeu5ERERE5J/BZHKw23IvULeU/CP4+/vzzTff8NprrzF69GhSU1MpW7YsDRo0YP78+bnKlyhRgg0bNvDss8/SqFEjSpQoQefOnXnrrbcs248ePcrSpUs5d+4cvr6+DBs2jEGDBgEQHh7Of//7X6ZMmcLFixfx8fGhefPmTJw4kWLF/vzYvfLKK5QrV44pU6bwww8/4OHhwYMPPsiLL74IgJeXF1u3bmXs2LGEhobi6OhIvXr1CAkJ+ZvOmoiIiIiI5DAZObMpich9xzg+xd4hWBj/S7Vd6G9g8vO1dwh/upT7EQJ7SK/3kL1DsHDOLBrfOq/68Xd7hwBA52832zsEAPoua27vEABo+eVSe4dg0eZiL3uHAIDXL/m/DvHvlFGxhr1DAODH9rm/DLcXh2JF48/rk0lFI46w5DH2DgEAI2mnvUMAwFT9P/YOIV+Z2Rvs1nYxh3C7tV1YReMvFREREREREZEiTMmziIiIiIiIiA165llERERERETumYm77EVnR0RERERERMQG9TyLiIiIiIgIJkz2DqFIU8+ziIiIiIiIiA1KnkVERERERERs0LBtERERERERwaS+1QLp7IiIiIiIiIjYoJ5nERERERERwWTShGEFUc+ziIiIiIiIiA1KnkVERERERERs0LBtkftYdLXN9g7B4vGeTvYOAYDPY76zdwhA0TkfW9fssXcIFs07Odo7BABC7R3A/3fx/V72DgGANr2j7R0CAF+26WPvECxCrl+zdwgAeH571N4hAPDvZ73tHQIAzb68Yu8QJB9Prrlg7xAAaNt5m71DAKBv9n/sHUL+DDu2fQ+MGFfPs4iIiIiIiIgN6nkWERERERERMLLt17Z6nkVERERERETufep5FhEREREREfv2PN8D1PMsIiIiIiIiYoOSZxEREREREREbNGxbRERERERENGzbBvU8i4iIiIiIiNignmcRERERERFRz7MN6nmWu8ZkMrF27Vp7h1FkVa5cmVmzZhW6fHR0NB4eHnctHhERERERyZ+SZ7llZ86cYfjw4QQEBGA2m/Hz8yMiIoItW7bc8baysrKYMmUKwcHBuLi44OnpycMPP8ySJUvuWBsTJ07EZDJhMplwdHTEz8+PAQMG8Ouvv95WvfklvQkJCQwcOPC26hYRERERkb+Hhm3LLTl16hQhISF4eHgwbdo06tSpQ0ZGBhs2bGDo0KEcPXr0jrY3ceJEFi5cyJw5c2jYsCGXLl1i3759XLhw4Y62U7NmTTZv3kxWVhYHDhygf//+/PTTT3z55Ze3VF9GRka+28qWLXurYYqIiIiI3HnZGrZdEPU8yy0ZMmQIJpOJvXv30qVLF4KCgqhZsyajRo1i9+7dee5z6NAhmjdvjouLC15eXgwcOJDLly9btsfFxdG4cWNcXV3x8PAgJCSElJQUAD799FOGDBnCk08+ib+/P3Xr1qV///6MGjXKsr9hGEybNo2AgABcXFyoW7cuH330kVUM3333HY8//jilSpWiZMmSPProo3z//feW7cWKFcPHx4cKFSrQrl07RowYwcaNG7l69Srr16/nkUcewcPDAy8vL9q1a2e176lTpzCZTMTGxtKsWTOcnZ358MMP6du3LxcvXrT0ak+cOBHIPWz7rbfeonbt2ri6uuLn58eQIUOszo+IiIiIiNiPkme5aefPn2f9+vUMHToUV1fXXNvzGqJ85coVWrduTenSpUlISGDVqlVs3ryZYcOGAZCZmUnHjh0JDQ3l4MGDxMfHM3DgQEwmEwA+Pj5s3bq1wCHU//nPf1iyZAnz58/nu+++Y+TIkTz99NNs374dgJ9++ol//etfODs7s3XrVvbv30+/fv3IzMzMt04XFxeys7PJzMwkLS2NUaNGkZCQwJYtW3BwcKBTp05k3/AN3bhx4xgxYgRJSUm0aNGCWbNmUapUKVJTU0lNTWXMmDF5tuXg4MDs2bM5fPgwS5cuZevWrTz//PP5xiYiIiIickcZ2fZb7gEati037cSJExiGQXBwcKH3iYmJ4erVqyxbtsyScM+ZM4eIiAimTp2Kk5MTFy9e5P+xd+fhMd39/8efk0Q2kURjSaxBEkIillD7Tqy170WotqqhqCq1b81dGhS1VElSVGgtVVV7EYKSSu+2CbVFtI1bq1SpLcvvDz/n25HIhLYm6vW4rnPd5sznnPOaM+Ou93yWadu2LeXKlQPA39/fOH7WrFl06dIFT09PKlWqRJ06dWjfvj2tWrUC4Nq1a8yaNYtdu3ZRu3ZtAMqWLcu+fftYvHgxDRs25N1338XNzY2YmBjy5csHgJ+f330zHzt2jIULF1KzZk0KFChA586dzZ5funQpRYoUITExkYCAAGP/sGHD6NSpk/HYzc0Nk8mEp6dnjvdo2LBhxp/LlCnD1KlTeemll1iwYEGOx4mIiIiIyD9PPc/ywDIzMwGMXuHcSEpKIigoyKynum7dumRkZHD8+HGeeuopQkNDCQkJoV27drzzzjukpqYabStWrMi3337LwYMH6d+/P//73/9o164dAwcOBCAxMZEbN27QvHlzXFxcjO2DDz4whlYnJCRQv359o3DOzjfffIOLiwtOTk5UrFiRkiVLsnLlSgBOnTpFr169KFu2LK6urpQpUwaAlJQUs3MEBwfn+r782RdffEHz5s0pXrw4BQoUoG/fvly8eJFr167l6vibN29y5coVs+32Y/ItnoiIiIjkAep5zpGKZ3lgvr6+mEwmkpKScn1MZmbmfYvtu/sjIyM5cOAAderUYfXq1fj5+ZnNn7axsaFGjRoMHz6c9evXExUVxdKlSzlz5owxdPqzzz4jISHB2BITE415z05OThZzli9f3jju+vXr7Nq1Cx8fHwDatWvHxYsXWbJkCYcOHeLQoUMA3Lp1y+wc2Q1lt+Ts2bO0bt2agIAA1q5dS3x8PO+++y6Q86JjfxYeHo6bm5vZ9hnJD5xFRERERESyUvEsD+ypp54iJCSEd999N9te0cuXL2fZV7FiRRISEsza79+/HxsbG7Oh01WrVmXMmDHExcUREBDAhx9+eN8cFStWBO4M2a5YsSIODg6kpKTg4+NjtpUsWRKAypUrExsbm2Mxam9vj4+PD2XKlMHBwcHYf/HiRZKSkhg3bhxNmzbF398/1yt929vbk56enmObI0eOkJaWRkREBLVq1cLPz4+ffvopV+e/a8yYMfz2229mWxu8H+gcIiIiIiKSPRXP8lAWLFhAeno6NWvWZO3atZw4cYKkpCTmzp1rzDn+s969e+Po6Ei/fv349ttv+eKLLxgyZAh9+vShaNGinDlzhjFjxnDgwAHOnj3Ltm3b+P777415z126dGH27NkcOnSIs2fPsnv3bl5++WX8/PyoUKECBQoUYOTIkQwfPpzo6GhOnTrF0aNHeffdd4mOjgYgLCyMK1eu0KNHD44cOcKJEydYvnw5x48ft/h6CxYsiIeHB++99x4nT55k165dZit958Tb25urV6+yc+dOfvnlF/74448sbcqVK0daWhrz5s3j9OnTLF++nEWLFuXq/Hc5ODjg6upqtuUz6a+4iIiIiOSShm3nSP+ylodSpkwZvvrqKxo3bsyrr75KQEAAzZs3Z+fOnSxcuDBLe2dnZ7Zu3cqvv/5KjRo16NKlC02bNmX+/PnG88eOHaNz5874+fnxwgsvEBYWxosvvghASEgIn376Ke3atcPPz49+/fpRoUIFtm3bhp3dnXXvpk6dyoQJEwgPD8ff39845u7cZA8PD3bt2sXVq1dp2LAh1atXZ8mSJTnOgb7LxsaGmJgY4uPjCQgIYPjw4cycOTNX96pOnToMGjSI7t27U7hwYWbMmJGlTZUqVZg1axZvvfUWAQEBrFy5kvDw8FydX0RERERE/nmmzLurP4nIv06kTVNrRzC06W35S4pH4bOVuZtD/k/LK/dj1/qcpxQ8Sk062lo7Qp6S7/0+1o4AwFaPKGtHAODzZn2tHcEw8YMb1o4AgPfuQ9aOAED/ZQ2tHQGARhujrB1B7mPz2petHQGA1p3ftXYEAPpn7LR2hPu7utZ613bpbLmNlannWURERERERMQCFc8iIiIiIiIiFthZO4CIiIiIiIjkAY/Jwl3Wop5nEREREREREQvU8ywiIiIiIiLqebZAPc8iIiIiIiIiFqjnWURERERERNTzbIF6nkVEREREREQsUPEsIiIiIiIiYoGGbYuIiIiIiAiZmelWu7bJalfOPfU8i4iIiIiIiFignmcRERERERGBDC0YlhMVzyL/Yn3eL2rtCIblA/9n7QhA3rkneeV+hF7obe0Ihu97fGLtCACU65Xf2hEA2HcxzdoRAOhx9Q1rRwCg0+z51o5geL5vB2tHAKDZ58nWjgDAjTWtrR3hjo3WDpD3lCjtYO0IAFw8kDdyPLuwsLUjyGNOw7ZFRERERERELFDPs4iIiIiIiOh3ni1Qz7OIiIiIiIiIBep5FhEREREREfU8W6CeZxEREREREREL1PMsIiIiIiIi6nm2QD3PIiIiIiIiIhaoeBYRERERERGxQMO2RURERERERMO2LVDPs4iIiIiIiIgF6nkWERERERERyFDPc07U85zHnT9/nldeeQUfHx8cHR0pWrQo9erVY9GiRfzxxx9Wy/XFF1/QuHFjnnrqKZydnfH19aVfv36kpaX949fevXs3JpOJy5cvP9BxV65cYezYsVSoUAFHR0c8PT1p1qwZ69atIzMz82/LFxoaSocOHf6284mIiIiIiPWp5zkPO336NHXr1sXd3Z0333yTwMBA0tLS+P7771m2bBnFihXjmWeeeeS5vvvuO1q1asXQoUOZN28eTk5OnDhxgo8//piMf/jbqtu3bz/UcZcvX6ZevXr89ttvTJs2jRo1amBnZ8eePXsYNWoUTZo0wd3d/e8Na8Ht27fJly/fI72miIiIiIg8HPU852GDBw/Gzs6OI0eO0K1bN/z9/QkMDKRz58589tlntGvXjgEDBtC2bVuz49LS0vD09GTZsmUANGrUiCFDhjBs2DAKFixI0aJFee+997h27Rr9+/enQIEClCtXjs8//9w4x6VLl+jduzeFCxfGyckJX19fIiMjAdi+fTteXl7MmDGDgIAAypUrR8uWLXn//fext7cHICoqCnd3dzZs2ICfnx+Ojo40b96cc+fOmWVduHAh5cqVw97envLly7N8+XKz500mE4sWLaJ9+/bkz5+fgQMH0rhxYwAKFiyIyWQiNDQUgI8//pjAwECcnJzw8PCgWbNmXLt2DYA33niD5ORkDh06RL9+/ahYsSJ+fn48//zzJCQk4OLiAsCtW7cYNWoUxYsXJ3/+/Dz99NPs3r3byHP3dW3duhV/f39cXFxo2bIlqampAEyaNIno6Gg++eQTTCYTJpOJ3bt3k5ycjMlkYs2aNTRq1AhHR0dWrFgBQGRkJP7+/jg6OlKhQgUWLFhgXO/WrVuEhYXh5eWFo6Mj3t7ehIeHP+AnSUREREQkFzIzrLc9BlQ851EXL15k27ZtvPzyy+TPnz/bNiaTiYEDB7JlyxajeAPYvHkzV69epVu3bsa+6OhoChUqxJdffsmQIUN46aWX6Nq1K3Xq1OGrr74iJCSEPn36GEPBx48fT2JiIp9//jlJSUksXLiQQoUKAeDp6Ulqaip79+7N8TX88ccfTJ8+nejoaPbv38+VK1fo0aOH8fz69et55ZVXePXVV/n222958cUX6d+/P1988YXZeSZOnEj79u355ptvmDJlCmvXrgXg+PHjpKam8s4775CamkrPnj0ZMGAASUlJ7N69m06dOpGZmUlGRgYxMTH07t2bYsWKZcnp4uKCnd2dQRj9+/dn//79xMTE8N///peuXbvSsmVLTpw4Yfa63n77bZYvX87evXtJSUlh5MiRAIwcOZJu3boZBXVqaip16tQxjn399dcZOnQoSUlJhISEsGTJEsaOHcv06dNJSkrizTffZPz48URHRwMwd+5cNm7cyJo1azh+/DgrVqzA29s7x/suIiIiIiJ/Pw3bzqNOnjxJZmYm5cuXN9tfqFAhbty4AcDLL7/MW2+9ZfTYjho1CrjTk9m1a1ejNxUgKCiIcePGATBmzBj+85//UKhQIZ5//nkAJkyYwMKFC/nvf/9LrVq1SElJoWrVqgQHBwOYFWxdu3Zl69atNGzYEE9PT2rVqkXTpk3p27cvrq6uRrvbt28zf/58nn76aeBOAe/v78+XX35JzZo1efvttwkNDWXw4MEAjBgxgoMHD/L2228bvcsAvXr1YsCAAcbjM2fOAFCkSBFjqPWpU6dIS0ujU6dOlC5dGoDAwEAALly4wKVLl6hQoUKO9/zUqVOsWrWKH374wSiyR44cyZYtW4iMjOTNN980XteiRYsoV64cAGFhYUyZMgW4U4g7OTlx8+ZNPD09s1xj2LBhdOrUyXg8depUIiIijH1lypQhMTGRxYsX069fP1JSUvD19aVevXqYTCbjtWXn5s2b3Lx502yf7e10HPLZ5vi6RURERESAx6YH2FrU85zHmUwms8dffvklCQkJVKpUySiUBg4caAypvnDhAp999plZsQlQuXJl48+2trZ4eHgYxSVA0aJFjeMBXnrpJWJiYqhSpQqjRo0iLi7O7PjIyEh++OEHZsyYQbFixZg+fTqVKlUy6wG3s7Mzim+AChUq4O7uTlJSEgBJSUnUrVvXLGfdunWN5+/68znuJygoiKZNmxIYGEjXrl1ZsmQJly5dAjAWA7v3Xt7rq6++IjMzEz8/P1xcXIxtz549nDp1ymjn7OxsFM4AXl5exn2z5M+v5eeff+bcuXM899xzZtebNm2acb3Q0FASEhIoX748Q4cOZdu2bfc9d3h4OG5ubmbbW5sTc5VLRERERERypuI5j/Lx8cFkMnHs2DGz/WXLlsXHxwcnJydjX9++fTl9+jQHDhwwhvXWr1/f7Lh7F6YymUxm++4WlncX/GrVqhVnz55l2LBh/PTTTzRt2tQYmnxX8eLF6dOnD++++y6JiYncuHGDRYsWZbnOvf68797nMzMzs+y737D1P7O1tWX79u18/vnnVKxYkXnz5lG+fHnOnDlD4cKFKViwYJai/F4ZGRnY2toSHx9PQkKCsSUlJfHOO+8Y7bK7l7ldrfvPr+XuvV6yZInZ9b799lsOHjwIQLVq1Thz5gxTp07l+vXrdOvWjS5dumR77jFjxvDbb7+Zba+3rpirXCIiIiIimvOcMxXPeZSHhwfNmzdn/vz5xqJXObXt0KEDkZGRREZG0r9//78lQ+HChQkNDWXFihXMmTOH9957775tCxYsiJeXl1nWtLQ0jhw5Yjw+fvw4ly9fNoZP+/v7s2/fPrPzxMXF4e/vn2Ouu4uSpaenm+03mUzUrVuXyZMnc/ToUezt7Vm/fj02NjZ0796dlStX8tNPP2U537Vr10hLS6Nq1aqkp6dz4cIFfHx8zLbshmDnlO/ebNkpWrQoxYsX5/Tp01muV6ZMGaOdq6sr3bt3Z8mSJaxevZq1a9fy66+/Zjmfg4MDrq6uZpuGbIuIiIiI/D005zkPW7BgAXXr1iU4OJhJkyZRuXJlbGxsOHz4MMeOHaN69epG24EDB9K2bVvS09Pp16/fX772hAkTqF69ujE8fNOmTUZRu3jxYhISEujYsSPlypXjxo0bfPDBB3z33XfMmzfPOEe+fPkYMmQIc+fOJV++fISFhVGrVi1q1qwJwGuvvUa3bt2oVq0aTZs25dNPP2XdunXs2LEjx2ylS5fGZDKxadMmWrdujZOTE9999x07d+6kRYsWFClShEOHDvHzzz8bmd988012797N008/zfTp0wkODiZfvnzExsYSHh7O4cOH8fPzo3fv3vTt25eIiAiqVq3KL7/8wq5duwgMDKR169a5unfe3t5s3bqV48eP4+HhgZub233bTpo0iaFDh+Lq6kqrVq24efMmR44c4dKlS4wYMYLZs2fj5eVFlSpVsLGx4aOPPsLT0/OR/6yWiIiIiMiTTsVzHlauXDmOHj3Km2++yZgxY/jhhx9wcHCgYsWKjBw50lhoC6BZs2Z4eXlRqVKlbFeUflD29vaMGTOG5ORknJycqF+/PjExMQDUrFmTffv2MWjQIH766SdcXFyoVKkSGzZsoGHDhsY5nJ2def311+nVqxc//PAD9erVM34+C6BDhw688847zJw5k6FDh1KmTBkiIyNp1KhRjtmKFy/O5MmTGT16NP3796dv3768/vrr7N27lzlz5nDlyhVKly5NREQErVq1Au70jB88eJD//Oc/TJs2jbNnz1KwYEECAwOZOXOmUeBGRkYybdo0Xn31VX788Uc8PDyoXbt2rgtngOeff57du3cTHBzM1atX+eKLL+67QvbAgQNxdnZm5syZjBo1ivz58xMYGMiwYcOAOwuQvfXWW5w4cQJbW1tq1KjB5s2bsbHRoBERERER+ZtlPB7Dp63FlJnbyZqSp/3xxx8UK1aMZcuWma3mbC1RUVEMGzaMy5cvWzvKEy1tWS9rRzAsH/g/a0cAoM/7Ra0dAcg79yP0Qm9rRzB83+MTa0cAoFwvy+ssPAr7WoZYOwIAjYqVsnYEAG7Nnm/tCIbn93SwdgQAmn0ebe0IAGxaM9hyo0egZcd3rR0hzylR2sHaEQAI7/qytSMAsLXccmtHACDfizHWjnBfmefmWO3appLDrHbt3FL31WMuIyODn376ifHjx+Pm5sYzzzxj7UgiIiIiIvI4eswWDFuwYAFlypTB0dGR6tWrExsbm6vj9u/fj52dHVWqVHmg66l4fsylpKRQvHhx1qxZw7Jly7Cz00h8ERERERH5d1u9ejXDhg1j7NixHD16lPr169OqVStSUlJyPO63336jb9++NG3a9IGvqeL5Meft7U1mZibnzp17qA/APyU0NFRDtkVERERE5B8xa9YsnnvuOQYOHIi/vz9z5syhZMmSLFy4MMfjXnzxRXr16kXt2rUf+JoqnkVERERERMSqw7Zv3rzJlStXzLabN29mG/PWrVvEx8fTokULs/0tWrQgLi7uvi8vMjKSU6dOMXHixIe6PSqeRURERERExKrCw8Nxc3Mz28LDw7Nt+8svv5Cenk7RouYLwRYtWpTz589ne8yJEycYPXo0K1eufOiprpogKyIiIiIiIlb9qaoxY8YwYsQIs30ODjmvGG8ymcweZ2ZmZtkHkJ6eTq9evZg8eTJ+fn4PnVHFs4iIiIiIiFiVg4ODxWL5rkKFCmFra5ull/nChQtZeqMBfv/9d44cOcLRo0cJCwsD7vxqUWZmJnZ2dmzbto0mTZpYvK6KZxEREREREYGMTGsnyBV7e3uqV6/O9u3b6dixo7F/+/bttG/fPkt7V1dXvvnmG7N9CxYsYNeuXXz88ceUKVMmV9dV8SwiIiIiIiKPlREjRtCnTx+Cg4OpXbs27733HikpKQwaNAi4Mwz8xx9/5IMPPsDGxoaAgACz44sUKYKjo2OW/TlR8SwiIiIiIiKPle7du3Px4kWmTJlCamoqAQEBbN68mdKlSwOQmppq8TefH5SKZxEREREREbHqgmEPY/DgwQwePDjb56KionI8dtKkSUyaNOmBrmfKzMx8PAa2i8gD+6xYS2tHMLScnXXxBmvYMvx/1o4AQJP+eeOXAndF5p3/SOaVe2LjYm/tCAAc25g3/vPs1+S2tSMA8M3nttaOYEj673VrRwBgV9t+1o4AQOTAWGtHuCMt3doJDKag8taOAEBUua3WjgBAqXN9rR0BgBs1Vlk7AgBtftpi7Qj3lXki+5+GehRMvmOsdu3cUs+ziIiIiIiIPHY9z49a3viaX0RERERERCQPU/EsIiIiIiIiYoGGbYuIiIiIiMhj8zvP1qKeZxEREREREREL1PMsIiIiIiIiWjDMAvU8i4iIiIiIiFig4llERERERETEAg3bFhEREREREQ3btkA9zyIiIiIiIiIWqHgWsZLdu3djMpm4fPlyro9p1KgRw4YN+8cyiYiIiMgTLCPTettj4Ikrns+fP88rr7yCj48Pjo6OFC1alHr16rFo0SL++OMPq+X64osvaNy4MU899RTOzs74+vrSr18/0tLS/vFrP0wRB3DlyhXGjh1LhQoVcHR0xNPTk2bNmrFu3ToyM/++vwChoaF06NDhbztfTry9vTGZTJhMJpydnQkICGDx4sV/+bzZFb116tQhNTUVNze3v3x+ERERERH5Zz1Rc55Pnz5N3bp1cXd358033yQwMJC0tDS+//57li1bRrFixXjmmWceea7vvvuOVq1aMXToUObNm4eTkxMnTpzg448/JuMfnndw+/bthzru8uXL1KtXj99++41p06ZRo0YN7Ozs2LNnD6NGjaJJkya4u7v/vWEtuH37Nvny5fvL55kyZQrPP/88V69eJSoqikGDBuHu7k737t3/1kz29vZ4enr+1bgiIiIiIn8PzXnO0RPV8zx48GDs7Ow4cuQI3bp1w9/fn8DAQDp37sxnn31Gu3btGDBgAG3btjU7Li0tDU9PT5YtWwbc6UUcMmQIw4YNo2DBghQtWpT33nuPa9eu0b9/fwoUKEC5cuX4/PPPjXNcunSJ3r17U7hwYZycnPD19SUyMhKA7du34+XlxYwZMwgICKBcuXK0bNmS999/H3t7ewCioqJwd3dnw4YN+Pn54ejoSPPmzTl37pxZ1oULF1KuXDns7e0pX748y5cvN3veZDKxaNEi2rdvT/78+Rk4cCCNGzcGoGDBgphMJkJDQwH4+OOPCQwMxMnJCQ8PD5o1a8a1a9cAeOONN0hOTubQoUP069ePihUr4ufnx/PPP09CQgIuLi4A3Lp1i1GjRlG8eHHy58/P008/ze7du408d1/X1q1b8ff3x8XFhZYtW5KamgrApEmTiI6O5pNPPjF6hHfv3k1ycjImk4k1a9bQqFEjHB0dWbFiBQCRkZH4+/vj6OhIhQoVWLBggXG9W7duERYWhpeXF46Ojnh7exMeHm52jwoUKICnpyc+Pj5MmzYNX19fNmzYAMDrr7+On58fzs7OlC1blvHjx5t9ATFp0iSqVKnCsmXLKFu2LA4ODvTr1489e/bwzjvvGK8hOTk5S4//xYsX6dmzJyVKlMDZ2ZnAwEBWrVqV7WdZREREREQerSem5/nixYts27aNN998k/z582fbxmQyMXDgQBo0aEBqaipeXl4AbN68matXr9KtWzejbXR0NKNGjeLLL79k9erVvPTSS2zYsIGOHTvyxhtvMHv2bPr06UNKSgrOzs6MHz+exMREPv/8cwoVKsTJkye5fv06AJ6enqSmprJ3714aNGhw39fwxx9/MH36dKKjo7G3t2fw4MH06NGD/fv3A7B+/XpeeeUV5syZQ7Nmzdi0aRP9+/enRIkSRoEMMHHiRMLDw5k9eza2tra0b9+ezp07c/z4cVxdXXFyciI1NZWePXsyY8YMOnbsyO+//05sbCyZmZlkZGQQExND7969KVasWJacdwtngP79+5OcnExMTAzFihVj/fr1tGzZkm+++QZfX1/jdb399tssX74cGxsbnn32WUaOHMnKlSsZOXIkSUlJXLlyxfiy4amnnuKnn34C7hSzERERREZG4uDgwJIlS5g4cSLz58+natWqHD16lOeff578+fPTr18/5s6dy8aNG1mzZg2lSpXi3LlzWb6AuJejo6NRIBcoUICoqCiKFSvGN998w/PPP0+BAgUYNWqU0f7kyZOsWbOGtWvXYmtrS+nSpTlx4gQBAQFMmTIFgMKFC5OcnGx2nRs3blC9enVef/11XF1d+eyzz+jTpw9ly5bl6aefzjGjiIiIiIj8s56Y4vnkyZNkZmZSvnx5s/2FChXixo0bALz88su89dZbRo/t3YIoMjKSrl27mhWFQUFBjBs3DoAxY8bwn//8h0KFCvH8888DMGHCBBYuXMh///tfatWqRUpKClWrViU4OBi4M7f2rq5du7J161YaNmyIp6cntWrVomnTpvTt2xdXV1ej3e3bt5k/f75RSEVHR+Pv78+XX35JzZo1efvttwkNDWXw4MEAjBgxgoMHD/L222+bFc+9evViwIABxuMzZ84AUKRIEWOo9alTp0hLS6NTp06ULl0agMDAQAAuXLjApUuXqFChQo73/NSpU6xatYoffvjBKLJHjhzJli1biIyM5M033zRe16JFiyhXrhwAYWFhRpHp4uKCk5MTN2/ezHaI87Bhw+jUqZPxeOrUqURERBj7ypQpQ2JiIosXL6Zfv36kpKTg6+tLvXr1MJlMxmvLTlpaGitWrOCbb77hpZdeAjDec7jzHr766qusXr3arHi+desWy5cvp3DhwsY+e3t7nJ2dcxymXbx4cUaOHGk8HjJkCFu2bOGjjz7KVfF88+ZNbt68abbvdmYG+UxP1AATEREREXlYj8nCXdbyxP2r2mQymT3+8ssvSUhIoFKlSkbhMXDgQKOX88KFC3z22WdmxSZA5cqVjT/b2tri4eFhFJcARYsWNY4HeOmll4iJiaFKlSqMGjWKuLg4s+MjIyP54YcfmDFjBsWKFWP69OlUqlTJGL4MYGdnZxTfABUqVMDd3Z2kpCQAkpKSqFu3rlnOunXrGs/f9edz3E9QUBBNmzYlMDCQrl27smTJEi5dugRgLAZ2772811dffUVmZiZ+fn64uLgY2549ezh16pTRztnZ2SicAby8vIz7ZsmfX8vPP//MuXPneO6558yuN23aNON6oaGhJCQkUL58eYYOHcq2bduynPP11183ivaXX36Z1157jRdffBG4M5S9Xr16eHp64uLiwvjx40lJSTE7vnTp0maFc26lp6czffp0KleujIeHBy4uLmzbti3L+e8nPDwcNzc3s23N1dMPnENERERERLJ6YopnHx8fTCYTx44dM9tftmxZfHx8cHJyMvb17duX06dPc+DAAVasWIG3tzf169c3O+7eRaBMJpPZvruF5d0Fv1q1asXZs2cZNmwYP/30E02bNjXrZYQ7PY99+vTh3XffJTExkRs3brBo0aIs17nXn/fd+3xmZmaWffcbtv5ntra2bN++nc8//5yKFSsyb948ypcvz5kzZyhcuDAFCxbMUpTfKyMjA1tbW+Lj40lISDC2pKQk3nnnHaNddvcyt6t1//m13L3XS5YsMbvet99+y8GDBwGoVq0aZ86cYerUqVy/fp1u3brRpUsXs3O+9tprJCQkcPbsWa5evcqMGTOwsbHh4MGD9OjRg1atWrFp0yaOHj3K2LFjuXXr1n0zPYiIiAhmz57NqFGj2LVrFwkJCYSEhGQ5//2MGTOG3377zWzr5lL2obKIiIiIyBMoI8N622PgiSmePTw8aN68OfPnzzcWvcqpbYcOHYiMjCQyMpL+/fv/LRkKFy5MaGgoK1asYM6cObz33nv3bVuwYEG8vLzMsqalpXHkyBHj8fHjx7l8+bIxfNrf3599+/aZnScuLg5/f/8cc91dlCw9Pd1sv8lkom7dukyePJmjR49ib2/P+vXrsbGxoXv37qxcudKYe/xn165dIy0tjapVq5Kens6FCxfw8fEx2x5klWl7e/ss2bJTtGhRihcvzunTp7Ncr0yZMkY7V1dXunfvzpIlS1i9ejVr167l119/NZ4vVKgQPj4+FCtWzOyLh/3791O6dGnGjh1LcHAwvr6+nD179m97DbGxsbRv355nn32WoKAgypYty4kTJ3J1fgAHBwdcXV3NNg3ZFhERERH5ezwxc54BFixYQN26dQkODmbSpElUrlwZGxsbDh8+zLFjx6hevbrRduDAgbRt25b09HT69ev3l689YcIEqlevbgwP37Rpk1HULl68mISEBDp27Ei5cuW4ceMGH3zwAd999x3z5s0zzpEvXz6GDBnC3LlzyZcvH2FhYdSqVYuaNWsCd3pMu3XrRrVq1WjatCmffvop69atY8eOHTlmK126NCaTiU2bNtG6dWucnJz47rvv2LlzJy1atKBIkSIcOnSIn3/+2cj85ptvsnv3bp5++mmmT59OcHAw+fLlIzY2lvDwcA4fPoyfnx+9e/emb9++REREULVqVX755Rd27dpFYGAgrVu3ztW98/b2ZuvWrRw/fhwPD48cfxd50qRJDB06FFdXV1q1asXNmzc5cuQIly5dYsSIEcyePRsvLy+qVKmCjY0NH330EZ6enrn6WS0fHx9SUlKIiYmhRo0afPbZZ6xfvz7Xr+HQoUMkJyfj4uLCU089le35165dS1xcHAULFmTWrFmcP3/e4pcfIiIiIiLyz3uiuqXKlSvH0aNHadasGWPGjCEoKIjg4GDmzZvHyJEjmTp1qtG2WbNmeHl5ERISku2K0g/K3t6eMWPGULlyZRo0aICtrS0xMTEA1KxZk6tXrzJo0CAqVapEw4YNOXjwIBs2bKBhw4bGOZydnXn99dfp1asXtWvXxsnJyTgHQIcOHXjnnXeYOXMmlSpVYvHixURGRtKoUaMcsxUvXpzJkyczevRoihYtSlhYGK6uruzdu5fWrVvj5+fHuHHjiIiIoFWrVsCdnvGDBw/y7LPPMm3aNKpWrUr9+vVZtWoVM2fONArcyMhI+vbty6uvvkr58uV55plnOHToECVLlsz1vXv++ecpX748wcHBFC5c2FhdPDsDBw7k/fffJyoqisDAQBo2bEhUVJTR8+zi4sJbb71FcHAwNWrUIDk5mc2bN2NjY/mvQvv27Rk+fDhhYWFUqVKFuLg4xo8fn6vXMHLkSGxtbalYsSKFCxfOdh7z+PHjqVatGiEhITRq1AhPT086dOiQq/OLiIiIiPxlGradI1NmbieXPmH++OMPihUrxrJly8xWc7aWqKgohg0bZvwmsEhufFaspbUjGFrOLmrtCABsGf4/a0cAoEn/vPHd5a7IvPMfq7xyT2xc7K0dAYBjG/PGf579mty23OgR+OZzW2tHMCT997q1IwCwq+1fHxn3d4gcGGvtCHekWZ7i9aiYgspbbvQIRJXbau0IAJQ619faEQC4UWOVtSMA0OanLdaOcF+Zh0Zb7dqmp/9jtWvn1hM1bDs3MjIyOH/+PBEREbi5ufHMM89YO5KIiIiIiMg/zpr9qjn/jk/eoOL5HikpKZQpU4YSJUoQFRWFnZ1ukYiIiIiIyJNOleE9vL29rfqNy/2EhoYSGhpq7RgiIiIiIvJv9ZjMPbaWvDHBTERERERERCQPU/EsIiIiIiIiYoGGbYuIiIiIiIiGbVugnmcRERERERERC9TzLCIiIiIiIpCR9xZOzkvU8ywiIiIiIiJigYpnEREREREREQs0bFtERERERES0YJgFKp5F/sX8Au2tHcFwcslla0cA8s49Sdph7QR3NB2Ud+Y2XTlx29oRAMhf6Jq1IwAQFPeGtSMAkLH9Y2tHAKB65avWjmDwfqahtSMA0Ofof60dAYD+M+pbOwIATTZFWzvCn5y1dgAAPIrks3YEALacyxs5Xsgj/waQx5eKZxEREREREVHPswWa8ywiIiIiIiJigXqeRURERERERD9VZYF6nkVEREREREQsUPEsIiIiIiIiYoGGbYuIiIiIiIgWDLNAPc8iIiIiIiIiFqjnWURERERERNTzbIF6nkVEREREREQsUPEsIiIiIiIiYoGK57+RyWRiw4YN1o7xl0RFReHu7m7tGH/Zva9j0qRJVKlSxWp5RERERETyvIxM622PgX998RwaGorJZGLQoEFZnhs8eDAmk4nQ0NBHH+wej0vO7Hh7ezNnzpxHft0PP/wQW1vbbO+ZJdeuXeP111+nbNmyODo6UrhwYRo1asSmTZv+gaQiIiIiIvK4+9cXzwAlS5YkJiaG69evG/tu3LjBqlWrKFWqlBWTmXtccv5Tbt269UDtly1bxqhRo4iJieGPP/54oGMHDRrEhg0bmD9/PseOHWPLli107tyZixcvPtB5RERERET+NTIyrLc9Bp6I4rlatWqUKlWKdevWGfvWrVtHyZIlqVq1qrFvy5Yt1KtXD3d3dzw8PGjbti2nTp0ynr916xZhYWF4eXnh6OiIt7c34eHh973ulClTKFq0KAkJCQAsWLAAX19fHB0dKVq0KF26dHmonLnJmpycjMlkYt26dTRu3BhnZ2eCgoI4cOCA2XmioqIoVaoUzs7OdOzYMUvxeOrUKdq3b0/RokVxcXGhRo0a7Nixw3i+UaNGnD17luHDh2MymTCZTMZza9eupVKlSjg4OODt7U1ERITZub29vZk2bRqhoaG4ubnx/PPP06RJE8LCwszaXbx4EQcHB3bt2mX2+uLi4hg9ejQVKlTg448/vu/7kJ1PP/2UN954g9atW+Pt7U316tUZMmQI/fr1M8s3depUevXqhYuLC8WKFWPevHlm55k1axaBgYHkz5+fkiVLMnjwYK5evWrWZv/+/TRs2BBnZ2cKFixISEgIly5dAiAzM5MZM2ZQtmxZnJycCAoKMnstly5donfv3hQuXBgnJyd8fX2JjIx8oNcqIiIiIiJ/3RNRPAP079/frOhYtmwZAwYMMGtz7do1RowYweHDh9m5cyc2NjZ07NiRjP//TcjcuXPZuHEja9as4fjx46xYsQJvb+8s18rMzOSVV15h6dKl7Nu3jypVqnDkyBGGDh3KlClTOH78OFu2bKFBgwYPlTM3We8aO3YsI0eOJCEhAT8/P3r27ElaWhoAhw4dYsCAAQwePJiEhAQaN27MtGnTzI6/evUqrVu3ZseOHRw9epSQkBDatWtHSkoKcKe4L1GiBFOmTCE1NZXU1FQA4uPj6datGz169OCbb75h0qRJjB8/nqioKLPzz5w5k4CAAOLj4xk/fjwDBw7kww8/5ObNm0ablStXUqxYMRo3bmx2X9q0aYObmxvPPvssS5cuzXKPcuLp6cnmzZv5/fffc2w3c+ZMKleuzFdffcWYMWMYPnw427dvN563sbFh7ty5fPvtt0RHR7Nr1y5GjRplPJ+QkEDTpk2pVKkSBw4cYN++fbRr14709HQAxo0bR2RkJAsXLuS7775j+PDhPPvss+zZsweA8ePHk5iYyOeff05SUhILFy6kUKFCD/RaRURERERyRT3POXpifue5T58+jBkzxuiR3b9/PzExMezevdto07lzZ7Njli5dSpEiRUhMTCQgIICUlBR8fX2pV68eJpOJ0qVLZ7lOWloaffv25ciRI+zfv58SJUoAkJKSQv78+Wnbti0FChSgdOnSWXqTc5szN1nvGjlyJG3atAFg8uTJVKpUiZMnT1KhQgXeeecdQkJCGD16NAB+fn7ExcWxZcsW4/igoCCCgoKMx9OmTWP9+vVs3LiRsLAwnnrqKWxtbSlQoACenp5Gu1mzZtG0aVPGjx9vnDsxMZGZM2eazd1u0qQJI0eONB6XLFmSIUOG8Mknn9CtWzcAIiMjjTnhABkZGURFRRm9wD169GDEiBGcPHkSHx+fLPc0O++99x69e/fGw8ODoKAg6tWrR5cuXahbt65Zu7p165rdn/379zN79myaN28OwLBhw4y2ZcqUYerUqbz00kssWLAAgBkzZhAcHGw8BqhUqRJw5wuQWbNmsWvXLmrXrg1A2bJl2bdvH4sXL6Zhw4akpKRQtWpVgoODAbL9suaumzdvmn3pAHArIx17G9tc3RMREREREbm/J6bnuVChQrRp04bo6GgiIyNp06ZNlh68U6dO0atXL8qWLYurqytlypQBMHpZQ0NDSUhIoHz58gwdOpRt27Zluc7w4cM5cOAAsbGxRuEM0Lx5c0qXLk3ZsmXp06cPK1euzHaebm5y5ibrXZUrVzb+7OXlBcCFCxcASEpKMoq2u+59fO3aNUaNGkXFihVxd3fHxcWFY8eOZbnOvZKSkrItRE+cOGH0ugJGUXiXg4MDzz77LMuWLQPu9Nx+/fXXZgX3tm3buHbtGq1atQLu3LMWLVoYx+RGgwYNOH36NDt37qRz585899131K9fn6lTp5q1y+7+JCUlGY+/+OILmjdvTvHixSlQoAB9+/bl4sWLXLt2zcjftGnTbDMkJiZy48YNmjdvjouLi7F98MEHxhD8l156iZiYGKpUqcKoUaOIi4u772sKDw/Hzc3NbFt0+mSu74mIiIiIiNzfE1M8AwwYMICoqCiio6OzHQrdrl07Ll68yJIlSzh06BCHDh0C/m8hq2rVqnHmzBmmTp3K9evX6datW5Z5y82bN+fHH39k69atZvsLFCjAV199xapVq/Dy8mLChAkEBQVx+fLlB86Zm6x35cuXz/jzn3tu4c7wcktee+011q5dy/Tp04mNjSUhIYHAwECLi3tlZmaazX++3/Xy58+fZd/AgQPZvn07P/zwA8uWLaNp06ZmvfzLli3j119/xdnZGTs7O+zs7Ni8eTPR0dFmhbkl+fLlo379+owePZpt27YxZcoUpk6davG13X1dZ8+epXXr1gQEBLB27Vri4+N59913Abh9+zYATk5O9z3P3ffhs88+IyEhwdgSExONec+tWrXi7NmzDBs2jJ9++ommTZua9dT/2ZgxY/jtt9/MtkFlc9cTLyIiIiKin6rK2RMzbBugZcuWRmEUEhJi9tzFixdJSkpi8eLF1K9fH4B9+/ZlOYerqyvdu3ene/fudOnShZYtW/Lrr7/y1FNPAfDMM8/Qrl07evXqha2tLT169DCOtbOzo1mzZjRr1oyJEyfi7u7Orl276NSpU65zPkhWSypWrMjBgwfN9t37ODY2ltDQUDp27AjcmQOdnJxs1sbe3j5L0VqxYsUsmeLi4vDz88PWNudhxIGBgQQHB7NkyRI+/PBDs0W6Ll68yCeffEJMTIwx/BnuFKL169fn888/p23btjm/8PuoWLEiaWlp3LhxA3t7eyDr/Th48CAVKlQA4MiRI6SlpREREYGNzZ3vodasWWPWvnLlyuzcuZPJkydnez0HBwdSUlJo2LDhfXMVLlyY0NBQQkNDqV+/Pq+99hpvv/12lnYODg44ODiY7dOQbRERERGRv8cTVTzb2toaQ27vLeAKFiyIh4cH7733Hl5eXqSkpBhzXe+aPXs2Xl5eVKlSBRsbGz766CM8PT1xd3c3a9exY0eWL19Onz59sLOzo0uXLmzatInTp0/ToEEDChYsyObNm8nIyKB8+fIPlDO3WXNj6NCh1KlThxkzZtChQwe2bdtmNt8ZwMfHh3Xr1tGuXTtMJhPjx4/PsiiZt7c3e/fupUePHjg4OFCoUCFeffVVatSowdSpU+nevTsHDhxg/vz5ZnN/czJw4EDCwsKMVcDvWr58OR4eHnTt2tUoWO9q27YtS5cuzVXx3KhRI3r27ElwcDAeHh4kJibyxhtv0LhxY1xdXY12+/fvN+7P9u3b+eijj/jss88AKFeuHGlpacybN4927dqxf/9+Fi1aZHadMWPGEBgYyODBgxk0aBD29vZ88cUXdO3alUKFCjFy5EiGDx9ORkYG9erV48qVK8TFxeHi4kK/fv2YMGEC1atXp1KlSty8eZNNmzbh7++fq3soIiIiIvJAHpOFu6zliRq2DXd6jv9cHN1lY2NDTEwM8fHxBAQEMHz4cGbOnGnWxsXFhbfeeovg4GBq1KhBcnIymzdvzlLEAXTp0oXo6Gj69OnDunXrcHd3Z926dTRp0gR/f38WLVrEqlWrzHpPc5Mzt1lzo1atWrz//vvMmzePKlWqsG3bNsaNG2fWZvbs2RQsWJA6derQrl07QkJCqFatmlmbKVOmkJycTLly5ShcuDBwZ4j7mjVriImJISAggAkTJjBlyhSzucs56dmzJ3Z2dvTq1QtHR0dj/7Jly+jYsWO297xz585s2rSJ//3vfxbPHxISQnR0NC1atMDf358hQ4YQEhKSpef41VdfJT4+nqpVqzJ16lQiIiKM0QBVqlRh1qxZvPXWWwQEBLBy5cosP13m5+fHtm3b+Prrr6lZsya1a9fmk08+wc7uzvdWU6dOZcKECYSHh+Pv709ISAiffvqpMYfd3t6eMWPGULlyZRo0aICtrS0xMTG5uociIiIiIvL3MWXmZuKryCN27tw5vL29OXz4cJZi/VHx9vZm2LBhZitqP25OhDxj7QiGjHST5UaPgI1t3vi/vN8vWzvBHRXb5I37AXDlxG1rRwAgf6Hcr53wT8o/6w1rRwAgY/vHlhs9ApmXrlo7guHiM/efavMoFTqaZLnRI9B/RmXLjR6BJpuirR0hzylYKG8MMo3d0NfaEQB4YWLe6IDw3brR2hHuK2Ndf6td26ZTpOVGVpY3/kaJ/H+3b98mNTWV0aNHU6tWLasVziIiIiIiT5rM9LzzpXpe9MQN25a8bf/+/ZQuXZr4+Pgs84dFRERERESsRT3Pkqc0atQoVz+h9Sjcu6q4iIiIiMi/2mPyk1HWop5nEREREREREQvU8ywiIiIiIiKgOc85Us+ziIiIiIiIiAUqnkVEREREREQs0LBtERERERERIVMLhuVIPc8iIiIiIiIiFqjnWURERERERLRgmAXqeRYRERERERGxQD3PIv9i+7Zfs3YEQ7913taOAEB0p2RrRwCgXb+88X+/qyalWTuCIa/ckwsnHawdAQD3F8KtHQGA9DSTtSMA8Gl03vmswkprBwDg/FfPWTsCAM0+X2btCADsaNvP2hEMTTZFWzsCABcv3LZ2BABm+ueN/x+JzCP/LvK1dgB5aHnjXyoiIiIiIiJiXekZ1k6Qp2nYtoiIiIiIiIgF6nkWERERERER/VSVBep5FhEREREREbFAPc8iIiIiIiKin6qyQD3PIiIiIiIiIhaoeBYRERERERGxQMO2RUREREREBLRgWI7U8ywiIiIiIiJigXqeRUREREREhEwtGJajPNvzbDKZ2LBhg7Vj/CVRUVG4u7tbO8Zfdu/rmDRpElWqVLFann+Dh/lseHt7M2fOnH8kj4iIiIiI5OyBiufQ0FBMJhODBg3K8tzgwYMxmUyEhob+Xdke2uOSMzvWKpA+/PBDbG1ts71nlly7do3XX3+dsmXL4ujoSOHChWnUqBGbNm36B5L+c0wmk7EVKFCA4OBg1q1b95fPm9172r17d77//vu/fG4REREREXk0HrjnuWTJksTExHD9+nVj340bN1i1ahWlSpX6W8P9FY9Lzn/KrVu3Hqj9smXLGDVqFDExMfzxxx8PdOygQYPYsGED8+fP59ixY2zZsoXOnTtz8eLFBzpPXhAZGUlqaiqHDx8mKCiIrl27cuDAgYc6V07vgZOTE0WKFHnYmCIiIiIif7+MDOttj4EHLp6rVatGqVKlzHrk1q1bR8mSJalataqxb8uWLdSrVw93d3c8PDxo27Ytp06dMp6/desWYWFheHl54ejoiLe3N+Hh4fe97pQpUyhatCgJCQkALFiwAF9fXxwdHSlatChdunR5qJy5yZqcnIzJZGLdunU0btwYZ2dngoKCshRVUVFRlCpVCmdnZzp27JileDx16hTt27enaNGiuLi4UKNGDXbs2GE836hRI86ePcvw4cONHtC71q5dS6VKlXBwcMDb25uIiAizc3t7ezNt2jRCQ0Nxc3Pj+eefp0mTJoSFhZm1u3jxIg4ODuzatcvs9cXFxTF69GgqVKjAxx9/fN/3ITuffvopb7zxBq1bt8bb25vq1aszZMgQ+vXrZ5Zv6tSp9OrVCxcXF4oVK8a8efPMzjNr1iwCAwPJnz8/JUuWZPDgwVy9etWszf79+2nYsCHOzs4ULFiQkJAQLl26BEBmZiYzZsygbNmyODk5ERQUZPZaLl26RO/evSlcuDBOTk74+voSGRlpdn53d3c8PT2pUKECixYtwtHRkY0bN5Kens5zzz1HmTJlcHJyonz58rzzzjtmx4aGhtKhQwfCw8MpVqwYfn5+931P7x22bemzISIiIiIi1vVQc5779+9vVnQsW7aMAQMGmLW5du0aI0aM4PDhw+zcuRMbGxs6duxIxv//VmHu3Lls3LiRNWvWcPz4cVasWIG3t3eWa2VmZvLKK6+wdOlS9u3bR5UqVThy5AhDhw5lypQpHD9+nC1bttCgQYOHypmbrHeNHTuWkSNHkpCQgJ+fHz179iQtLQ2AQ4cOMWDAAAYPHkxCQgKNGzdm2rRpZsdfvXqV1q1bs2PHDo4ePUpISAjt2rUjJSUFuFPclyhRgilTppCamkpqaioA8fHxdOvWjR49evDNN98wadIkxo8fT1RUlNn5Z86cSUBAAPHx8YwfP56BAwfy4YcfcvPmTaPNypUrKVasGI0bNza7L23atMHNzY1nn32WpUuXZrlHOfH09GTz5s38/vvvObabOXMmlStX5quvvmLMmDEMHz6c7du3G8/b2Ngwd+5cvv32W6Kjo9m1axejRo0ynk9ISKBp06ZUqlSJAwcOsG/fPtq1a0d6ejoA48aNIzIykoULF/Ldd98xfPhwnn32Wfbs2QPA+PHjSUxM5PPPPycpKYmFCxdSqFCh++bNly8fdnZ23L59m4yMDEqUKMGaNWtITExkwoQJvPHGG6xZs8bsmJ07d5KUlMT27dvZtGnTfd/Te1n6bIiIiIiI/OPSM623PQYearXtPn36MGbMGKNHdv/+/cTExLB7926jTefOnc2OWbp0KUWKFCExMZGAgABSUlLw9fWlXr16mEwmSpcuneU6aWlp9O3blyNHjrB//35KlCgBQEpKCvnz56dt27YUKFCA0qVLZ+lNzm3O3GS9a+TIkbRp0waAyZMnU6lSJU6ePEmFChV45513CAkJYfTo0QD4+fkRFxfHli1bjOODgoIICgoyHk+bNo3169ezceNGwsLCeOqpp7C1taVAgQJ4enoa7WbNmkXTpk0ZP368ce7ExERmzpxpNne7SZMmjBw50nhcsmRJhgwZwieffEK3bt2AO8OS784JB8jIyCAqKsroBe7RowcjRozg5MmT+Pj4ZLmn2Xnvvffo3bs3Hh4eBAUFUa9ePbp06ULdunXN2tWtW9fs/uzfv5/Zs2fTvHlzAIYNG2a0LVOmDFOnTuWll15iwYIFAMyYMYPg4GDjMUClSpWAO1+AzJo1i127dlG7dm0AypYty759+1i8eDENGzYkJSWFqlWrEhwcDJDtlzV33bx5k5kzZ3LlyhWaNm1Kvnz5mDx5slm+uLg41qxZY9xbgPz58/P+++9jb29v7MvuPb2Xpc+GiIiIiIhY10P1PBcqVIg2bdoQHR1NZGQkbdq0ydKDd+rUKXr16kXZsmVxdXWlTJkyAEZPWmhoKAkJCZQvX56hQ4eybdu2LNcZPnw4Bw4cIDY21iicAZo3b07p0qUpW7Ysffr0YeXKldnO081Nztxkvaty5crGn728vAC4cOECAElJSUbRdte9j69du8aoUaOoWLEi7u7uuLi4cOzYMYu9i0lJSdkWoidOnDB6XQGjKLzLwcGBZ599lmXLlgF3em6//vprs4J727ZtXLt2jVatWgF37lmLFi2MY3KjQYMGnD59mp07d9K5c2e+++476tevz9SpU83aZXd/kpKSjMdffPEFzZs3p3jx4hQoUIC+ffty8eJFrl27ZuRv2rRpthkSExO5ceMGzZs3x8XFxdg++OADYwj+Sy+9RExMDFWqVGHUqFHExcVlOU/Pnj1xcXHB2dmZWbNm8fbbbxv3ZtGiRQQHB1O4cGFcXFxYsmRJlvcuMDDQrHDOrYf9bPzZzZs3uXLlitl2O/PxmD8iIiIiIpLXPfRPVQ0YMICoqCiio6OzHQrdrl07Ll68yJIlSzh06BCHDh0C/m8RpWrVqnHmzBmmTp3K9evX6datW5Z5y82bN+fHH39k69atZvsLFCjAV199xapVq/Dy8mLChAkEBQVx+fLlB86Zm6x35cuXz/jzn3tu4c7wcktee+011q5dy/Tp04mNjSUhIYHAwECLi3tlZmaazX++3/Xy58+fZd/AgQPZvn07P/zwA8uWLaNp06ZmvfzLli3j119/xdnZGTs7O+zs7Ni8eTPR0dFmhbkl+fLlo379+owePZpt27YxZcoUpk6davG13X1dZ8+epXXr1gQEBLB27Vri4+N59913Abh9+zZwZ5Gt+7n7Pnz22WckJCQYW2JiojHvuVWrVpw9e5Zhw4bx008/0bRpU7OeeoDZs2eTkJBAamoqv/76K6+++ioAa9asYfjw4QwYMIBt27aRkJBA//79s7y+7N6D3HjYz8afhYeH4+bmZrZ9RvJD5RERERGRJ09mRqbVtsfBQw3bBmjZsqXxD/uQkBCz5y5evEhSUhKLFy+mfv36AOzbty/LOVxdXenevTvdu3enS5cutGzZkl9//ZWnnnoKgGeeeYZ27drRq1cvbG1t6dGjx/8Ft7OjWbNmNGvWjIkTJ+Lu7s6uXbvo1KlTrnM+SFZLKlasyMGDB8323fs4NjaW0NBQOnbsCNyZ55qcnGzWxt7ePkvRWrFixSyZ4uLi8PPzw9bWNsdcgYGBBAcHs2TJEj788EOzRbouXrzIJ598QkxMjDH8Ge4UovXr1+fzzz+nbdu2Ob/w+6hYsSJpaWncuHHD6InN7v5UqFABgCNHjpCWlkZERAQ2Nne+07l3PnHlypXZuXOn2fDpP1/PwcGBlJQUGjZseN9chQsXJjQ0lNDQUOrXr89rr73G22+/bTzv6emZ7XD12NhY6tSpw+DBg419f15ULifZvafZnd/SZ8OSMWPGMGLECLN9MW7tH+gcIiIiIiKSvYcunm1tbY0ht/cWcAULFsTDw4P33nsPLy8vUlJSjLmud82ePRsvLy+qVKmCjY0NH330EZ6enmYrEAN07NiR5cuX06dPH+zs7OjSpQubNm3i9OnTNGjQgIIFC7J582YyMjIoX778A+XMbdbcGDp0KHXq1GHGjBl06NCBbdu2mc13BvDx8WHdunW0a9cOk8nE+PHjsyxK5u3tzd69e+nRowcODg4UKlSIV199lRo1ajB16lS6d+/OgQMHmD9/vtnc35wMHDiQsLAwYxXwu5YvX46Hhwddu3Y1Cta72rZty9KlS3NVPDdq1IiePXsSHByMh4cHiYmJvPHGGzRu3BhXV1ej3f79+437s337dj766CM+++wzAMqVK0daWhrz5s2jXbt27N+/n0WLFpldZ8yYMQQGBjJ48GAGDRqEvb09X3zxBV27dqVQoUKMHDmS4cOHk5GRQb169bhy5QpxcXG4uLjQr18/JkyYQPXq1alUqRI3b95k06ZN+Pv75+oe+vj48MEHH7B161bKlCnD8uXLOXz4sDHEPyfZvafZnd/SZ8MSBwcHHBwczPblMz304BIRERERedI8Jgt3Wctf+pe1q6urWXFknNTGhpiYGOLj4wkICGD48OHMnDnTrI2LiwtvvfUWwcHB1KhRg+TkZDZv3pyliAPo0qUL0dHR9OnTh3Xr1uHu7s66deto0qQJ/v7+LFq0iFWrVpn1nuYmZ26z5katWrV4//33mTdvHlWqVGHbtm2MGzfOrM3s2bMpWLAgderUoV27doSEhFCtWjWzNlOmTCE5OZly5cpRuHBh4M4Q9zVr1hATE0NAQAATJkxgypQpZnOXc9KzZ0/s7Ozo1asXjo6Oxv5ly5bRsWPHbO95586d2bRpE//73/8snj8kJITo6GhatGiBv78/Q4YMISQkJEvP8auvvkp8fDxVq1Zl6tSpREREGKMBqlSpwqxZs3jrrbcICAhg5cqVWX66zM/Pj23btvH1119Ts2ZNateuzSeffIKd3Z3vgKZOncqECRMIDw/H39+fkJAQPv30U6PAtbe3Z8yYMVSuXJkGDRpga2tLTExMru7hoEGD6NSpE927d+fpp5/m4sWLZr3QOcnuPb1Xbj4bIiIiIiJiPabM3EzWlcfauXPn8Pb25vDhw1YryLy9vRk2bJjZitryz4u0yX6BNWvot87b2hEAiO6UbO0IALTr99ADf/5Wn0anWTuCIa/ck99/yWe50SPg7pn7NQ/+SelpJsuNHoG89FnNK85/9Zy1IwBQ4uncLzL6T9rRqp+1IxiabIq2dgQAMvLIPNL+lwZaOwIAkQXft3YEAPpn7LR2hPu6Gd7Batd2GLPBatfOrbzxLxX5R9y+fZvU1FRGjx5NrVq11JMpIiIiIiLykDQh8l9s//79lC5dmvj4+Czzh0VERERERCT31PP8L9aoUaNc/YTWo/CgK0eLiIiIiMij9bj8ZJS1qOdZRERERERExAL1PIuIiIiIiAikP9hPpT5p1PMsIiIiIiIiYoGKZxERERERERELNGxbREREREREtGCYBep5FhEREREREbFAPc8iIiIiIiIC6ep5zol6nkVEREREREQsUM+ziIiIiIiIgOY850jFs4g8EudjUq0dIU+5dd3W2hH+vzRrBzDklXvikD9v/MblqaOO1o4AQDGfvPIZySs58o7E8/msHQGAUjYma0cAoMmmaGtHMOxq28/aEQBotDHK2hEA2PvHLWtHEPlbaNi2iIiIiIiIiAXqeRYREREREREytWBYjtTzLCIiIiIiImKBep5FREREREREC4ZZoJ5nEREREREREQtUPIuIiIiIiIhYoGHbIiIiIiIiAul54+ca8yr1PIuIiIiIiIhYoJ5nERERERERIVMLhuVIPc8iIiIiIiLy2FmwYAFlypTB0dGR6tWrExsbe9+269ato3nz5hQuXBhXV1dq167N1q1bH+h6/8ri2WQysWHDBmvH+EuioqJwd3e3doy/LDk5GZPJREJCwhOdQUREREQkz0vPtN72gFavXs2wYcMYO3YsR48epX79+rRq1YqUlJRs2+/du5fmzZuzefNm4uPjady4Me3atePo0aO5vuYjK55DQ0MxmUwMGjQoy3ODBw/GZDIRGhr6qOLc1+OSMzve3t7MmTPnkV7z5MmT9O/fnxIlSuDg4ECZMmXo2bMnR44ceaQ5HtTatWt5+umncXNzo0CBAlSqVIlXX33V2rFERERERJ5IN2/e5MqVK2bbzZs379t+1qxZPPfccwwcOBB/f3/mzJlDyZIlWbhwYbbt58yZw6hRo6hRowa+vr68+eab+Pr68umnn+Y64yPteS5ZsiQxMTFcv37d2Hfjxg1WrVpFqVKlHmWUHD0uOf8pt27dylW7I0eOUL16db7//nsWL15MYmIi69evp0KFCnm6EN2xYwc9evSgS5cufPnll8THxzN9+vRcv24REREREfl7hYeH4+bmZraFh4dn2/bWrVvEx8fTokULs/0tWrQgLi4uV9fLyMjg999/56mnnsp1xkdaPFerVo1SpUqxbt06Y9+6desoWbIkVatWNfZt2bKFevXq4e7ujoeHB23btuXUqVPG87du3SIsLAwvLy8cHR3x9va+740FmDJlCkWLFjWG7S5YsABfX18cHR0pWrQoXbp0eaicucl6d8jwunXraNy4Mc7OzgQFBXHgwAGz80RFRVGqVCmcnZ3p2LEjFy9eNHv+1KlTtG/fnqJFi+Li4kKNGjXYsWOH8XyjRo04e/Ysw4cPx2QyYTKZjOfWrl1LpUqVcHBwwNvbm4iICLNze3t7M23aNEJDQ3Fzc+P555+nSZMmhIWFmbW7ePEiDg4O7Nq1i8zMTEJDQ/H19SU2NpY2bdpQrlw5qlSpwsSJE/nkk0/u+37s2bOHmjVr4uDggJeXF6NHjyYtLc14/uOPPyYwMBAnJyc8PDxo1qwZ165dM56PjIzE398fR0dHKlSowIIFC8zO/+WXX1K1alUcHR0JDg7OMhRj06ZN1KtXj9dee43y5cvj5+dHhw4dmDdvntFm0qRJVKlShcWLF1OyZEmcnZ3p2rUrly9fNtocPnyY5s2bU6hQIdzc3GjYsCFfffWV2bUuX77MCy+8QNGiRXF0dCQgIIBNmzYZz8fFxdGgQQOcnJwoWbIkQ4cONXutlj6rIiIiIiJ/l8wM621jxozht99+M9vGjBmTbc5ffvmF9PR0ihYtara/aNGinD9/PlevNSIigmvXrtGtW7dc359HPue5f//+REZGGo+XLVvGgAEDzNpcu3aNESNGcPjwYXbu3ImNjQ0dO3YkI+PO747NnTuXjRs3smbNGo4fP86KFSvw9vbOcq3MzExeeeUVli5dyr59+6hSpQpHjhxh6NChTJkyhePHj7NlyxYaNGjwUDlzk/WusWPHMnLkSBISEvDz86Nnz55GwXjo0CEGDBjA4MGDSUhIoHHjxkybNs3s+KtXr9K6dWt27NjB0aNHCQkJoV27dsaY/nXr1lGiRAmmTJlCamoqqampAMTHx9OtWzd69OjBN998w6RJkxg/fjxRUVFm5585cyYBAQHEx8czfvx4Bg4cyIcffmg2VGLlypUUK1aMxo0bk5CQwHfffcerr76KjU3Wj9H95mv/+OOPtG7dmho1avD111+zcOFCli5darze1NRUevbsyYABA0hKSmL37t106tSJzMw78yCWLFnC2LFjmT59OklJSbz55puMHz+e6Oho4/1o27Yt5cuXJz4+nkmTJjFy5EizDJ6ennz33Xd8++232Wa86+TJk6xZs4ZPP/2ULVu2kJCQwMsvv2w8//vvv9OvXz9iY2M5ePAgvr6+tG7dmt9//x24821Wq1atiIuLY8WKFSQmJvKf//wHW1tbAL755htCQkLo1KkT//3vf1m9ejX79u0zvrTI7WdVRERERORx5+DggKurq9nm4OCQ4zF/7jCEO/Xfvfuys2rVKiZNmsTq1aspUqRIrjM+8p+q6tOnD2PGjDF6ZPfv309MTAy7d+822nTu3NnsmKVLl1KkSBESExMJCAggJSUFX19f6tWrh8lkonTp0lmuk5aWRt++fTly5Aj79++nRIkSAKSkpJA/f37atm1LgQIFKF26dJbe5NzmzE3Wu0aOHEmbNm0AmDx5MpUqVeLkyZNUqFCBd955h5CQEEaPHg2An58fcXFxbNmyxTg+KCiIoKAg4/G0adNYv349GzduJCwsjKeeegpbW1sKFCiAp6en0W7WrFk0bdqU8ePHG+dOTExk5syZZnO3mzRpYlZklixZkiFDhvDJJ58Y38ZERkYac8JPnDgBQIUKFbLcu5wsWLCAkiVLMn/+fEwmExUqVOCnn37i9ddfZ8KECaSmppKWlkanTp2M9zUwMNA4furUqURERNCpUycAypQpQ2JiIosXL6Zfv36sXLmS9PR0li1bhrOzM5UqVeKHH37gpZdeMs4xZMgQYmNjCQwMpHTp0tSqVYsWLVrQu3dvs7+gN27cIDo62vjszJs3jzZt2hAREYGnpydNmjQxe22LFy+mYMGC7Nmzh7Zt27Jjxw6+/PJLkpKS8PPzA6Bs2bJG+5kzZ9KrVy+GDRsGgK+vL3PnzqVhw4YsXLgw15/Vu27evJllXsjtzAzymf6V6wKKiIiIyN8sM8Ny4ZkXFCpUCFtb2yy9zBcuXMjSG32v1atX89xzz/HRRx/RrFmzB7ruI/9XdaFChWjTpg3R0dFERkbSpk0bChUqZNbm1KlT9OrVi7Jly+Lq6kqZMmUAjF7W0NBQEhISKF++PEOHDmXbtm1ZrjN8+HAOHDhAbGysUfwANG/enNKlS1O2bFn69OnDypUr+eOPPx4qZ26y3lW5cmXjz15eXsCdNxcgKSmJ2rVrm7W/9/G1a9cYNWoUFStWxN3dHRcXF44dO3bf1eTuSkpKom7dumb76taty4kTJ0hPTzf2BQcHm7VxcHDg2WefZdmyZQAkJCTw9ddfGwX33Z7g3Hyzc2+e2rVrmx1Xt25drl69yg8//EBQUBBNmzYlMDCQrl27smTJEi5dugTAzz//zLlz53juuedwcXExtmnTphlD5ZOSkggKCsLZ2dk4/733Mn/+/Hz22WecPHmScePG4eLiwquvvkrNmjXNPgulSpUy++zUrl2bjIwMjh8/Dtx5/wYNGoSfn58xL+Pq1avGe5KQkECJEiWMwvle8fHxREVFmb2WkJAQMjIyOHPmTK4/q3dlN0/kM5Jz87aIiIiIiDw27O3tqV69Otu3bzfbv337durUqXPf41atWkVoaCgffvih0bH5IKzSJTVgwACioqKIjo7Odih0u3btuHjxIkuWLOHQoUMcOnQI+L+FrKpVq8aZM2eYOnUq169fp1u3blnmgjZv3pwff/wxy293FShQgK+++opVq1bh5eXFhAkTCAoKMpvLmtucucl6V758+Yw/3y0c7w7tvluI5uS1115j7dq1TJ8+ndjYWBISEggMDLS4yFV2Qxeyu17+/Pmz7Bs4cCDbt2/nhx9+YNmyZTRt2tToDb5bECYlJVnMnts8JpMJW1tbtm/fzueff07FihWZN28e5cuX58yZM8b9WrJkCQkJCcb27bffcvDgwfu+tvspV64cAwcO5P333+err74iMTGR1atX37f93dx3/zc0NJT4+HjmzJlDXFwcCQkJeHh4GO+Jk5NTjtfPyMjgxRdfNHstX3/9NSdOnKBcuXIP9FmF7OeJtME71/dDRERERORxMWLECN5//32WLVtGUlISw4cPJyUlxfjVpDFjxtC3b1+j/apVq+jbty8RERHUqlWL8+fPc/78eX777bdcX9MqxXPLli25desWt27dIiQkxOy5ixcvkpSUxLhx42jatCn+/v5Gz+Ofubq60r17d5YsWcLq1atZu3Ytv/76q/H8M888w4cffsjAgQOJiYkxO9bOzo5mzZoxY8YM/vvf/5KcnMyuXbseKOeDZLWkYsWKRvF3172PY2NjCQ0NpWPHjgQGBuLp6UlycrJZG3t7e7Pe5Lvn3rdvn9m+uLg4/Pz8jLm39xMYGEhwcDBLlizhww8/NPsCoUqVKlSsWJGIiIgs87uB+xZ4FStWJC4uzqzIjYuLo0CBAhQvXhy4U5zWrVuXyZMnc/ToUezt7Vm/fj1FixalePHinD59Gh8fH7Ptbo9/xYoV+frrr81WSr/3XmbH29sbZ2dns8W6UlJS+Omnn4zHBw4cwMbGxvjiIDY2lqFDh9K6dWtjQbZffvnFaF+5cmV++OEHvv/++2yvWa1aNb777rssr8XHxwd7e3sg959VyH6eiIZsi4iIiEhuZWRYb3tQ3bt3Z86cOUyZMoUqVaqwd+9eNm/ebHT2paammo3SXbx4MWlpabz88st4eXkZ2yuvvJLraz7yOc8Atra2Ro/lvQVcwYIF8fDw4L333sPLy4uUlBRjLvBds2fPxsvLiypVqmBjY8NHH32Ep6dnlkWqOnbsyPLly+nTpw92dnZ06dKFTZs2cfr0aRo0aEDBggXZvHkzGRkZlC9f/oFy5jZrbgwdOpQ6deowY8YMOnTowLZt28zmOwP4+Piwbt062rVrh8lkYvz48VmKVm9vb/bu3UuPHj1wcHCgUKFCvPrqq9SoUYOpU6fSvXt3Dhw4wPz587OsUH0/AwcOJCwszFgF/C6TyURkZCTNmjWjQYMGvPHGG1SoUIGrV6/y6aefsm3bNvbs2ZPlfIMHD2bOnDkMGTKEsLAwjh8/zsSJExkxYgQ2NjYcOnSInTt30qJFC4oUKcKhQ4f4+eef8ff3B+6sgj106FBcXV1p1aoVN2/e5MiRI1y6dIkRI0bQq1cvxo4dy3PPPce4ceNITk7m7bffNsswadIk/vjjD1q3bk3p0qW5fPkyc+fO5fbt2zRv3txo5+joSL9+/Xj77be5cuUKQ4cOpVu3bsacch8fH5YvX05wcDBXrlzhtddeM+ttbtiwIQ0aNKBz587MmjULHx8fjh07hslkomXLlrz++uvUqlWLl19+meeff578+fOTlJTE9u3bmTdv3gN9VkVEREREnjSDBw9m8ODB2T537wLJ965d9TCs1i11t2fsXjY2NsTExBAfH09AQADDhw9n5syZZm1cXFx46623CA4OpkaNGiQnJ7N58+ZsV33u0qUL0dHR9OnTh3Xr1uHu7s66deto0qQJ/v7+LFq0iFWrVlGpUqUHypnbrLlRq1Yt3n//febNm0eVKlXYtm0b48aNM2sze/ZsChYsSJ06dWjXrh0hISFUq1bNrM2UKVNITk6mXLlyFC5cGLjTu7lmzRpiYmIICAhgwoQJTJkyxWyxsJz07NkTOzs7evXqhaOjo9lzNWvW5MiRI5QrV47nn38ef39/nnnmGb777jvmzJmT7fmKFy/O5s2b+fLLLwkKCmLQoEFGoQt37vfevXtp3bo1fn5+jBs3joiICFq1agVgDLOOiooiMDCQhg0bEhUVZfQ8u7i48Omnn5KYmEjVqlUZO3Ysb731llmGhg0bcvr0afr27UuFChVo1aoV58+fZ9u2bWaFqY+PD506daJ169a0aNGCgIAAsy8dli1bxqVLl6hatSp9+vRh6NChWVbrW7t2LTVq1KBnz55UrFiRUaNGGaMDKleuzJ49ezhx4gT169enatWqjB8/3pgT/6CfVRERERGRvyIz02S17XFgynyQSaLyxDl37hze3t4cPnw4S7H+bzZp0iQ2bNhg/Db44yrSpqm1IxhCuuX8UwOPytY1Ny03egR0P7LKK/ckr/jppFUGh2VRzCfN2hGAvPVZzSt2bR5k7QgAtOz4nrUjAJB2O+/8k3ZX237WjgBAo41R1o4AQLkf+1pu9AicKv6BtSMA0D9jp7Uj3NflF1tY7drui7MuAp3X5I3/Mkuec/v2bVJTUxk9ejS1atV6ogpnEREREZEnUeZDzD1+kmg1IcnW/v37KV26NPHx8SxatMjacURERERERKxKPc+SrUaNGj3Qzz7920yaNIlJkyZZO4aIiIiIiOQRKp5FRERERESEzIzHY+Eua9GwbREREREREREL1PMsIiIiIiIiZGjBsByp51lERERERETEAhXPIiIiIiIiIhZo2LaIiIiIiIhowTAL1PMsIiIiIiIiYoF6nkVERERERIRMLRiWIxXPIvJIbF1z09oR8pS8cj92PxNq7Qj/Z02UtRPkKbuf6WntCHfcsHaAOxoRZe0Ihrzy96ZJ60XWjgDAtjxyPxptjLJ2BENeyZJXPquNB622dgQATlk7gDz2VDyLiIiIiIgImZma85wTzXkWERERERERsUDFs4iIiIiIiIgFGrYtIiIiIiIiWjDMAvU8i4iIiIiIiFignmcREREREREhI0MLhuVEPc8iIiIiIiIiFqh4FhEREREREbFAw7ZFREREREREC4ZZoJ5nEREREREREQtUPIs8IufPn6d58+bkz58fd3d3a8cRERERETGTmWGy2vY4UPH8LxUaGorJZMJkMmFnZ0epUqV46aWXuHTp0t9yfpPJxIYNG/6Wcz1KD5M7MzOT9957j6effhoXFxfc3d0JDg5mzpw5/PHHH7k+z+zZs0lNTSUhIYHvv//+AZOLiIiIiIg1ac7zv1jLli2JjIwkLS2NxMREBgwYwOXLl1m1apW1oz2Q27dvky9fPqtdv0+fPqxbt45x48Yxf/58ChcuzNdff82cOXPw9vamQ4cOuTrPqVOnqF69Or6+vv9sYBERERGRh6A5zzlTz/O/mIODA56enpQoUYIWLVrQvXt3tm3bZjwfGRmJv78/jo6OVKhQgQULFhjP3bp1i7CwMLy8vHB0dMTb25vw8HAAvL29AejYsSMmk8l4fOrUKdq3b0/RokVxcXGhRo0a7NixwyxTdj2/7u7uREVFAZCcnIzJZGLNmjU0atQIR0dHVqxYwcWLF+nZsyclSpTA2dmZwMDALF8CNGrUiKFDhzJq1CieeuopPD09mTRpkvH8/XJ//fXXNG7cmAIFCuDq6kr16tU5cuQIAGvWrGHlypWsWrWKN954gxo1auDt7U379u3ZtWsXjRs3BuDw4cM0b96cQoUK4ebmRsOGDfnqq6/Mrr127Vo++OADTCYToaGhAPz222+88MILFClSBFdXV5o0acLXX39tHJdTNhEREREReXRUPD8hTp8+zZYtW4we3CVLljB27FimT59OUlISb775JuPHjyc6OhqAuXPnsnHjRtasWcPx48dZsWKFUWwePnwYuFN8p6amGo+vXr1K69at2bFjB0ePHiUkJIR27dqRkpLywHlff/11hg4dSlJSEiEhIdy4cYPq1auzadMmvv32W1544QX69OnDoUOHzI6Ljo4mf/78HDp0iBkzZjBlyhS2b9+eY+7evXtTokQJDh8+THx8PKNHjzbu08qVKylfvjzt27fPktFkMuHm5gbA77//Tr9+/YiNjeXgwYP4+vrSunVrfv/9d+PaLVu2pFu3bqSmpvLOO++QmZlJmzZtOH/+PJs3byY+Pp5q1arRtGlTfv31V4vZRERERETk0dGw7X+xTZs24eLiQnp6Ojdu3ABg1qxZAEydOpWIiAg6deoEQJkyZUhMTGTx4sX069ePlJQUfH19qVevHiaTidKlSxvnLVy4MHCnx9jT09PYHxQURFBQkPF42rRprF+/no0bNxIWFvZA2YcNG2Zku2vkyJHGn4cMGcKWLVv46KOPePrpp439lStXZuLEiQD4+voyf/58du7cSfPmze+bOyUlhddee40KFSoYx9114sQJypcvbzFvkyZNzB4vXryYggULsmfPHtq2bUvhwoVxcHDAycnJuPauXbv45ptvuHDhAg4ODgC8/fbbbNiwgY8//pgXXnghx2z3unnzJjdv3jTbdzszg3wmfUcmIiIiIpZlZj4eC3dZi/5V/S/WuHFjEhISOHToEEOGDCEkJIQhQ4bw888/c+7cOZ577jlcXFyMbdq0aZw6dQq4s+BYQkIC5cuXZ+jQoWbDve/n2rVrjBo1iooVK+Lu7o6LiwvHjh17qJ7n4OBgs8fp6elMnz6dypUr4+HhgYuLC9u2bcty7sqVK5s99vLy4sKFCzlea8SIEQwcOJBmzZrxn//8x7gHcGexMJPJ8v+JXLhwgUGDBuHn54ebmxtubm5cvXo1x9ceHx/P1atXjddzdztz5oyRIads9woPDzeufXf7jGSL2UVERERExDIVz/9i+fPnx8fHh8qVKzN37lxu3rzJ5MmTyci4sxLAkiVLSEhIMLZvv/2WgwcPAlCtWjXOnDnD1KlTuX79Ot26daNLly45Xu+1115j7dq1TJ8+ndjYWBISEggMDOTWrVtGG5PJRGZmptlxt2/fzjb7n0VERDB79mxGjRrFrl27SEhIICQkxOzcQJYhzSaTyXi99zNp0iS+++472rRpw65du6hYsSLr168HwM/Pj6SkpByPhztfNsTHxzNnzhzi4uJISEjAw8MjS74/y8jIwMvLy+w9SEhI4Pjx47z22msWs91rzJgx/Pbbb2ZbG7wtZhcRERERAcjIsN72ONCw7SfIxIkTadWqFS+99BLFixfn9OnT9O7d+77tXV1d6d69O927d6dLly60bNmSX3/9laeeeop8+fKRnp5u1j42NpbQ0FA6duwI3JkDnZycbNamcOHCpKamGo9PnDiRq597io2NpX379jz77LPAncLzxIkT+Pv75/blA2SbG+4UyX5+fgwfPpyePXsSGRlJx44d6dWrFz169OCTTz7JMu85MzOTK1eu4ObmRmxsLAsWLKB169YAnDt3jl9++SXHLNWqVeP8+fPY2dkZ88mzc79s93JwcDCGfxuvV0O2RURERET+FvqX9ROkUaNGVKpUiTfffJNJkyYRHh7OO++8w/fff88333xDZGSkMSd69uzZxMTEcOzYMb7//ns++ugjPD09cXd3B+6sHr1z507Onz9v/Ha0j48P69atIyEhga+//ppevXpl6fVt0qQJ8+fP56uvvuLIkSMMGjQoVwtg+fj4sH37duLi4khKSuLFF1/k/PnzD3wP7s19/fp1wsLC2L17N2fPnmX//v0cPnzYKMq7detG9+7d6dmzJ+Hh4Rw5coSzZ8+yadMmmjVrxhdffGHkW758OUlJSRw6dIjevXvj5OSUY5ZmzZpRu3ZtOnTowNatW0lOTiYuLo5x48Zx5MgRi9lEREREROTRUfH8hBkxYgRLliwhJCSE999/n6ioKAIDA2nYsCFRUVGUKVMGABcXF9566y2Cg4OpUaMGycnJbN68GRubOx+ZiIgItm/fTsmSJalatSpwp+AuWLAgderUoV27doSEhFCtWjWz60dERFCyZEkaNGhAr169GDlyJM7OzhZzjx8/nmrVqhESEkKjRo3w9PTM9e8r33v9P+e2tbXl4sWL9O3bFz8/P7p160arVq2YPHkycGfY94cffsisWbNYv349DRs2pHLlykyaNIn27dsTEhICwLJly7h06RJVq1alT58+DB06lCJFiuSYxWQysXnzZho0aMCAAQPw8/OjR48eJCcnU7RoUYvZRERERET+TpkZ1tseB6bMeyegisi/RqRNU2tHkDxu9zOh1o5gaLQxytoR8pS89N7kBXnp85FX3pu8ck90P/KuvPLeTM5cbe0IAHzx6XVrRwCgf8ZOa0e4rzPt2lrt2mU+3WS1a+eW5jyLiIiIiIgImRn6qaqcaNi2iIiIiIiIiAUqnkVEREREREQs0LBtEREREREReWwW7rIW9TyLiIiIiIiIWKCeZxERERERESFDC4blSD3PIiIiIiIiIhao51lEREREREQ059kC9TyLiIiIiIiIWKDiWURERERERMQCDdsWERERERERMjO1YFhOVDyL/Is1CHG2dgTD3q1/WDsCkHfuSV65H7M9Vlg7giG+tIO1IwBQtoKttSMA0C90t7UjAHAj9py1IwBwtXc+a0cw9J+fN/75lO462toRAOiZccPaEQC40MXJ2hEMRevZWzvCHa9FWTsBABOfCbV2BADGNf/I2hHkMZc3/t9fRERERERErEoLhuVMc55FRERERERELFDxLCIiIiIiImKBhm2LiIiIiIgImRlaMCwn6nkWERERERERsUA9zyIiIiIiIkKGFgzLkXqeRURERERERCxQz7OIiIiIiIiQkZ5p7Qh5mnqeRURERERERCxQ8SwiIiIiIiJigYpneWydP3+e5s2bkz9/ftzd3a0d54GFhobSoUOHXLdPTk7GZDKRkJDwj2USERERkSdXRob1tseBiudcCg0NxWQyYTKZsLOzo1SpUrz00ktcunTpbzm/yWRiw4YNf8u5HqWHyZ2Zmcl7773H008/jYuLC+7u7gQHBzNnzhz++OOPXJ9n9uzZpKamkpCQwPfff/+AybPavXu38R6bTCYKFy5Mq1at+Prrr//See9X9L7zzjtERUX9pXOLiIiIiMijoeL5AbRs2ZLU1FSSk5N5//33+fTTTxk8eLC1Yz2w27dvW/X6ffr0YdiwYbRv354vvviChIQExo8fzyeffMK2bdtyfZ5Tp05RvXp1fH19KVKkyN+W7/jx46SmpvLZZ59x6dIlWrZsyW+//fZQ57p169Z9n3Nzc3sse8xFRERE5N8pPSPTatvjQMXzA3BwcMDT05MSJUrQokULunfvblbsRUZG4u/vj6OjIxUqVGDBggXGc7du3SIsLAwvLy8cHR3x9vYmPDwcAG9vbwA6duyIyWQyHp86dYr27dtTtGhRXFxcqFGjBjt27DDLlF3Pr7u7u9GjebfXc82aNTRq1AhHR0dWrFjBxYsX6dmzJyVKlMDZ2ZnAwEBWrVpldp5GjRoxdOhQRo0axVNPPYWnpyeTJk0ynr9f7q+//prGjRtToEABXF1dqV69OkeOHAFgzZo1rFy5klWrVvHGG29Qo0YNvL29ad++Pbt27aJx48YAHD58mObNm1OoUCHc3Nxo2LAhX331ldm1165dywcffIDJZCI0NBSA3377jRdeeIEiRYrg6upKkyZNzHqOc8p2V5EiRfD09KRmzZpERERw/vx5Dh48mKv3w9vbm2nTphEaGoqbmxvPP/88ZcqUAaBq1aqYTCYaNWoEZB22vWXLFurVq4e7uzseHh60bduWU6dOISIiIiIi1qfi+SGdPn2aLVu2kC9fPgCWLFnC2LFjmT59OklJSbz55puMHz+e6OhoAObOncvGjRtZs2YNx48fZ8WKFUaxefjwYeBO8Z2ammo8vnr1Kq1bt2bHjh0cPXqUkJAQ2rVrR0pKygPnff311xk6dChJSUmEhIRw48YNqlevzqZNm/j222954YUX6NOnD4cOHTI7Ljo6mvz583Po0CFmzJjBlClT2L59e465e/fuTYkSJTh8+DDx8fGMHj3auE8rV66kfPnytG/fPktGk8mEm5sbAL///jv9+vUjNjaWgwcP4uvrS+vWrfn999+Na7ds2ZJu3bqRmprKO++8Q2ZmJm3atOH8+fNs3ryZ+Ph4qlWrRtOmTfn1118tZsuOk5MTcKe3Prfvx8yZMwkICCA+Pp7x48fz5ZdfArBjxw5SU1NZt25dtte6du0aI0aM4PDhw+zcuRMbGxs6duxIxuMyCURERERE5F9Mv/P8ADZt2oSLiwvp6encuHEDgFmzZgEwdepUIiIi6NSpEwBlypQhMTGRxYsX069fP1JSUvD19aVevXqYTCZKly5tnLdw4cLAnR5jT09PY39QUBBBQUHG42nTprF+/Xo2btxIWFjYA2UfNmyYke2ukSNHGn8eMmQIW7Zs4aOPPuLpp5829leuXJmJEycC4Ovry/z589m5cyfNmze/b+6UlBRee+01KlSoYBx314kTJyhfvrzFvE2aNDF7vHjxYgoWLMiePXto27YthQsXxsHBAScnJ+Pau3bt4ptvvuHChQs4ODgA8Pbbb7NhwwY+/vhjXnjhhRyz3evixYtMnjyZAgUKULNmTYoUKZKr96NJkyZm9zY5ORkADw8Ps/t0r86dO5s9Xrp0KUWKFCExMZGAgICcbhcAN2/e5ObNm+b7MtJxsLG1eKyIiIiISEa6tRPkbep5fgCNGzcmISGBQ4cOMWTIEEJCQhgyZAg///wz586d47nnnsPFxcXYpk2bZgy7DQ0NJSEhgfLlyzN06NBcze29du0ao0aNomLFiri7u+Pi4sKxY8cequc5ODjY7HF6ejrTp0+ncuXKeHh44OLiwrZt27Kcu3LlymaPvby8uHDhQo7XGjFiBAMHDqRZs2b85z//MRt6nJmZiclkspj3woULDBo0CD8/P9zc3HBzc+Pq1as5vvb4+HiuXr1qvJ6725kzZ4wMOWW7q0SJEri4uFCoUCGSkpL46KOPKFKkSK7fj3vvdW6dOnWKXr16UbZsWVxdXY3h3rl9v8PDw417dXdbdOrkQ2URERERERFz6nl+APnz58fHxwe4Mwy7cePGTJ482eh1XLJkiVmvLYCt7Z1ev2rVqnHmzBk+//xzduzYQbdu3WjWrBkff/zxfa/32muvsXXrVt5++218fHxwcnKiS5cuZotQmUwmMjPNJ9hntyBY/vz5zR5HREQwe/Zs5syZQ2BgIPnz52fYsGFZFri6d0izyWSyOIx40qRJ9OrVi88++4zPP/+ciRMnEhMTQ8eOHfHz8yMpKSnH4+HOlw0///wzc+bMoXTp0jg4OFC7du0cF+DKyMjAy8uL3bt3Z3nu7sJcOWW7KzY2FldXVwoXLoyrq6uxPzfvB2S917nVrl07SpYsyZIlSyhWrBgZGRkEBATk+Jr/bMyYMYwYMcJs3w9dezxUFhERERF58mQ8Jgt3WYuK579g4sSJtGrVipdeeonixYtz+vRpevfufd/2rq6udO/ene7du9OlSxdatmzJr7/+ylNPPUW+fPlITzcfJxEbG0toaKhR2F29etUYAnxX4cKFSU1NNR6fOHEiVz/3FBsbS/v27Xn22WeBO4XniRMn8Pf3z+3LB8g2N4Cfnx9+fn4MHz6cnj17EhkZSceOHenVqxc9evTgk08+yTLvOTMzkytXruDm5kZsbCwLFiygdevWAJw7d45ffvklxyzVqlXj/Pnz2NnZGfPJs3O/bHeVKVMm21Wwc/N+ZMfe3h4g2/t018WLF0lKSmLx4sXUr18fgH379lk89585ODgYw9WNfRqyLSIiIiLyt9Cw7b+gUaNGVKpUiTfffJNJkyYRHh7OO++8w/fff88333xDZGSkMSd69uzZxMTEcOzYMb7//ns++ugjPD09jSLN29ubnTt3cv78eeO3o318fFi3bh0JCQl8/fXX9OrVK0uvb5MmTZg/fz5fffUVR44cYdCgQTkugHWXj48P27dvJy4ujqSkJF588UXOnz//wPfg3tzXr18nLCyM3bt3c/bsWfbv38/hw4eNorxbt250796dnj17Eh4ezpEjRzh79iybNm2iWbNmfPHFF0a+5cuXk5SUxKFDh+jdu7exeNf9NGvWjNq1a9OhQwe2bt1KcnIycXFxjBs3jiNHjljMlpt7Zun9yE6RIkVwcnJiy5Yt/O9//8v2Z68KFiyIh4cH7733HidPnmTXrl1ZepFFRERERP5JGenW2x4HKp7/ohEjRrBkyRJCQkJ4//33iYqKIjAwkIYNGxIVFWXMW3VxceGtt94iODiYGjVqkJyczObNm7GxufMWREREsH37dkqWLEnVqlWBOwV3wYIFqVOnDu3atSMkJIRq1aqZXT8iIoKSJUvSoEEDevXqxciRI3F2draYe/z48VSrVo2QkBAaNWqEp6en2c8m5da9uW1tbbl48SJ9+/bFz8+Pbt260apVKyZPngzcGfb94YcfMmvWLNavX0/Dhg2pXLkykyZNon379oSEhACwbNkyLl26RNWqVenTpw9Dhw61+FvOJpOJzZs306BBAwYMGICfnx89evQgOTmZokWLWsxmSW7ej+zY2dkxd+5cFi9eTLFixbJdadzGxoaYmBji4+MJCAhg+PDhzJw5M1e5RERERETkn2fKvHfCrIj8a5xq1c7aEQx7t1qeTvAoNAix/OXSo5BX7kf7/nln9k78rrwxzaBshbyRo8yLOX9h+KjciD1n7QgAXL2Qd77vLzK/n7UjAJDuWsjaEQC4nXHD2hEAuNBlsbUjGIrWs7d2BAA+fC3raDdr2P1MqLUjADDu+kfWjgCA79aN1o5wXweDrPdvx1pff2q1a+dW3vlXk4iIiIiIiFiNFgzLWd75GldEREREREQkj1LPs4iIiIiIiJCLtXCfaOp5FhEREREREbFAxbOIiIiIiIiIBRq2LSIiIiIiImSka8GwnKjnWURERERERMQC9TyLiIiIiIgI6VowLEfqeRYRERERERGxQD3PIiIiIiIiojnPFqjnWURERERERMQC9TyL/ItNcehm7QiGZvmirR0ByDv3JK/cj+EXn7V2BEOzn/LGPVkR1M/aEQBo1CnK2hEA2P1MqLUjANBoY5S1Ixh297G1dgQA3t34lrUjAOA8b7S1IwCw85Pr1o7wf/JSljygwqS88Xdm2qSu1o4AQN74r508DBXPIiIiIiIiQoYWDMuRhm2LiIiIiIiIWKCeZxERERERESEjQwuG5UQ9zyIiIiIiIiIWqHgWERERERERsUDDtkVERERERISMdGsnyNvU8ywiIiIiIiJigXqeRURERERERAuGWaCeZxEREREREREL1PMsIiIiIiIipGdYO0Hepp5neayYTCY2bNhg7RhZWMrl7e3NnDlzHlkeERERERH5e6nnWR4pk8mU4/P9+vUjKirq0YR5hA4fPkz+/PmtHUNERERERB6Simd5pFJTU40/r169mgkTJnD8+HFjn5OTkzViPbRbt25hb29vsV3hwoUfQRoRERERkYeXka4Fw3KiYdvySHl6ehqbm5sbJpPJbN/evXupXr06jo6OlC1blsmTJ5OWlnbf8/344490796dggUL4uHhQfv27UlOTgbgm2++wcbGhl9++QWAS5cuYWNjQ9euXY3jw8PDqV27tvF4z5491KxZEwcHB7y8vBg9erTZ9Rs1akRYWBgjRoygUKFCNG/ePNtcU6ZMoWjRoiQkJABZh22bTCbef/99OnbsiLOzM76+vmzcuNHsHBs3bsTX1xcnJycaN25MdHQ0JpOJy5cv5+ZWi4iIiIjI30jFs+QZW7du5dlnn2Xo0KEkJiayePFioqKimD59erbt//jjDxo3boyLiwt79+5l3759uLi40LJlS27dukVAQAAeHh7s2bMHgL179+Lh4cHevXuNc+zevZuGDRsCdwrx1q1bU6NGDb7++msWLlzI0qVLmTZtmtl1o6OjsbOzY//+/SxevNjsuczMTF555RWWLl3Kvn37qFKlyn1f7+TJk+nWrRv//e9/ad26Nb179+bXX38FIDk5mS5dutChQwcSEhJ48cUXGTt27APfUxERERGR3MrIsN72OFDxLHnG9OnTGT16NP369aNs2bI0b96cqVOnZilQ74qJicHGxob333+fwMBA/P39iYyMJCUlhd27d2MymWjQoAG7d+8G7hTK/fr1IyMjg8TERNLS0oiLi6NRo0YALFiwgJIlSzJ//nwqVKhAhw4dmDx5MhEREWT86W+0j48PM2bMoHz58lSoUMHYn5aWRt++fdm2bRv79+/H19c3x9cbGhpKz5498fHx4c033+TatWt8+eWXACxatIjy5cszc+ZMypcvT48ePQgNDc3xfDdv3uTKlStmW3r6bQt3XUREREREckNzniXPiI+P5/Dhw2Y9zenp6dy4cYM//vgDZ2fnLO1PnjxJgQIFzPbfuHGDU6dOAXeGWb/33nvAnSHZU6dO5cyZM+zZs4fffvuN69evU7duXQCSkpKoXbu22aJmdevW5erVq/zwww+UKlUKgODg4GzzDx8+HAcHBw4ePEihQoUsvt7KlSsbf86fPz8FChTgwoULABw/fpwaNWqYta9Zs2aO5wsPD2fy5Mnm1yjfgSoVOlnMIiIiIiIiOVPxLHlGRkYGkydPplOnrMWeo6Njtu2rV6/OypUrszx3d4GuRo0a8corr3Dy5Em+/fZb6tevz6lTp9izZw+XL1+mevXqRvGdmZmZZTXwzMw7iyb8ef/9Vs1u3rw5q1atYuvWrfTu3dvi682XL5/ZY5PJZPRw55TlfsaMGcOIESPM9g3u/bHFHCIiIiIioAXDLFHxLHlGtWrVOH78OD4+Prluv3r1aooUKYKrq2u2be7Oe542bRpBQUG4urrSsGFDwsPDuXTpkjHfGaBixYqsXbvWrHCNi4ujQIECFC9e3GKeZ555hnbt2tGrVy9sbW3p0aNHrl5HdipUqMDmzZvN9h05ciTHYxwcHHBwcDDbZ2ub7z6tRURERETkQWjOs+QZEyZM4IMPPmDSpEl89913JCUlsXr1asaNG5dt+969e1OoUCHat29PbGysMRz7lVde4YcffgAw5j2vWLHCmNtcuXJlbt26xc6dO419AIMHD+bcuXMMGTKEY8eO8cknnzBx4kRGjBiBjU3u/qp07NiR5cuX079/fz7++OF7fV988UWOHTvG66+/zvfff8+aNWuM37+29FvZIiIiIiIPQwuG5UzFs+QZISEhbNq0ie3bt1OjRg1q1arFrFmzKF26dLbtnZ2d2bt3L6VKlaJTp074+/szYMAArl+/btYT3bhxY9LT041C2WQyUb9+fQDq1atntCtevDibN2/myy+/JCgoiEGDBvHcc8/dt3i/ny5duhAdHU2fPn1Yt27dA96FO8qUKcPHH3/MunXrqFy5MgsXLjRW2763d1lERERERP55GrYtVhMaGpplBemQkBBCQkLue8y98349PT2Jjo7O8TphYWGEhYWZ7duwYUO2bRs2bGiseJ2duyt3W8rVrVs3unXrZjy++9vT92sPZPn95meeeYZnnnnGeDx9+nRKlCiR7fxvEREREZG/KiNDc55zouJZJI9asGABNWrUwMPDg/379zNz5swsXwKIiIiIiMijoeJZJI86ceIE06ZN49dff6VUqVK8+uqrjBkzxtqxRERERESeSCqeRfKo2bNnM3v2bGvHEBEREZEnRHq6tRPkbVowTERERERERMQC9TyLiIiIiIiIFgyzQD3PIiIiIiIiIhaoeBYRERERERGxQMO2RUREREREhAwtGJYj9TyLiIiIiIjIY2fBggWUKVMGR0dHqlevTmxsbI7t9+zZQ/Xq1XF0dKRs2bIsWrToga6n4llERERERETIyMi02vagVq9ezbBhwxg7dixHjx6lfv36tGrVipSUlGzbnzlzhtatW1O/fn2OHj3KG2+8wdChQ1m7dm2ur6niWURERERERB4rs2bN4rnnnmPgwIH4+/szZ84cSpYsycKFC7Ntv2jRIkqVKsWcOXPw9/dn4MCBDBgwgLfffjvX11TxLCIiIiIiIlZ18+ZNrly5YrbdvHkz27a3bt0iPj6eFi1amO1v0aIFcXFx2R5z4MCBLO1DQkI4cuQIt2/fzl3ITBGRHNy4cSNz4sSJmTdu3FAO5cizOfJSFuXImznyUhblUI7HJYty5M0c/1YTJ07MBMy2iRMnZtv2xx9/zAQy9+/fb7Z/+vTpmX5+ftke4+vrmzl9+nSzffv3788EMn/66adcZTRlZmbql7BF5L6uXLmCm5sbv/32G66ursqhHHkyR17Kohx5M0deyqIcyvG4ZFGOvJnj3+rmzZtZepodHBxwcHDI0vann36iePHixMXFUbt2bWP/9OnTWb58OceOHctyjJ+fH/3792fMmDHGvv3791OvXj1SU1Px9PS0mFE/VSUiIiIiIiJWdb9COTuFChXC1taW8+fPm+2/cOECRYsWzfYYT0/PbNvb2dnh4eGRq+tqzrOIiIiIiIg8Nuzt7alevTrbt2832799+3bq1KmT7TG1a9fO0n7btm0EBweTL1++XF1XxbOIiIiIiIg8VkaMGMH777/PsmXLSEpKYvjw4aSkpDBo0CAAxowZQ9++fY32gwYN4uzZs4wYMYKkpCSWLVvG0qVLGTlyZK6vqWHbIpIjBwcHJk6cmOthNMqhHE96FuXImznyUhblUI7HJYty5M0cckf37t25ePEiU6ZMITU1lYCAADZv3kzp0qUBSE1NNfvN5zJlyrB582aGDx/Ou+++S7FixZg7dy6dO3fO9TW1YJiIiIiIiIiIBRq2LSIiIiIiImKBimcRERERERERC1Q8i4iIiIiIiFig4llERERERETEAq22LSIiIiIico8rV65ku99kMuHg4IC9vf0jTiTWpp5nEcnWyZMn2bp1K9evXwfgSV+YPy0tjR07drB48WJ+//13AH766SeuXr1q5WQiec+ZM2c4ceJElv0nTpwgOTn50QfKoy5fvmztCCKSA3d3dwoWLJhlc3d3x8nJif/H3ntHRXl17f/XDEgHQYoiIoIIggJi7FgAu0aKXewlaiwQu4m9dwWTKFYETRSxYjSigqCgKIhgAQRFigULqEhTyv79wY95HQeMz/vNfWbex/NZa9ZizrlX9pXjPTP3PmcXMzMzLFu2DJWVlfKWymEEP3nmcDhS5OXlYdiwYYiIiIBIJEJ6ejosLCwwadIk6OrqYsuWLYLZdnR0hEgk+qprExISBNPxOVlZWejTpw+ys7Px4cMH9OzZE9ra2ti4cSNKS0vh7+8vmG09Pb2vXpP8/HzBdHzKixcvMHfuXISHh+Ply5cyGysVFRWC2VbE9ajm6dOniImJwcuXL2UepLy9vQWzu3379q++VkgdnzJu3DhMmDABzZo1kxq/ceMG9u7di8jISMFsK+o9smHDBjRp0gTDhg0DAAwdOhTHjx9HgwYNcO7cOTg4OAhme/bs2V997datWwXTwfnPKCgoQEREBKytrWFjY8PMbkJCAurUqQM7OzsAwOnTpxEQEABbW1ssX778mzptPXDgABYtWoRx48ahXbt2ICLExcUhMDAQixcvxqtXr7B582aoqqril19+kbdcDgO488zhcKSYNWsWlJWVkZ2dLfVjPWzYMMyaNUtQ59nDw0Ow//b/Cz4+PmjTpg2SkpKgr68vGff09MSkSZMEte3r6yvof/9/w7hx45CdnY0lS5bA2Nj4qx2VfwNFXA8ACAgIwNSpU6GiogJ9fX2pNRGJRII6rdu2bfuq64TW8Sm3b9+Gk5OTzHiHDh0wY8YMQW0r6j2ya9cuHDp0CABw8eJFXLx4EX///TeOHj2KefPm4cKFC4LZvn379lddx/KzDACBgYEwMDBA//79AQDz58/H7t27YWtri8OHD8PMzEww24q46TR06FB07doVM2bMVq1l1QAAtIRJREFUQElJCdq0aYPMzEwQEY4cOYJBgwYx0TFlyhQsXLgQdnZ2yMjIwPDhw+Hp6YmQkBAUFxcL/hm7c+fOV19rb28voJKqe3TLli0YOnSoZMzNzQ12dnbYtWsXwsPD0bhxY6xZs4Y7z98IIvrWYzE5HI4UDRo0QFhYGBwcHKCtrY2kpCRYWFjg8ePHsLOz+ybDlA0MDBATEwNra2upNcnMzIStrS2Ki4vlLZEp2trauHr1Klq1aiVvKQqDqakppk6dip9//hliMc+Iqlu3LiIjI+Ho6Cg1fuvWLTg7O0tSH74l1NXVkZaWBlNTU/j4+KC0tBS7du1CWloa2rdvjzdv3shbInOsra2xc+dOuLq64vr16+jevTt8fX3x119/QVlZGSdOnBDMtrm5+VddJxKJkJGRIZiOT/n09/fPP//EsmXLkJSUhMDAQOzevfurN0H+X6lbty4SEhLQtGlTbNiwAREREQgLC0NMTAyGDx+OnJwcQe2LxWKIRKJa08Wq50QikaCRTgCgoaGBpKQkmSia9PR0ODg4oLi4GI8fP0aLFi2+uWeBbxV+8szhcKQoKiqChoaGzPjr16+hqqoqB0Xyp7KyssYf6CdPnkBbW1sOioCSkhKUlZVJjeno6DCxbWpqqnA58PJcDwAoLi7G8OHDueP8/9OlSxesW7cOhw8fhpKSEoCqcP5169ahc+fOctEk73tET08POTk5MDU1xfnz57F69WoAVfUkhHYAFJWcnBxYWloCAE6dOoXBgwdj8uTJcHJygrOzs6C2Hz9+LOh//3/Du3fvUK9ePQDA+fPnMWjQIGhoaKB///6YN28eMx1EJEk9uXTpEr7//nsAVd/9r1+/Fty+Iv3bNGrUCPv27cP69eulxvft2wdTU1MAVeluenp68pDHkQPceeZwOFJ07doVQUFBWLVqFYCqHd7Kykps2rQJLi4uzHRUVFRg27ZtOHr0KLKzs/Hx40epeZa5ij179oSvry92794NoGpNCgsLsWzZMvTr14+ZjqKiIixYsABHjx5FXl6ezDyrB3BfX18sXLgQu3btQpMmTZjYrAlFWQ8AmDhxIkJCQrBw4UJmNmvjyZMnCA0NrfFzwyqfdePGjejatSusra3RpUsXAMDVq1clOZysUKR7ZODAgfDy8kKzZs2Ql5eHvn37AgASExMlDiQr4uLiEBISUuM9IuRp7+doaWkhLy8PjRs3xoULFzBr1iwAgJqamqRY5beEqakprl+/jnr16uH8+fM4cuQIAODNmzdQU1NjpqNNmzZYvXo1evTogaioKOzcuRNAlVNbv359we0LGa7/n7J582YMGTIEf//9N9q2bQuRSIS4uDikpqbi2LFjAKo+T9W1DDj//XDnmcPhSLFp0yY4OzsjPj4eHz9+xPz583H//n3k5+cjJiaGmY4VK1Zg7969mD17NpYsWYJFixYhMzMTp06dwtKlS5npAKocDldXV9ja2qK0tBReXl5IT0+HgYEBDh8+zEzH/PnzcfnyZezYsQNjxozB77//jqdPn2LXrl0yu+L/Np8XYSoqKkLTpk2hoaGBOnXqSF3LamNDnuvxOevWrcP333+P8+fPw87OTmZNWDmt4eHhcHNzg7m5OR48eICWLVtKciZbt27NRAMA2Nra4s6dO/jtt9+QlJQEdXV1jBkzBjNmzJCcrLFAke6Rbdu2oUmTJsjJycHGjRuhpaUFAHj+/DmmTZvGTMeRI0cwZswY9OrVCxcvXkSvXr2Qnp6O3NxceHp6MtMBVG1MTpo0CY6OjkhLS5PkPt+/f5/5xpwibDr99NNPGDlyJLS0tNC4cWPJ6fuVK1ckxbtY4Ovri5EjR+LUqVNYtGiRZHPn2LFj6NSpEzMdn5KcnFzjv42bm5ugdt3c3PDgwQP4+/sjLS0NRIS+ffvi1KlTknv0xx9/FFQDR7HgOc8cDkeG3Nxc7Ny5E7du3UJlZSVat26N6dOnw9jYmJmGpk2bYvv27ejfvz+0tbWRmJgoGYuNjcWff/7JTAtQFfJ55MgRqTUZOXIk1NXVmWlo3LgxgoKC4OzsDB0dHSQkJMDS0hIHDx7E4cOHce7cOcFsBwYGfvW1Y8eOFUzHp8hzPT5n1apVWLZsGaytrVG/fn2ZgmGsTlvbtWuHPn36YOXKlZL8fCMjI4wcORJ9+vT55h7yFOkeURTs7e0xZcoUTJ8+XXKPmJubY8qUKTA2NsaKFSuYaXn79i0WL16MnJwc/Pjjj+jTpw8AYNmyZVBRUcGiRYuY6PinTSeW0RLx8fHIyclBz549JRssZ8+eha6ubo1F+FhSWloKJSUlmc1BIcnIyICnpyfu3r0rlQdd/R37raY8cOQIcTgcjgKioaFBWVlZRETUoEEDunXrFhERPXr0iHR0dJjp+PjxI5mbm9P9+/eZ2awNTU1NyszMJCIiExMTunHjBhERZWRkkKampjylyQVFWg9dXV0KCAhgarMmtLS06OHDh0RUpenevXtERJSYmEhmZmZMtVy5coVGjhxJHTt2pCdPnhARUVBQEF29epWZBkW6R4iq/v+dnJzI2NhYomvbtm106tQpZho0NDTo8ePHRESkr69Pd+7cISKi5ORkatCgATMdikTbtm1pyZIlRFT1GXr06BG9f/+e3NzcaMeOHcz1fPjwgVJTU6msrIy57WrevHlDe/bsoYULF1JeXh4REd26dUvyWWbF999/T+7u7vTy5UvS0tKi5ORkunr1KrVr146uXLnCRMObN28oLCyMDh48SIGBgVIvzrcHr2zC4XCkCAgIQEhIiMx4SEjIf3T6+P9Ko0aN8Pz5cwCApaWlpI1LXFwc08JlderUwYcPH5i3cKmJ6grfQFVY7NGjRwEAZ86cga6uLjMdBQUFNb7ev38vE1InJIqyHgCgqqoq91MhANDU1MSHDx8AAA0bNsSjR48kcywK/VRz/Phx9O7dG+rq6khISJBoev/+PdauXctMhyLdIzt37sTs2bPRt29fvH37VnJipqury7S9Vr169STVzk1MTHDv3j0AVafA8qgWfPXqVYwaNQqdOnXC06dPAQAHDx5EdHQ0Mw0pKSmSiBllZWWUlJRAS0sLK1euxIYNG5jpKC4uxsSJE6GhoYEWLVogOzsbQFWrLJZpBnfu3EGzZs2wYcMGbN68GW/fvgUAnDx5Ej///DMzHQBw/fp1rFy5EoaGhhCLxRCLxejcuTPWrVvHpIXYmTNn0LhxY/Tt2xczZsyAj4+P5PXTTz8Jbp+jgMjbe+dwOIqFlZUVRUREyIxHRkaSlZUVMx0LFiygNWvWEBFRSEgIKSsrk6WlJamoqNCCBQuY6SAiWrduHY0dO1aupwBERFu3biU/Pz8iIoqIiCB1dXVSUVEhsVhMvr6+zHSIRCISi8W1vho3bkxLly6liooKQXUoynoQEa1du5ZmzpzJ1GZNuLu70+7du4mIaN68eWRpaUmrV6+m1q1bU/fu3ZnpaNWqleRUpvokj4jo9u3bVL9+fWY6FOkesbGxoZMnTxKR9JrcvXuX9PX1mekYMWIEbdmyhYiIVq9eTYaGhjRp0iQyMzMjT09PZjqIiI4dO0bq6uo0adIkUlVVlazJ77//Tn379mWmo379+pLoIltbWzp9+jQRVUVssIxQ8Pb2pu+++46uXr1KmpqakvU4ffo0tWrVipmO7t2707x584hI+l6NiYlhHsGiq6srsW9hYSF5Pnn48CGpq6sLbr9Zs2bk4+NDRUVFgtvi/N+A5zxzOBwp1NTUkJqaKlOsJTMzEzY2NnKrgBobG4tr167B0tJS8AIhn+Pp6Ynw8HBoaWnBzs4OmpqaUvMsq9N+SnZ2NuLj49G0aVM4ODgwsxsUFIRFixZh3LhxaNeuHYgIcXFxCAwMxOLFi/Hq1Sts3rwZ8+bNwy+//MJMl7zWA6i6RyIiIqCvr48WLVrI5ASyukcyMjJQWFgIe3t7FBcXY+7cuYiOjoalpSW2bdvGrIqthoYGkpOT0aRJE6ne6BkZGZLCe/JAnveIuro6UlNTYWZmJrUm6enpsLe3Z/bdmp+fj9LSUjRs2BCVlZXYvHmz5B5ZsmQJ05Y7jo6OmDVrFsaMGSO1JomJiejTpw9yc3OZ6PDw8ED//v3xww8/YP78+Th58iTGjRuHEydOQE9PD5cuXWKiw8zMDMHBwejQoYPUejx8+BCtW7dGQUEBEx2f9nn+VEdWVhasra2Zfn67dOmCOXPmwMPDA15eXnjz5g0WL16M3bt349atW5LICaHQ1NTE3bt3YWFhIagdzv8deLVtDocjhZGREe7cuSPjPCclJUFfX18+ogB06NABHTp0kIttXV1dDBo0SC62v0Tjxo3RuHFj5nYDAwOxZcsWDB06VDLm5uYGOzs77Nq1C+Hh4WjcuDHWrFnD1HmW13oAVffIwIED5WL7Uz59wNPQ0MCOHTvkosPY2BgPHz6U+R6Jjo6W60OoPO8Rc3NzJCYmymxg/P3337C1tWWm49Nq52KxGPPnz8f8+fOZ2f+UBw8eoGvXrjLjOjo6klBhFmzduhWFhYUAgOXLl6OwsBDBwcGSTSdWvHr1CkZGRjLjRUVFTFOH1NTUanTUHzx4AENDQ2Y6AGDx4sUoKioCAKxevRrff/89unTpAn19fQQHBwtuv3fv3oiPj+fOM0cCd545HI4Uw4cPh7e3N7S1tSUPNVFRUfDx8cHw4cMFtR0aGoq+ffuiTp06CA0N/eK1LE+fAwICmNn6nO3bt2Py5MlQU1PD9u3bv3gti/wvoCoHzd/fX2bc0dER169fBwB07txZkq/3b6KI6wHI9x5RRKZMmQIfHx/s378fIpEIz549w/Xr1zF37lzBW80p6j0yb948TJ8+HaWlpSAi3Lx5E4cPH8a6deuwd+9eQW0XFBRAR0dH8veXqL6OBYqyyaIom05t27bF2bNnMXPmTAD/U1F6z5496NixIzMd7u7uWLlypaRGgEgkQnZ2NhYuXMh8I7l3796Svy0sLJCcnIz8/HyZ9olC0b9/f8ybNw/Jyck1tiFkHQnHkT88bJvD4Ujx8eNHjB49GiEhIVBWrtpfq6ysxJgxY+Dv7w8VFRXBbIvFYuTm5sLIyAhice31DEUi0TfTnsLc3Bzx8fHQ19eHubl5rdeJRCJkZGQw0WRlZYWBAwfKFLBZuHAhTp48iQcPHiA+Ph7u7u6SAkD/Foq4HvKmXr16SEtLg4GBwT8+ULLqwQ0AixYtwrZt2yQhnqqqqpg7dy5WrVolqF1Fvkf27NmD1atXIycnB0BVwa7ly5dj4sSJgtpVUlLC8+fPJd+tNd0jRMT8u3Xjxo0IDAzE/v370bNnT5w7dw5ZWVmYNWsWli5dihkzZjDToghcu3YNffr0wciRI3HgwAFMmTIF9+/fx/Xr1xEVFYXvvvuOiY6CggL069cP9+/fx/v379GwYUPk5uaiY8eOOHfunEzq0n8z/FmE8znceeZwODWSlpaGpKQkqKurw87OjlmupKJy7NgxHD16FNnZ2TIVpRMSEuSkSj6EhoZiyJAhaN68Odq2bQuRSIS4uDikpqbi2LFj+P7777Fz506kp6dj69at8pYrGK1bt0Z4eDj09PTg6Oj4RadVyHskMDAQw4cPh6qqKg4cOPBFHax6cFdTXFyM5ORkVFZWwtbWVtK39lujvLwcf/zxB3r37o0GDRrg9evXqKysrDFEVwiioqLg5OQEZWVlREVFffHabt26MdFUjbw2WRR10+nu3bvYvHkzbt26hcrKSrRu3RoLFiyAnZ0dMw3VREREICEhQaKjR48eTOwOHDgQBw4cgI6Ozj+mw8ir5gjn24U7zxwORyEJCgrCsGHDZNpSffz4EUeOHMGYMWOYadm+fTsWLVqEsWPHYs+ePRg/fjwePXqEuLg4TJ8+HWvWrGGiY+XKlZg7dy40NDSkxktKSrBp0ybBw2E/JTMzE/7+/khLSwMRoXnz5pgyZYpM+KWQyHs9VqxYgXnz5kFDQwMrVqz44rXLli0TVIuik5WVhaKiIjRv3vyLJzn/NvK+Rz5FQ0MDKSkpct+IzM7OhqmpqYyzSETIycmRS064PDZZFHnTSR58upkwYcIE+Pn5QVtbWy5axo8fj+3bt0NbWxvjxo374r8NT5nhsIY7zxwOR4YnT54gNDS0xlNWVieJn4YZfkpeXh6MjIyYhko1b94cy5Ytw4gRI6Qqjy5duhT5+fn47bffmOhQpDVRBBRlPSoqKhAdHQ17e3umlYprQt5rEhgYiDdv3kj1P508eTL27dsHALC2tkZYWBhMTU0F1VGNvNfjU1xcXODj4wMPDw9mNmtCkdbk3bt3qKiokCpiBlSd9CorKzPNv1YEzp07ByUlJak8XwAICwtDZWUl+vbtK5htLS0t3LlzBxYWFlBSUkJubi7z4mCKgqLWTeAoBrxgGIfDkSI8PBxubm4wNzfHgwcP0LJlS2RmZoKI0Lp1a2Y6qvPvPufJkyeoW7cuMx1A1UlNp06dAFS1m3n//j0AYPTo0ejQoQMz57m2NUlKSpJ5+Py3uXPnDlq2bAmxWIw7d+588Vp7e3tBtVQjz/X4lOqH3ZSUFLk7z7Xth3/48EHQegXV+Pv7Y/LkyZL358+fR0BAAIKCgmBjY4MZM2ZgxYoVghfIqkZR7hEAmDZtGubMmYMnT57gu+++k8kblffnprCwEGpqakw0VDN8+HAMGDAA06ZNkxo/evQoQkNDce7cOSY6FGVDYeHChTK1JICqf7OFCxcK6jx37NgRHh4e+O6770BE8Pb2hrq6eo3X7t+/XzAdn+Pq6ooTJ05AV1dXarygoAAeHh6IiIj4121u27YNI0eOhJqa2herrYtEIu48f4Nw55nD4Ujx888/Y86cOVi5ciW0tbVx/PhxGBkZYeTIkejTp4/g9qtzR0UiEbp37y4pWgZUnfA9fvyYiY5PadCgAfLy8mBmZgYzMzPExsbCwcEBjx8/rtVZ+TepzscTiUSwsrKSevCtqKhAYWEhpk6dKqiGVq1aSYq5tWrVCiKRqMb/dxYFVBRhPT7Hzs4OGRkZXyxQJSTVpyMikQh79+6VCnutqKjAlStX0Lx5c8F1pKWloU2bNpL3p0+fhpubG0aOHAkAWLt2LcaPHy+4DkW8R4YNGwZA+qSq+nPE4nMze/Zsic0lS5ZIhbJXVFTgxo0baNWqlaAaPufGjRs1RjM5Oztj0aJFzHTIe9OpmvT09BrbljVv3hwPHz4U1PahQ4ewbds2PHr0CCKRCO/evZNbP/ZPiYyMlImAA4DS0lJcvXpVEJuPHz+u8W8OB+DOM4fD+YyUlBQcPnwYAKCsrIySkhJoaWlh5cqVcHd3x48//iio/eqQxsTERPTu3VvKCVBRUUGTJk2Yt8pwdXXFmTNn0Lp1a0ycOBGzZs3CsWPHEB8fz6S3r6+vL4gIEyZMwIoVK6RO3qvXROg2Jo8fP5aE8Mn7YUIR1uNz1qxZIylyVNOpotDhp9WnI0QEf39/KCkpSeaq16Sm9mL/NiUlJVL/r9euXcOECRMk7y0sLJCbmyu4DkW8R+T9ubl9+zaAqnvk7t27Uk6hiooKHBwcMHfuXKaaPnz4gPLycpnxsrIylJSUCG5fUTadqqlbty4yMjJkakc8fPhQ8ArX9evXl5x6m5ub4+DBg9DX1xfU5pf4NMIpOTlZ6nujoqIC58+fh4mJCRMdtUWFnDp1Su5pGBw5QBwOh/MJ9evXp/v37xMRka2tLZ0+fZqIiBITE0lTU5OJhvLycgoICKBnz54xsfdPVFRUUFlZmeR9cHAwzZw5k/z8/OjDhw9MNJSVlVFAQADl5OQwsafoKNp6iEQiyUssFkte1e9Z4ezsTG/evGFm73OaN29Ox48fJyKiV69ekZKSEsXHx0vmb9y4QfXr12eiRdHukaioKKnvkWrKysooKiqKmY6xY8dSQUEBM3tfolu3bjRjxgyZ8WnTplHnzp0Ft9+kSRNq0qQJiUQiMjU1lbxv0qQJWVlZUa9evSg2NlZwHdX88MMPZGdnRw8fPpSMpaenk729PU2cOJGZDkXg0+/ST79fq18aGhq0b98+wXU0aNCAHj16JDN+7Ngx0tDQENw+R/HgBcM4HI4UHh4e6N+/P3744QfMnz8fJ0+exLhx43DixAno6enh0qVLTHSoqakhJSVFbmGwioi8q/WGhoZ+1XVubm4CK6lC3uvxKYrQ/qesrAzW1tb466+/agz9ZMG6deuwfft2TJs2DREREXj16hXu3bsnmff19cVff/3F7HtEke4RRcirLS8vh5qaGhITE9GyZUvB7f0TMTEx6NGjB9q2bYvu3bsDqKq7ERcXhwsXLqBLly5MdLi4uODkyZMyebWseffuHfr06YP4+Hg0atQIQFWdjy5dutSY9yskRUVFiIqKqrFwKIs836ysLBARLCwscPPmTaniZSoqKjAyMpKKsBGKlStXIiAgANeuXYOxsTEAIDg4GBMmTMCBAwcwZMgQwTVwFAsets3hcKTYunUrCgsLAQDLly9HYWEhgoODYWlp+cXCGf828s4h/ZSAgABoaWnJ/EiGhISguLiYWRuT9u3b4/bt23JzBD4PT6sp75lF7mY18l6PaogIDRs2RFlZGaysrKTy9FlSp04dfPjw4YttXYRmwYIFKC4uxokTJ9CgQQOEhIRIzcfExGDEiBHM9CjKPQLUXqgrLy9P8JDcapSVlWFmZqYwlfmdnJxw/fp1bNq0CUePHoW6ujrs7e2xb98+NGvWjImGsrIyZGVl4dmzZ3J3nuvWrYtr167h4sWLSEpKkqxH165dmeq4ffs2+vXrh+LiYhQVFaFevXp4/fo1NDQ0YGRkxMR5NjMzQ1lZGcaMGYN69erJ7TO8dOlS5OXloUePHrh69SrOnz+PSZMm4eDBg8xTyDiKAT955nA4CsmFCxewYMECueWQfoq1tTX8/f3h4uIiNR4VFYXJkyfjwYMHTHSEhIRg4cKFmDVrllyr9VbzadsueaAI65GZmQl3d3fJ6aqpqSlOnDjBtDL9p6xfvx6pqanYu3ev3Jx4RUIR7pHquginT59Gnz59pHrXV1RU4M6dO7C2tsb58+cF1wJUbQaGhITg0KFDzCuOKyomJia4dOkSbGxs5C1FIXB2doaVlRV27twJXV1dJCUloU6dOhg1ahR8fHyY1PqoRk9PD7du3ZLb70w1o0ePxo0bN/D06VP8+eefcHd3l6sejvzgzjOHw1FIxGKx5O9PT2uIUWXaT1FTU0NqaqpMEZfMzEzY2NgwKWwDSK9JNSyr9X6OvJ1nRViPYcOGITExEcuWLYOamho2bdqEiooK3Lx5U3DbNeHp6Ynw8HBoaWnBzs5Oxlk8ceIEEx05OTkQiUSS0NObN2/izz//hK2trVQrK6FRhHukurp4YGAghg4dKtX+p7p42Q8//AADAwPBtQBVHQ0ePnyIsrIymJmZydwjCQkJTHR8TklJCcrKyqTGWG2SKtKmk7zDpQFAV1cXN27cgLW1NXR1dXH9+nXY2Njgxo0bGDt2LFJTU5noAKo+P3Z2dpJq8SyoKUWprKwMs2bNQq9evaRSk1ilKXEUB74tzeFwJG1dvob8/HyB1VRx+fJlJna+BiMjI9y5c0fGeU5KSmJajVTe1XoVDUVYj6tXr+Lw4cOSnOZ27drBzMwMJSUltfZIFRJdXV2FCCX08vLC5MmTMXr0aOTm5qJnz55o0aIFDh06hNzcXCxdupSJDkW4RwICAgAATZo0wdy5c5mFaNeGIlUHLi4uxvz583H06FHk5eXJzLPaELxx4wbCw8Nx4cIFuW46KUK4NFCVAlL9TFC/fn1kZ2fDxsYGdevWRXZ2NhMN1VhaWmLVqlW4du1ajdEjQqzJlz4j+/fvl/S5lsemNUf+8JNnDoeDwMDAr76WVX6vIlH9cBcQECDJPYuKisKECRMwePBgbN68Wc4K5YO8T54VAbFYjOfPn6N+/fqSMS0tLdy7d09ms+VbQk9PD7GxsbC2tsb27dsRHByMmJgYXLhwAVOnTkVGRoa8JXIUgOnTp+Py5ctYuXIlxowZg99//x1Pnz7Frl27sH79ekl/cKH5p97j1RsgQqMo4dK9evXCuHHj4OXlhalTp+L27dvw9vbGwYMH8ebNG9y4cYOJDgBfrHsiEon4dwmHOdx55nA4Ck1xcXGN4Wss83s/fvyI0aNHIyQkRBLSV1lZiTFjxsDf31+qXyoLkpOTa1wT1uFjOjo6SEpKkntRN3muh5KSEnJzc6UqwSrKusiTTzcQ3Nzc4OTkhAULFiA7OxvW1tbMUh2qUYTPzIsXLzB37lyEh4fj5cuXMsX2vsUTrMaNGyMoKAjOzs7Q0dFBQkICLC0tcfDgQRw+fBjnzp2Tt0SmKEq4dHx8PN6/fw8XFxe8evUKY8eORXR0NCwtLREQEAAHBwcmOuRNWVkZevXqhV27dsHKykrecjgKAg/b5nA4MlRUVODkyZNISUmBSCSCjY0N3N3dmeaCvXr1CuPHj8fff/9dq0ZWqKioIDg4GKtWrZJUQLWzs2Ne/TMjIwOenp64e/euVKXr6vA6odfk8/D+wsJCODo6yuSVsgrtl/d6AFU5+FZWVv+4LqzWBACOHTuGo0eP1ugssspnbdGiBfz9/dG/f39cvHgRq1atAgA8e/aMaaqDItwj1YwbNw7Z2dlYsmQJjI2N5VYVvaKiAtu2bav1HmF5r+bn50s2mXR0dCS2O3fujB9//JGZDkVBUcKl27RpI/nb0NDwm9vEqKZOnTq4d++eXDsYcBQP7jxzOBwp7t27B3d3d+Tm5sLa2hoAkJaWBkNDQ4SGhsLOzo6Jjp9++glv3rxBbGyspAfnixcvsHr1amzZsoWJhmoiIyMl4XTy3H328fGBubk5Ll26JOl9mZeXhzlz5jAJHff19RXcxn+CvNcDYBfO+bVs374dixYtwtixY3H69GmMHz8ejx49QlxcHKZPn85Mx4YNG+Dp6YlNmzZh7NixkpOq0NBQtGvXjpkORbhHqomOjsbVq1fRqlUrpnY/Z8WKFdi7dy9mz56NJUuWYNGiRcjMzMSpU6eY5aJXY2FhgczMTJiZmcHW1hZHjx5Fu3btcObMGeZtoxRh08nR0RHx8fGwsrKCi4sLli5ditevX+PgwYNMfntLSkpw8eJFuLi4QFtbW2quoKAAkZGR6N27t1TFeBY8efIEoaGhNf7bbN26VVDbY8aMwb59+7B+/XpB7XD+D0EcDofzCe3bt6cBAwZQfn6+ZCw/P5/c3NyoQ4cOzHQ0aNCAbty4QURE2tra9ODBAyIiOn36NDk5OTHTQUSkqqpKFhYWtGrVKsrJyWFq+1P09fUpKSmJiIh0dHQoNTWViIjCw8OpVatWctMlL/h6yGJtbU1//vknERFpaWnRo0ePiIhoyZIlNH36dKZaysvLpb5HiIgeP35ML168YKZBke4RGxsbSkhIYGqzJiwsLOivv/4ioqp75OHDh0RE5OfnRyNGjGCqZevWreTn50dERBEREaSurk4qKiokFovJ19eXmQ4/Pz/S0tKi6dOnk4qKCk2ZMoV69OhBdevWpV9++YWZjri4OIqIiCAiopcvX1Lfvn1JW1ubHB0dKTExUXD7vr6+5OrqWut89+7d6bfffhNcx6dcunSJNDQ0qEWLFqSsrEytWrUiXV1dqlu3Lrm4uAhuf8aMGaSjo0OtW7emyZMn06xZs6RenG8P7jxzOBwp1NTU6N69ezLjd+/eJTU1NWY6tLW16fHjx0REZGZmRtHR0URElJGRQerq6sx0EBHl5eWRn58fOTo6kpKSEvXq1YuCg4Ppw4cPTHXo6upKnCELCwvJQ9bDhw+Zrkl2drbUJsKNGzfIx8eHdu3axUwDkeKsB5HirIm6ujplZmYSEZGhoaHkgTstLY3q1avHVAtRlQNw9epVio6OppcvXzK3r0j3SFhYGPXq1UvyvSYvNDQ0KCsri4iqNilv3bpFRESPHj0iHR0deUqjzMxMOn78OBNH8VMUadNJnrRt25ZCQ0NrnT9z5gy1bduWoaIqTUuWLCGi//m3ef/+Pbm5udGOHTsEt+/s7Fzri4XzzlE8uPPM4XCkcHBwoPDwcJnx8PBwatmyJTMdbdq0ofPnzxMRkbu7O40ePZqePHlC8+fPJwsLC2Y6Puf27ds0c+ZMMjAwoHr16tHMmTOZPeh17tyZTp48SUREI0aMoD59+lB0dDSNGTOGWrRowURDtY6goCAiInr+/Dlpa2tTx44dSV9fn1asWMFUhyKsR7UWRVgTc3NziTPUpk0b8vf3J6Iqx01PT4+ZjsLCQho/fjwpKSmRSCQikUhEysrKNGHCBCoqKmKmQ5HuEV1dXcmpqpaWFunp6Um9WGFlZUWxsbFEVLU+69atIyKiI0eOkKGhITMdioSibTq9ePGCrly5QlevXmW66aSrqyvZWKmJrKws0tXVZaaHSDo6QldXV7K5n5iYSGZmZky1cDhE3HnmcDifcfbsWWrRogWFhIRQTk4O5eTkUEhICNnZ2dHZs2fp3bt3kpeQHDp0iPbv309ERAkJCWRoaEhisZjU1NToyJEjgtr+J54+fUrLli0jVVVV0tTUJCUlJercuXONJ/b/JufPn6fjx48TUdUpkY2NDYlEIjIwMKhxw0ModHV1JeGvfn5+1KlTJyKqctDMzc2Z6VCU9SBSnDWZOHEiLV++nIiIdu7cSerq6tSjRw/S1dWlCRMmMNMxefJksrCwoHPnzkm+L86ePUtNmzalqVOnMtOhSPfIgQMHvvhixYIFC2jNmjVERBQSEkLKyspkaWlJKioqtGDBAmY6qrl06RL179+fLCwsqGnTptS/f3+6ePEiUw2Ksun07t07GjVqFCkrK0ttOo0cOZLevn0ruH0tLS2Kj4+vdT4+Pp60tLQE1/Ep9evXp/v37xMRka2tLZ0+fZqIqpxnTU1NplpycnLoyZMnTG1yFA/uPHM4HCmqf7BFIhGJxWISi8U1vheLxUx1FRUV0a1bt+jVq1dM7Vbz8eNHCgkJob59+5KysjJ16NCB9uzZQ4WFhZSdnU0jRowgGxsbQTWUlpZSYWGh1FheXh5VVlYKavdzNDU1JaGnAwYMoPXr1xNR1akEy9B+RVkPIsVZk4qKCiorK5O8Dw4OppkzZ5Kfnx/TNAN9fX26fPmyzHhERAQZGBgw06FI94iiEhsbS1u2bJE4JSz59ddfSVlZmYYPH05+fn6SvOs6derQr7/+ykyHomw6DRkyhJo1a0bnz5+nd+/eUUFBAZ0/f56sra1pyJAhgttv37695LurJtatW0ft27cXXMenuLu70+7du4mIaN68eWRpaUmrV6+m1q1bU/fu3QW3X1FRQStWrCAdHR3JM1DdunVp5cqVVFFRIbh9juLBnWcOhyNFZGTkV7+EoKioiKZNm0YNGzYkQ0NDGjFihNwc5mpmzJhB+vr6pK+vTz4+PnT37l2Za7KyskgkEgli/9WrV9SvXz9SVlYmsVhMHTt2lOTkyYN27drRggUL6MqVK6SmpiYJcbx+/TqZmJgIbl/R1oNI/mtCVOUE/fLLLzRv3jwKCwtjYrM21NXVKTk5WWb83r17pKGhIbh9RbxHiKpyrRctWkTDhw+XFE77+++/BY9aqebo0aPk5eVFQ4YMYZ6PXxMNGzas0Un+7bffyNjYmJkORdl00tDQoKtXr8qMX7lyhcnnZteuXaSpqUlnzpyRmQsNDSVNTU3m982jR48kRf+Kioroxx9/JDs7O/L09JSE2gvJwoULydDQkHbs2EFJSUmUmJhIv//+OxkaGjItJsdRHLjzzOFwpPjSgwILJ3bu3LmkoaFBP/zwgyS3ePDgwYLb/RKurq70559/fnFtysrKBNtQmDRpEtWvX5/WrFlDW7ZsoWbNmlGPHj0EsfU1XL58mXR1dUksFtP48eMl4z///DN5enoKbl/R1oNI/mty4sQJUlJSIk1NTapbty6JxWLatm2b4HZrw9XVlYYMGUIlJSWSseLiYhoyZAiT0yJFvEciIyMlJ5oqKioSZ37Dhg00aNAgwe3v2rWLRCIRWVlZkb29PYnFYlq4cKHgdr+ElpYWpaeny4ynpaUxC8lVpE0nU1NTunPnjsx4UlISs024kSNHkkgkIhsbG/Lw8CBPT09q3rw5icViGj58OBMN1RQUFNCFCxfo7NmzcttENzY2rjEq49SpU9SwYUM5KOLIG+48czgcKdzd3WsMRcrNzWVSYMfCwoIOHz4seX/jxg1SVlam8vJywW0rKqampnT27FnJ+5SUFFJSUqKPHz/KTZM82xAp4noQyXdN2rRpQxMnTpScnq1atYr09fUFt1sbd+/eJRMTE9LX1ydXV1fq3r076evrk4mJCZNTVkW8Rzp06EBbtmwhIumKzjdv3mTyEN6yZUtavHix5H1AQADz/NXP8fLyoo0bN8qMb9q0iYmjpmibTrt27aIePXrQs2fPJGPPnz+nXr16SfKwWRAcHEzu7u5ka2tLNjY25O7uTsHBwczsE1VtGDRs2FCSKla3bl3mufBEVa0qq1tlfkpqairTlByO4iAiIpJ3r2kOh6M4tG/fHra2tggICJCMPX/+HK6urmjRogWOHTsmqH0VFRU8fvwYJiYmkjF1dXWkpaXB1NRUUNv/RHJyMrKzs/Hx40epcTc3N0HtKisrIycnB8bGxpIxDQ0NpKSkwMzMTFDbX+LVq1d48OABRCIRrKysYGhoyMSuoq4HIL810dHRQXx8PKysrAAAHz58gKamJnJzc2FgYMBEw+eUlJTg0KFDSE1NBRHB1tYWI0eOhLq6uuC2FfEe0dLSwt27d2Fubg5tbW0kJSXBwsICmZmZaN68OUpLSwW1r6mpibt378LCwgIAUFFRAXV1dWRnZ6NBgwaC2q6N1atXY/PmzXByckLHjh0BALGxsYiJicGcOXOgo6Mjudbb2/tft9+2bVs4ODjA398fysrKWL16NXx9ffH69et/3dbX4OjoiIcPH+LDhw9o3LgxACA7Oxuqqqpo1qyZ1LUJCQnykMiMfv364c2bN9iyZQvU1NSwYsUKPHjwAKmpqUx1tG/fHu3bt8f27dulxmfOnIm4uDjExsYy1cORP8ryFsDhcBSLc+fOoWvXrpg1axa2bduGp0+fwtXVFQ4ODjhy5Ijg9isqKqCioiI1pqysjPLycsFt10ZGRgY8PT1x9+5diEQiVO85ikQiAFWahYSIoKws/XWtrKyMyspKQe3WRlFREWbOnImgoCCJBiUlJYwZMwa//vorNDQ0BLWvaOsByH9NCgsLoaurK3mvqqoKdXV1FBQUyM15VldXxw8//CAX24p4j+jq6uL58+cwNzeXGr99+7bUZqFQlJSUQEtLS/JeSUkJqqqqKC4uFtx2bezbtw96enpITk5GcnKyZFxXVxf79u2TvBeJRII4zw8ePMAff/whuVfmzZuH5cuX4/Xr13L53Hh4eDC3WRMJCQmoU6cO7OzsAACnT59GQEAAbG1tsXz5cpnfaCGIj4/HuXPn0KZNGwDA/v37YWRkhMLCQqn7WGg2btyI/v3749KlS+jYsSNEIhGuXbuGnJwcnDt3jpkOjuLAnWcOhyOFvr4+wsLC0LlzZwDA2bNn0bp1a/zxxx8Qi8WC2ycijBs3DqqqqpKx0tJSTJ06FZqampKxEydOCK6lGh8fH5ibm+PSpUuwsLDAzZs3kZeXhzlz5mDz5s2C2ycidO/eXcoZKC4uxoABA6QeYlidRMyePRtRUVE4c+YMnJycAADR0dHw9vbGnDlzsHPnTkHtK9p6APJfEwAICwtD3bp1Je8rKysRHh6Oe/fuScaEjJIIDQ396muFjtZQxHvEy8sLCxYsQEhICEQiESorKxETE4O5c+dizJgxTDTs3btXyvEoLy/HgQMHpBxFIZzU2nj8+DEzWzWhaJtOy5YtY26zJqZMmYKFCxfCzs4OGRkZGDZsGAYOHIiQkBAUFxfD19dXcA2vX7+WnL4DVc8mGhoaePXqFVPnuVu3bnjw4AF27NghiaIZOHAgpk2bhoYNGzLTwVEceNg2h8OpkfT0dHTu3Bk9e/bEwYMHJaesQjN+/Pivuu7TsHKhMTAwQEREBOzt7VG3bl3cvHkT1tbWiIiIwJw5c3D79m1B7a9YseKrrmP14GVgYIBjx47B2dlZavzy5csYOnQoXr16Jah9RVsPQP5r8jUbWyKRSNAoia/dXBNaB6CY90hZWRnGjRuHI0eOSE7GKyoq4OXlhQMHDkBJSUlQ+02aNPnH73GRSISMjAxBdXyJ8vJylJaWMnOOxGIxAgMDpTadRowYAV9fX9SvX18yJvRmT02UlpYiODgYRUVF6Nmzp0zYtpDUrVsXCQkJaNq0KTZs2ICIiAiEhYUhJiYGw4cPR05OjuAalJSUkJaWJkl9ISKYmpoiOjoaTZo0kVz3aWg/h8MC7jxzOBzo6enV+FBVXFwMVVVVqYe6/Px8ltIUAj09Pdy6dQsWFhZo2rQp9u7dCxcXFzx69Ah2dnZyDXuUBxoaGrh16xZsbGykxu/fv4927dqhqKhITsrkB18TzteSkZGBhIQEVFZWwtHRkalTpCicO3cOeXl5GD16tGRszZo1WLVqFcrLy+Hq6org4GDo6ekJqkMRNp2AqnDxjx8/ws/PDwDw8eNHtGvXDsnJydDQ0EB5eTkuXLiATp06CaqjGh0dHdy6dQvNmjVDz5498f3338PHxwfZ2dmwtrZGSUmJ4BrEYrHMcwkRScaq/xb638bJyQndunWDi4sLOnXqJBUBx/k24WHbHA6HSQjW/5aHDx/i0aNH6Nq1K9TV1aV+PFnRsmVL3LlzBxYWFmjfvj02btwIFRUV7N69W1J8hxXl5eWIjIzEo0eP4OXlBW1tbTx79gw6OjrMTms6duyIZcuWISgoCGpqagCq8ilXrFghKfrzrcHXpIqIiAjMmDEDsbGxMidC7969Q6dOneDv748uXbow0fP48WOUl5fLOKjp6emoU6eO1AmWkBQUFEBLSwtisRgWFhaS743KykoUFBTI/fTs7du3UuHLQrN582YMGjRI8v7atWtYunQpVq5cCRsbGyxatAirVq3C1q1bBdUhzxz4T/n777+xdu1ayfs//vgD2dnZSE9PR+PGjTFhwgSsWbMGZ8+eZaKnTZs2WL16NXr06IGoqChJ2snjx4+lTuSF5PLly0zs/BPff/89oqKi8Ntvv6G0tBTfffcdunXrBmdnZ3Tu3JlpCDlHQWBa25vD4Sg0ZWVldODAAXr+/Lm8pdDr16/J1dWVRCIRicViSVuXCRMm0OzZs5lqOX/+PB0/fpyIiB49ekQ2NjYkEonIwMCAwsPDmenIzMyk5s2bk4aGBikpKUnWxMfHh6ZMmcJMh7zbEFWTm5tLo0aNImNjY1JSUiKxWCz1YomirAkR0ZMnTyg4OJh+/fVX8vPzk3oJzYABA2jr1q21zvv5+ZGHh4fgOqrp2rUrHThwQGb84MGD1K1bNyYaTpw4Qc2aNaOioiKZuaKiIrKysqLQ0FAmWoiI1q9fT0eOHJG8Hzx4MIlEImrYsCElJiYy0WBoaEgJCQmS97NmzaLevXtL3p89e5YsLS2ZaFEEtLW1pfpdDx8+nH744QfJ+9u3b5OxsTEzPYmJidSyZUvS0dGh5cuXS8ZnzJhBI0aMYKZDkSgvL6fr16/TunXrqHfv3lSnTh1SUVGRtyyOHOBh2xwORwp5t3OpZsyYMXj58iX27t0LGxsbSVuXCxcuYNasWbh//75c9eXn59ca7i4UHh4e0NbWxr59+6Cvry9Zk6ioKEyaNAnp6enMtMizDVE1ffv2RXZ2NmbMmAFjY2OZfwt3d3dmWgDFWJOAgABMnToVKioq0NfXl1oTFvmsZmZmOH/+vEz4ejWpqano1asXsrOzBdVRjY6ODhISEmBpaSk1/vDhQ7Rp0wZv374VXEOvXr0wdOhQTJo0qcb5/fv3Izg4GGFhYYJrAQALCwscOnQInTp1wsWLFzF06FAEBwfj6NGjyM7OxoULFwTXoK6ujgcPHkgKQrVr1w6DBw/G/PnzAQBZWVmwtbVllu4QGBgIAwMD9O/fHwAwf/587N69G7a2tjh8+LDgv4e6urqIi4uTREiYm5tjyZIlmDBhAgAgMzMTNjY2TMKlv0RpaSmUlZVlKtkLiSJU/gaqvruioqIQGRmJqKgofPz4EV26dMHJkyeZ2OcoEPL13TkcjqLh7OxMJ0+elLcMql+/vuQUREtLS3LKmpGRQZqamsz1VFZW0qtXr+j169fMbVejr69PqampRCS9Jo8fPyZ1dXW56ZIXWlpadPv2bXnLUCgaNWpEq1evpoqKCrnYV1VVlTpB+5z09HRSU1NjpkdHR0fqhLOa+Ph40tLSYqLB2Nj4H9eE5amimpoaZWdnExGRt7c3TZ48mYiIHjx4QLq6ukw0WFhY0Pnz54mI6P3796SiokLR0dGS+Vu3bpGBgQETLUREVlZWkiiia9eukbq6Ou3atYsGDBhAnp6egttv3749bdmyhYiI7t27R2KxmDIyMiTzkZGRZGZmJriOaszNzWv8rXvz5g2Zm5sz00FE1KZNGzp27BgRVUV+qamp0YgRI8jS0pJ8fHwEtz906FBq0KABGRkZ0eDBg2n79u2UlJQkuF2O4sJznjkcjhTTpk3DnDlz8OTJE3z33XcyxTHs7e2Z6CgqKqqxN+7r16+l2lgJTW5uLubPn4/Q0FC8f/8eQNVplqenJ9atW8cs/wuoys+rqTjKkydPoK2tLahtRWpDVI2pqamk57Y8UMQ1KS4uxvDhw5m0lasJExMT3L17V+akt5o7d+7A2NiYmZ4uXbpg3bp1OHz4sKTwYUVFBdatWydpxyc0b968+WKf+rKyMrx584aJFqCqAGJOTg5MTU1x/vx5rF69GkBVASahiy9VM3jwYPz000/45ZdfcO7cOTRo0AAdOnSQzMfHx8Pa2pqJFgDIycmR3LOnTp3C4MGDMXnyZDg5OclU0BeCefPmYcSIETh79izu37+Pfv36SfUDP3fuHNq1aye4jmoyMzNrvBc+fPiAJ0+eMNMBAGlpaWjVqhUAICQkBF27dsWff/4pqfwtdM2WkJAQGBgYYNy4cXBxcUGXLl14nvM3DneeORyOFMOGDQMg3etTJBIxq2xZTdeuXREUFIRVq1ZJNFRWVmLTpk1wcXFhoqGgoACdOnVCYWEhxo8fj+bNm4OIkJycjMOHDyM6OhoJCQnMfkh79uwJX19f7N69G0DVmhQWFmLZsmXo16+foLY9PDy+6jqW94ivry8WLlyIXbt2MSv89CmKuCYTJ05ESEgIFi5cyMTe5/Tr1w9Lly5F3759JYXTqikpKcGyZcvw/fffM9OzceNGdO3aFdbW1pIiZVevXkVBQQEiIiKYaGjSpAni4+PRvHnzGufj4+OZpskMHDgQXl5eaNasGfLy8tC3b18AQGJiYq2bHv82y5Ytw7Nnz+Dt7Y0GDRrg0KFDUl0dDh8+jAEDBjDRAgBaWlrIy8tD48aNJalBAKCmpsYkVHrQoEE4d+4czp49i169emHmzJlS8xoaGpg2bZrgOj7dEPy8b3xFRQXCw8OlnHoWEJGksNulS5ck3x+mpqZ4/fq14Pbz8/Nx5coVREZGYvHixbh//z4cHBzg7OwMZ2dnyeeH8+3Ac545HI4UWVlZX5xn9ZCXnJwMZ2dnfPfdd4iIiICbmxvu37+P/Px8xMTEoGnTpoJrWLVqFYKCgnDt2jVJr8lqXr58CScnJ4wfPx6//PKL4FoA4OnTp3B1dYWSkhLS09PRpk0bpKenw8DAAFeuXIGRkRETHfLk8zzzoqIilJeXQ0NDA3Xq1JG69ltsq1ZRUYHvv/8eJSUlsLOzk1kToasXv3jxAq1bt4aSkhJmzJgBa2triEQipKSk4Pfff0dFRQUSEhKYRmw8e/YMv/32G5KSkqCurg57e3vMmDED9erVY2J/0aJFOHToEG7evCnz/52bm4v27dtj1KhRWLNmDRM9ZWVl8PPzQ05ODsaNGwdHR0cAVZtRWlpateZm/zczcuRIpKamwtHREYcPH0Z2djb09fURGhqKX375Bffu3ZO3RCZUR6xUb5h/SnV1+i1btjDdAHN1dYWpqSl69OiBiRMnIjk5GZaWloiKisLYsWORmZnJTAsAPHr0CKtXr8ahQ4dqjQbj/HfDnWcOh6Ow5ObmYufOnbh16xYqKyvRunVrTJ8+nVnYZ4cOHTBlyhSMHz++xvn9+/djz549uH79OhM9QNXp3ZEjR6TWhFVRKkVoQxQYGPjV144dO1YwHdUowpp8yqpVq7Bs2TJYW1ujfv36MgXDWJy2ZmVl4ccff0RYWJjkAVwkEqF3797YsWOHXKIE5Mn79+/RsWNHZGdnY9SoUVIbCn/88QdMTU0RGxsreOoFp3bevn2LxYsXIycnBz/++CP69OkDoOqEXEVFBYsWLRLM9p07d776WlZpU+bm5oiLi4OBgQETe1/izp07GDlyJLKzszF79mwsW7YMADBz5kzk5eXhzz//FNR+fn6+pFBYZGQk7t+/j3r16qFr165wcXHB9OnTBbXPUTy488zhcGR49OgRfH19kZKSApFIBBsbG/j4+DA57VUk6tWrh+vXr9eae5eamopOnToxOeEsKyuDtbU1/vrrL9ja2gpurybc3Nzg4uIiCWn8nO3bt+Py5cvfVPVRRVsTPT09bNu2DePGjWNi70u8efMGDx8+BBGhWbNm0NPTk4uOq1evYteuXcjIyEBISAhMTExw8OBBmJubM8t7fvfuHX7++WcEBwdL8pv19PQwbNgwrF27lmmPZQA4ePCgZE2uX78OMzMz+Pr6wtzcXPAq9Y6Ojl/dpSAhIUFQLYqAWCyWOun90trwU87/obS0FEpKSjLRNf82SkpKMDAwQJcuXSSh2i1bthTUJkex4TnPHA5HirCwMLi5uaFVq1ZwcnICEeHatWto0aIFzpw5g549ezLRERAQAC0tLQwZMkRqPCQkBMXFxUxOFQsKCr74UKurq4uCggLBdQBVIXMfPnxg2hrrc5KSkrBhw4Za53v16oXNmzcz01Pb2otEIqiqqjJpYaJoa6KqqgonJydm9r6Enp4e2rZtK1cNx48fx+jRozFy5EgkJCTgw4cPAKpOg9euXYtz584x0VG3bl3s2LEDv//+O16/fg0igqGhoVw+zzt37sTSpUvx008/Yc2aNRKHTFdXF76+voI7z19bK4A18tpkefz4seTv27dvY+7cuZg3bx46duwIALh+/Tq2bNmCjRs3CqahJsLDwxEeHo6XL19Kco6r2b9/P1Mtb9++xbFjx/Do0SPMmzcP9erVQ3JyMurXrw8TExNBbSclJXFnmSMN8/reHA5HoWnVqhUtWLBAZnzBggXk6OjITIeVlRVFRETIjEdGRpKVlRUTDWKxmF6+fFnrfG5uLonFYiZaiIjWrVtHY8eOpbKyMmY2P0XR2hCJRCISi8W1vho3bkxLly4VtG2Toq3J2rVraebMmczsKTqtWrWiwMBAIpJu73b79m2qX78+Uy3FxcVUVFQkeZ+ZmUnbtm2TtGxihY2NjaQd4adrcvfuXdLX12eqRVE4duwYqaur06RJk0hVVVWyJr///jv17duXmY62bdvS2bNnZcbPnj1LrVu3ZqZj+fLlJBaLqV27duTu7k4eHh5SL5YkJSWRgYEBWVpakrKysuTfZvHixTR69GgmGsrKyujixYvk7+9PBQUFRET09OlTev/+PRP7HMWCnzxzOBwpUlJScPToUZnxCRMmCN4S4lOysrJqrOppZmaG7OxsJhqICFZWVrWeDhHjrJcbN24gPDwcFy5cgJ2dnUwbsRMnTghqX9HaEB04cACLFi3CuHHj0K5dOxAR4uLiEBgYiMWLF+PVq1fYvHkzVFVVBSvqpmhrcvPmTUREROCvv/5CixYtZEIahb5HFI0HDx6ga9euMuM6Ojp4+/YtUy3u7u4YOHAgpk6dirdv36Jdu3ZQUVHB69evsXXrVvz4449MdDx+/FhSJOxTVFVVUVRUxESDorF69Wr4+/tjzJgxOHLkiGS8U6dOWLlyJTMdd+/erfF3z9zcHMnJycx0+Pv748CBAxg9ejQzm7Uxe/ZsjB8/Hhs3bpSqC9C3b194eXkJbj8rKwt9+vRBdnY2Pnz4gJ49e0JbWxsbN25EaWkp/P39BdfAUSy488zhcKQwNDREYmIimjVrJjWemJjItJqzkZER7ty5I1NcKCkpCfr6+kw0BAQEMLHztejq6mLQoEFys69obYgCAwOxZcsWDB06VDLm5uYGOzs77Nq1C+Hh4WjcuDHWrFkjmPOsaGuiq6uLgQMHMrOn6BgbG+Phw4cy3yPR0dGwsLBgqiUhIQHbtm0DABw7dgwNGjTA7du3cfz4cSxdupSZ82xubo7ExESZzgl///03k3oKn1fM/xKsKuYryiaLjY0NVq9ejX379km+Tz58+IDVq1fDxsaGmY6PHz+iU6dOzOx9ibi4OOzatUtm3MTEBLm5uYLb9/HxQZs2bWSePTw9Pb/JyvQc7jxzOJzP+OGHHzB58mRkZGSgU6dOEIlEiI6OxoYNGzBnzhxmOoYPHw5vb29oa2tLHmqioqLg4+OD4cOHM9HAIq/6P0HezvzixYtx4sQJWFlZ1dqGSMiqtJ9z/fr1Gnf9HR0dJRXQO3fuLGikgqKtibzvEUVjypQp8PHxwf79+yESifDs2TNcv34dc+fOxdKlS5lqKS4ulpycXbhwAQMHDoRYLEaHDh3+sUXgv8m8efMwffp0lJaWgohw8+ZNHD58GOvWrcPevXsFt88ygulrUZRNFn9/fwwYMACmpqZwcHAAULVhLBKJ8NdffzHTMWnSJPz5559YsmQJM5u1oaamVmN9iwcPHsi0kBSC6OhoxMTEyNTQMDMzw9OnTwW3z1FA5Bs1zuFwFI3KykraunUrmZiYkEgkIpFIRCYmJuTr60uVlZXMdHz48IGGDh1KIpGI6tSpQ3Xq1CElJSUaP348ffjwgZkOIqLs7GzKycmRvL9x4wb5+PjQrl27mOpQBDIzM6lv374kFosl94dYLKa+ffvS48ePmWpp1qxZrfn51XnxcXFx1LBhQ0F1KNKacGT55ZdfSF1dXfJvo6amRosXL2auw87Ojvz8/Cg7O5t0dHTo2rVrREQUHx/PPP969+7d1LhxY8maNGrUiPbu3ctUwz/xpXoT/zYbNmwgW1tbio2NJW1tbbp69SodOnSIDA0N6ddff2Wmg4ioqKiIdu3aRbNmzaKffvqJdu/eTYWFhUw1eHt7k66uLnXt2pVmzJhBs2bNknqx5IcffiAPDw/6+PEjaWlpUUZGBmVlZZGjoyP5+PgIbl9PT4/u379PRNI1Aq5evUpGRkaC2+coHrxVFYfDAQDs3bsXrq6uUrvs79+/BwC59h9NS0tDUlIS1NXVYWdnJxNqyIIuXbpg8uTJGD16NHJzc2FlZYWWLVsiLS0N3t7eTE+wjh07hqNHjyI7OxsfP36UmmPZ1kUR2hCFhoZiyJAhaN68Odq2bQuRSIS4uDikpqbi2LFj+P7777Fz506kp6dj69atguuR15q0bt0a4eHh0NPT+8c2QN9C65+aKC4uRnJyMiorK2FrawstLS3mGo4dOwYvLy9UVFSge/fuuHDhAgBg3bp1uHLlCv7++2/BNZSXl+OPP/5A79690aBBA7x+/RqVlZVMU3K+BBHh77//xt69e3H27FlJdXQWLFq0CNu2bUNpaSmAqhzwuXPnYtWqVcw0KAouLi61zrHqF19NQUEB+vXrh/v37+P9+/do2LAhcnNz0bFjR5w7d06m9se/zbBhw1C3bl3s3r0b2trauHPnDgwNDeHu7o7GjRvzaJ9vEO48czgcAICmpiZKS0thYmICFxcXuLq6wtXVFaampvKWJnf09PQQGxsLa2trbN++HcHBwYiJicGFCxcwdepUZGRkMNGxfft2LFq0CGPHjsWePXswfvx4PHr0CHFxcZg+fTrWrFnDRIcikZmZCX9/f6SlpYGI0Lx5c0yZMkUm/PK/mRUrVmDevHnQ0NDAihUrvnjtsmXLGKlSTLKyslBUVITmzZtDLBYzt5+bm4vnz5/DwcFBYv/mzZuoW7durf3k/200NDSQkpIil43I2sjIyMD+/fsRGBiIwsJC9O/fH4MGDYKnpydTHYqwyVJTD+5t27bBwsJC8DZiikxERAQSEhJQWVmJ1q1bo0ePHkzsPnv2DC4uLlBSUkJ6ejratGmD9PR0GBgY4MqVKwqz8cRhB3eeORwOAKCsrAyxsbGIiorC5cuXERsbi9LSUpiZmcHV1RUuLi5wcXFBw4YNmWl68uQJQkNDazxlZXGSWI2Wlhbu3buHJk2awM3NDU5OTliwYAGys7NhbW2NkpISJjqaN2+OZcuWYcSIEdDW1kZSUhIsLCywdOlS5Ofn47fffmOig6OYVFRUIDo6Gvb29nKJBFAkAgMD8ebNG/z000+SscmTJ2Pfvn0AAGtra4SFhTHdHJwwYQL8/PxkInmKioowc+ZMZr1zXVxc4OPjI/d+y6WlpTh27Bj27t2L2NhY9OzZE3///TcSExOZ99V99+4dKioqUK9ePanx/Px8KCsrQ0dHh4mOT3twr169Gvfv34eFhQUOHDiAwMBAXL58mYkOeVOvXj2kpaXBwMCg1s8NS0pKSnD48GEp533kyJFQV1eXmyaO/ODOM4fDqZFqZ/ry5cuIjIzEjRs38OHDB5SXlzOxHx4eDjc3N5ibm+PBgwdo2bIlMjMzQURo3bo107Cx9u3bw8XFBf3790evXr0QGxsLBwcHxMbGYvDgwXjy5AkTHZ+eGBkZGeHixYtwcHBAeno6OnTogLy8PCY65MmdO3fQsmVLiMVi3Llz54vX2tvbM1KlOKipqSElJaXGdjffEh07dsTkyZMxfvx4AMD58+cxYMAAHDhwADY2NpgxYwZsbW2ZFMiqRklJCc+fP5c5qXr9+jUaNGjA7Ls1JCQECxcuxKxZs/Ddd9/JhL2y+NxMmzYNR44cgbW1NUaNGoXhw4dDX18fderUQVJSEpOq35/St29fDBgwANOmTZMa9/f3R2hoKM6dO8dEh62tLdauXQsPDw+pDdJ79+7B2dkZr1+/ZqIDqKpyHRISUuPmtdAt77S0tHDnzh1YWFhASUkJubm5TIqDcThfA6+2zeFwaqSiogIfP37Ehw8fJE4zywfyn3/+GXPmzMHKlSuhra2N48ePw8jICCNHjkSfPn2Y6QCADRs2wNPTE5s2bcLYsWMlVVBDQ0PRrl07ZjoaNGiAvLw8mJmZwczMTOLEP378mHnPaXnRqlUr5ObmwsjICK1atYJIJKrx/10kEqGiokIOCuWLnZ0dMjIyvnnnOS0tDW3atJG8P336NNzc3DBy5EgAwNq1ayWOtdAUFBSAiEBEeP/+vVRLs4qKCpw7d45p6OewYcMAAN7e3pKx6s8Rq8/N7t27sWDBAixcuFCuJ4rV3Lhxo8ZoJmdnZ6bV8hWlB/eRI0cwZswY9OrVCxcvXkSvXr2Qnp6O3NxcJqH0HTt2hIeHB7777jsQEby9vWs95RUiYiM0NPSrr3Vzc/vX7XMUG+48czgcAFUhdNeuXUNkZCQiIiIQHx8PCwsLdO3aFTNmzEC3bt2YhmynpKTg8OHDAABlZWWUlJRAS0sLK1euhLu7O7OeqAAkO/4FBQVS4bCTJ0+GhoYGMx2urq44c+YMWrdujYkTJ2LWrFk4duwY4uPjv5nevo8fP5acQDx+/FjOahSPNWvWSIoc1XSqyCr8VN6UlJRI/b9eu3YNEyZMkLy3sLBg0iMWqOq9LRKJIBKJYGVlJTMvEon+MVf930QRPjdBQUEICAiAsbEx+vfvj9GjRzPfFP2U2qKqysrKmKXlAPLvwV3N2rVrsW3bNkyfPh3a2trw8/ODubk5pkyZAmNjY8HtHzp0CNu2bcOjR48gEonw7t07SSE3FnxtSsO3ukn7rcOdZw6HA6DqAa9+/fpwc3ODj48PunXrJtdCGJqampJKqw0bNsSjR4/QokULAGAaulaNkpISysvLER0dLXkIZl2Uavfu3aisrAQATJ06FfXq1UN0dDQGDBiAqVOnMtUiLz59qFSkgkeKQrUD4ubmJlV1m+WpoiJgZmaGW7duwczMDK9fv8b9+/fRuXNnyXxubi7q1q3LRMvly5dBRHB1dcXx48el8mpVVFRgZmbGdGMyKysLnTp1grKy9CNgeXk5rl27xuRz5eXlBS8vL2RmZiIgIADTp09HcXExKisrkZyczDxsu23btti9ezd+/fVXqXF/f3989913zHTIuwd3NY8ePUL//v0B/M+pt0gkwqxZs+Dq6ir4Zk/9+vWxfv16AFUbCgcPHoS+vr6gNj+l+neWw6kJ7jxzOBwAgIODAxITExEVFQWRSASxWAxnZ2emP1if0qFDB8TExMDW1hb9+/fHnDlzcPfuXZw4cQIdOnRgqqW6oE9QUJDkR1VJSQljxozBr7/+yuz0WSwWS1UIHjp0KIYOHcrEtiLxtSF132I43bdSUOifGDNmDKZPn4779+8jIiICzZs3l3KCrl27xqwoVbdu3VBeXo4xY8agTZs2cu9g4OLiUmPu9bt37+Di4sJ0g6VJkyZYsWIFli9fjrCwMOzfvx+jRo3CTz/9hIEDB2L79u1MdKxZswY9evRAUlISunfvDqCq7kZcXJykpRgLxo8fj/LycsyfPx/FxcXw8vKCiYkJ/Pz8MHz4cGY66tWrJ2lVaWJignv37sHOzg5v375FcXExMx2AYkRKVFNaWiqVdsH5NuEFwzgcjoSioiJcvXpVUiTs9u3bsLKygrOzM7p168b0NDojIwOFhYWwt7dHcXEx5s6di+joaFhaWmLbtm1MTx2nTJmCS5cu4bfffoOTkxMAIDo6Gt7e3ujZsyd27tzJREdAQAC0tLQwZMgQqfGQkBAUFxdj7NixTHTIm89bDNWU9/wtnbJWQ0R4+PAhysrKYGVlJXOy+C1RWVmJZcuW4a+//kKDBg2wdetW2NjYSOaHDBmCPn36YOLEicw0aWtr4+7du3JvoyYWi/HixQuZAkzVeeIFBQVyUlZFfn6+JKw7KSmJmd3ExERs2rQJiYmJUFdXh729PX7++Wc0a9aMmYZPkWcPbi8vL7Rp0wazZ8/GmjVr4OfnB3d3d1y8eBGtW7cWvGDY5xQVFSEqKqrG4mWf5u4LQUVFBdauXQt/f3+8ePECaWlpsLCwwJIlS9CkSROm3yEcxYA7zxwOp1bev3+Pq1ev4uLFiwgICEBhYSGzirCKhIGBAY4dOwZnZ2ep8cuXL2Po0KF49eoVEx3W1tbw9/eHi4uL1HhUVBQmT56MBw8eMNGhaHxalfZbJTMzE+7u7rh37x4AwNTUFCdOnEDr1q3lrIxTjYeHBzw8PDBu3Di52K+ui3D69Gn06dMHqqqqkrmKigrcuXMH1tbWOH/+PDNNkZGRMt+r3zIlJSUgIkk0U1ZWFk6ePAlbW1v06tWLmY78/HyUlpaiYcOGqKysxObNmyWb10uWLGHaCu/27dvo168fiouLUVRUhHr16uH169fQ0NCAkZERMjIyBLW/cuVKBAYGYuXKlfjhhx9w7949WFhY4OjRo9i2bRuuX78uqH2O4vHtbktzOJxaqaysRFxcHCIjI3H58mXExMSgqKjom80xLS4uRv369WXGjYyMmIawZWVl1VhF2czMDNnZ2cx0cBSPBQsWoLS0FAcPHoSamho2bdqEqVOn4ubNm/KWJldycnIgEonQqFEjAMDNmzfx559/wtbWFpMnT2aqpW/fvvj5559x7969Gou5CZ1mUJ3jTUTQ1taWql6soqKCDh064IcffhBUw+f06dMHJiYmGD9+PMaOHSv3kHagyoEtKyuTGmNVaM/d3R0DBw7E1KlT8fbtW7Rr1w4qKip4/fo1tm7dyqRQZnl5Oc6cOYPevXsDqIpUmD9/PubPny+47ZqYNWsWBgwYgJ07d0JXVxexsbGoU6cORo0aBR8fH8HtBwUFYffu3ejevbtUbRF7e3ukpqYKbp+jgBCHw+EQ0c2bN2nDhg3Ut29f0tbWJpFIRKampjR69Gjav38/PX78WHANurq6pKen91Uvlri6utKQIUOopKREMlZcXExDhgyh7t27M9NhampKp0+flhk/deoUmZiYMNOhaGhpadGjR4/kLUOuGBsbU2RkpOR9Tk4OicViKi4ulqMq+dO5c2cKCgoiIqLnz5+Tjo4OdezYkfT19WnFihVMtYhEolpfYrGYmY7ly5dTYWEhM3tfIi8vj/z8/MjR0ZGUlJSoV69eFBwcTB8+fGCqo6ioiKZPn06GhoYkFotlXqzQ19ene/fuERHRnj17yN7enioqKujo0aPUvHlzZjrU1dUpMzOTmb0vUbduXUpNTZX8nZycTEREsbGxZG1tLbh9NTU1yVp8+ltz//590tTUFNw+R/HgJ88cDgcA0L59exgbG8PZ2Rlbt26Fs7MzLC0tmWrw9fVlau9r8fPzQ58+fdCoUSM4ODhAJBIhMTERampqCAsLY6Zj+PDh8Pb2hra2Nrp27QqgKmTbx8eHaTEZjuKRm5uL5s2bS943atQI6urqePHihdxzbOXJvXv3JL3Yjx49ipYtWyImJgYXLlzA1KlTsXTpUmZaFKWC77Jly+QtQUK9evXg7e0Nb29vJCYmYv/+/Zg+fTp+/PFHjBw5EhMnToSDg4PgOubNm4fLly9jx44dGDNmDH7//Xc8ffoUu3btklR9ZkFxcbGk7/WFCxcwcOBAiMVidOjQAVlZWcx0tG/fHrdv31aIaLM6depIOgfUr18f2dnZsLGxQd26dZlEXLVo0QJXr16VWYuQkJAae3Jz/vvhzjOHw8H27dtx//592NjYIDs7G6amplJtblihqAWvWrZsifT0dBw6dAipqakgIgwfPhwjR46UCn0UmtWrVyMrKwvdu3eXFIOqrKzEmDFjsHbtWmY6FI3qHrrfMtUV8j9FLBbLFFL71igrK5Pk9l66dEkSGt28eXM8f/5cntLkxosXLzB37lyEh4fj5cuXMveIvArttWrVCgsXLkS9evWwfv167N+/Hzt27EDHjh3h7+8vaVUoBGfOnEFQUBCcnZ0xYcIEdOnSBZaWljAzM8Mff/yBkSNHCmb7UywtLXHq1Cl4enoiLCwMs2bNAgC8fPmSaY/2adOmYc6cOXjy5EmNKQb29vbMtDg6OiI+Ph5WVlZwcXHB0qVL8fr1axw8eBB2dnaC2Z0wYQL8/PywbNkyjB49Gk+fPkVlZSVOnDiBBw8eICgoCH/99Zdg9jmKCy8YxuFwoKysjGfPnsHIyAhKSko1tjGRBxUVFTh58iRSUlIgEolgY2MDd3f3b7qKMFBVFTcpKQnq6uqws7NTiNMBlujp6Uk5y2/fvoWOjo6M85ifn89amtwQi8WoW7fuP67Lt7QmQNUJmouLC/r3749evXohNjYWDg4OiI2NxeDBg/HkyROmeqKiorB582ap77R58+ahS5cuzDT07dsX2dnZmDFjBoyNjWU2ntzd3ZlpAao2OE6fPo39+/fj4sWLaNOmDSZOnIgRI0YgPz8fCxYsQGJiIpKTkwXToKWlhfv378PMzAyNGjXCiRMn0K5dOzx+/Bh2dnYoLCwUzPanHDt2DF5eXqioqICrqysuXrwIAFi3bh2uXLmCv//+m4mOz79Lgf/pasC6k0F8fDzev38PFxcXvHr1CmPHjpUULwsICBAsMuHTZ6GwsDCsXbsWt27dQmVlJVq3bo2lS5cyLeLGURy488zhcNC4cWP8/PPP6NevH8zNzREfHw8DA4Nar2XBvXv34O7ujtzcXFhbWwOochoNDQ0RGhoq6I4z8PW9hAF2/YR5ZdoqAgMDv+o6RY1kEAK+JjUTGRkJT09PFBQUYOzYsdi/fz8A4JdffkFqairTljuHDh3C+PHjMXDgQDg5OYGIcO3aNZw8eRIHDhyAl5cXEx3a2tq4evUqWrVqxcTel5g5cyYOHz4MABg1ahQmTZok0387OzsbTZo0ETTs3d7eHr/++iu6deuGXr16wd7eHps3b8b27duxceNGppssubm5eP78ORwcHCRO7M2bN6GjoyOVmiEk/xQi/i1s2IrFYuTm5irEQQJHseDOM4fDwe7duzFz5swvtqFivePcoUMHGBkZITAwUNIW482bNxg3bhxevnwpeHuImnbea4LlmqipqUkq044bN05SQZjD4dRORUUFCgoKpNrrZGZmSlrdsMLGxgaTJ0+WhOJWs3XrVuzZswcpKSlMdNja2uKPP/5QiHzN7t27Y9KkSRg0aBBUVFRqvKa8vBwxMTHo1q2bYDq2bdsGJSUleHt74/Lly+jfvz8qKipQXl6OrVu3Mqnq/DlPnjyBSCSCiYkJc9uKQElJCS5evAgXFxdJHng1BQUFiIyMRO/evaVarv2b1NYPncPhzjOHwwFQ1dM5KysL9vb2uHTpEvT19Wu8jkXxFgBQV1dHfHy8TJ7bvXv30LZtW5SUlDDRoUjk5+fj0KFDOHDgAO7cuYPu3btj4sSJ8PDwqPXB878ZRWpDpCjwNamZV69e4cGDBxCJRLCyspLLA7Gqqiru378vU4jx4cOHaNmyJUpLS5nouHDhArZs2YJdu3bJtZhcWVkZJk+ejCVLlihcj/asrCzcunULTZs2ZfabB1TVsFi9ejW2bNkiCRXX1tbGnDlzsGjRoq/e1P1/JSgo6IvzY8aMEVyDn58fQkNDER4eXuN8jx494OnpienTpwtiv6ZUmJr41lJhOOCtqjgcjjQHDhyg0tJSecsgBwcHCg8PlxkPDw+nli1bMtEQHh5ONjY29O7dO5m5t2/fkq2tLV25coWJls+5ffs2zZw5kwwMDKhevXo0c+ZMSkxMlIsWefF5GyJtbW25tSFSFPiaSFNYWEjjx48nJSUlSVsoZWVlmjBhAhUVFTHV0rRpU/L395cZ9/f3J0tLS2Y6dHV1SUVFhcRiMWlpacm1DWDdunW/+TZzn7Jw4UIyNDSkHTt2UFJSEiUmJtLvv/9OhoaG9MsvvzDToaurK/XS1NQkkUhEqqqqzO6Rtm3bUmhoaK3zZ86cobZt2wpmXyQSkZ+fHx04cOCLL863B3eeORyOFMXFxXT69GnatGkTbd68mU6fPi2XXrFnz56lFi1aUEhICOXk5FBOTg6FhISQnZ0dnT17lt69eyd5CcWAAQNo69attc77+fmRh4eHYPb/iadPn9KyZctIVVWVNDU1SUlJiTp37izpE/rfjq6urqT/p5+fH3Xq1ImIiMLCwsjc3Fye0uQGXxNpJk+eTBYWFnTu3DnJ98XZs2epadOmNHXqVKZaduzYQSoqKjR16lQKCgqigwcP0pQpU0hVVbVGp1ooFMkZGDduHG3ZsoWpzdq4dOkS9e/fnywsLKhp06bUv39/unjxIlMNxsbGdPr0aZnxU6dOUcOGDZlq+Zy0tDTq3r07nT9/nok9XV1dysrKqnU+KyuLdHV1BbMvEonoxYsXgv33Of934c4zh8ORcPr0aTI0NJSc0FS/DA0Nv7gDLASf2heLxSQWi2t8LxaLBdPQuHFjSk5OrnU+JSWFTE1NBbNfEx8/fqSQkBDq27cvKSsrU4cOHWjPnj1UWFhI2dnZNGLECLKxsWGqSV5oamrS48ePiahqo2P9+vVEVPVQpaamJkdl8oOviTT6+vp0+fJlmfGIiAgyMDBgrufEiRPk5ORE9erVo3r16pGTkxOdOnWKuQ5FYfXq1aSrq0uDBg2itWvXkp+fn9SLFb/++ispKyvT8OHDJbZHjBhBderUoV9//ZWZDlVVVXrw4IHMeGpqqkJ8fuPi4sja2pqJLS0tLYqPj691Pj4+nrS0tASzLxaLufPMqZFvu98Lh8ORcO3aNQwePBhubm6YM2cObGxsAADJycnYsmULBg8ejMjISHTs2JGJnsuXLzOx8yVevHiBOnXq1DqvrKyMV69eMdPzeWXajRs3SlWm1dTUxPr16+Wax8iSFi1awN/fH/3798fFixexatUqAMCzZ89qzdn/b4eviTTFxcWoX7++zLiRkRGKi4uZ6/H09ISnpydzu5/z6NEjBAQE4NGjR/Dz84ORkRHOnz8PU1NTQfspf87evXuhq6uLW7du4datW1JzIpEI3t7eTHSsW7cO27Ztw4wZMyRj3t7ecHJywpo1a6TGhcTBwQG//fYbtm/fLjX+22+/Mc29rg0lJSU8e/aMia0WLVrg0qVL+O6772qcv3jxoqD3KvGSUJzakLf3zuFwFIO+ffvS5MmTa52fPHky9e3bl5meDx8+1Dr36tUrJhosLCzoxIkTtc4fP36caSisq6sr/fnnn19cm7KyMoqMjGSmSZ5cvnyZdHV1SSwW0/jx4yXjP//8M3l6espRmfzgayKNq6srDRkyhEpKSiRjxcXFNGTIEOrevbtcNMXFxUnCtr90siYUkZGRpK6uTj169CAVFRVJzvGGDRto0KBBzPUoAlpaWpSeni4znpaWRpqamsx0REZGkqamJtnY2NCECRNo4sSJZGNjQ1paWkzra5w+fVrqderUKdq5cye1aNGC+vTpw0TDrl27SFNTk86cOSMzFxoaSpqamrRr1y4mWjicT+HVtjkcDgBAT08PV65cqbV/8p07d9CtWze8efOGiR4PDw+cOHFCprroixcv0L17d9y7d09wDTNnzkRkZCTi4uKgpqYmNVdSUoJ27drBxcVF5pSAww5FaUOkSPA1+R/u3buHPn36oLS0FA4ODhCJREhMTISamhrCwsKYnrI+efIEI0aMQExMDHR1dQEAb9++RadOnXD48GGYmpoy0dGxY0cMGTIEs2fPhra2NpKSkmBhYYG4uDh4eHjg6dOnTHR8TvXj6D9VNxaCkSNHolWrVpg3b57U+ObNm3Hr1i1JxA8Lnj17ht9//x2pqakgItja2mLatGlo2LAhMw2f/+6KRCIYGhrC1dUVW7ZsgbGxMRMdo0aNwp9//onmzZvD2toaIpEIKSkpSEtLw9ChQ5n+u3A41XDnmcPhAKhqDZWamgozM7Ma57OysmBjY8Ms1LF9+/awtbVFQECAZOz58+dwdXVFixYtcOzYMcE1vHjxAq1bt4aSkhJmzJgh9eP9+++/o6KiAgkJCTWGhQpJcnIysrOz8fHjR6lxNzc3pjoUBUVoQ6Ro8DX5H0pKSnDo0CEpZ2TkyJFQV1dnqqNXr14oKChAYGAgrK2tAQAPHjzAhAkToKmpiQsXLjDRoaWlhbt378Lc3FzKec7MzETz5s2ZtcyqJigoCJs2bUJ6ejoAwMrKCvPmzcPo0aOZaVi9ejU2b94MJycnSWpSbGwsYmJiMGfOHOjo6EiuZRVKzqni6NGj+PPPP5Geng4igpWVFby8vDB06FB5S+N8o3DnmcPhAKjKtfrpp58wfvz4Guf3798PX19f3Llzh4mevLw8dO3aFb169cK2bdvw9OlTuLq6wsHBAUeOHGHW7zIrKws//vgjwsLCpE5GevfujR07djDNL87IyICnpyfu3r0LkUgkc1JTUVHBTIsiUFRUhJkzZyIoKAiVlZUAqnLyxowZg19//RUaGhpyVsgeviaKi7q6Oq5duwZHR0ep8YSEBDg5OTHrXd+oUSMcPXoUnTp1knKeT548iblz5+LRo0dMdADA1q1bsWTJEsyYMQNOTk4gIsTExOD333/H6tWrMWvWLCY6zM3Nv+o6kUiEjIyMf9X2f/Kbam9v/6/a5nA4/zm8YBiHwwEAjBs3DnPnzkX9+vXRr18/qbmzZ89i/vz5WLRoETM9+vr6CAsLQ+fOnSUaWrdujT/++IOZ4wwAZmZmOHfuHN68eYOHDx+CiNCsWTOpkFhW+Pj4wNzcHJcuXYKFhQVu3ryJvLw8zJkzB5s3b2auR97Mnj0bUVFROHPmDJycnAAA0dHR8Pb2xpw5c7Bz5045K2QPXxMgNDT0q69lGa3RuHFjlJWVyYyXl5fDxMSEmQ4vLy8sWLAAISEhEIlEqKysRExMDObOnYsxY8Yw0wEAv/76K3bu3Cll193dHS1atMDy5cuZOc+PHz9mYqcmWrVqJbUZWhsikYjpBumTJ08QGhpaY5TT1q1bmelISEhAnTp1JCllp0+fRkBAAGxtbbF8+XKoqKgw08LhAOAFwzgcThUVFRU0ePBgEolE1Lx5c/L09CRPT0+ytrYmsVhMAwcOpIqKCua60tLSyMjIiEaOHEmVlZXM7SsS+vr6lJSUREREOjo6kn6+4eHh1KpVK3lKkwuK1oZIEeBrQjKt9mp7CdnmriZOnTpF7dq1o7i4OMl3WVxcHHXo0IFOnjzJTMfHjx/Jy8tL0u6vTp06JBaLadSoUVReXs5MB1FVa6baCnWpqqoy1fIpZWVl9P79eya2MjMzv/rFikuXLpGGhga1aNGClJWVqVWrVqSrq0t169YlFxcXZjqIiNq0aUPHjh0jIqJHjx6RqqoqjRgxgiwtLcnHx4epFg6HiBcM43A4nxEcHIzDhw8jLS0NQFX+2fDhwzF8+HDBbevp6dVYLKa4uBiqqqpQUlKSjOXn5wuuR9HQ09PDrVu3YGFhgaZNm2Lv3r1wcXHBo0ePYGdnJ5fWO/JEQ0MDt27dkrRVq+b+/fto164dioqK5KRMfvA1UVz09PRQXFyM8vJyKCtXBf5V/62pqSl1LYvvt4yMDCQkJKCyshKOjo5o1qyZ4DY/p2XLlvDy8sIvv/wiNb569WoEBwfj7t27gto/d+4c8vLypPKr16xZg1WrVqG8vByurq4IDg6WS6SRPGnXrh369OmDlStXSkL7jYyMMHLkSPTp0wc//vgjMy1169ZFQkICmjZtig0bNiAiIgJhYWGIiYnB8OHDkZOTw0wLhwPwsG0Oh/MZw4YNw7Bhw+Ri29fXVy52/6/QsmVL3LlzBxYWFmjfvj02btwIFRUV7N69GxYWFvKWx5yOHTti2bJlCAoKklRDLykpwYoVK5j1I1c0+JpUERERgRkzZiA2Nlaq2BMAvHv3Dp06dYK/vz+6dOnCTJMifL8VFBRAS0sLYrEYFhYWku+NyspKFBQUyKyV0KxYsQLDhg3DlStX4OTkBJFIhOjoaISHh+Po0aOC29+8eTMGDRokeX/t2jUsXboUK1euhI2NDRYtWoRVq1YJHqZ869YtzJ07F6dPn67xfvXw8ICvry+zXs8pKSmSStbKysooKSmBlpYWVq5cCXd3d6bOMxFJ6jdcunQJ33//PQDA1NQUr1+/ZqaDw6mGnzxzOBwZKisr8fDhQ7x8+VLyo1VN165dBbdfXl6OP/74A71790aDBg0Et/d/hbCwMBQVFWHgwIHIyMjA999/j9TUVOjr6yM4OBiurq7ylsgURWpDpCjwNanCzc0NLi4utebMbt++HZcvX8bJkycZK5MfJ0+exIIFC5CYmChTOK64uBiOjo7YvHkzBgwYwFTXrVu3sG3bNqSkpEiqoc+ZM0emsJoQGBkZISwsTGJr9uzZSE5Oxvnz5wFUnUz7+PhIKoELhZeXF2xsbLBkyZIa59euXYvk5GQcOnRIUB3VNGjQABEREbC1tUWLFi2wbt06uLm5ISkpCU5OTigsLGSiAwBcXV1hamqKHj16YOLEiUhOToalpSWioqIwduxYZGZmMtPC4QDceeZwOJ8RGxsLLy8vZGVlyRQwYVmwRENDAykpKbW2zuJUkZ+fX2u4+7eAorQhUiT4mlQV+jt//rxM+Ho1qamp6NWrF7KzswXXUllZicrKSkmoNlDVBs/f3x9FRUVwc3OTFEYUkl69emHo0KGYNGlSjfP79+9HcHAwwsLCBNeiKKirq+PBgwdo3LgxgKpw5cGDB2P+/PkAqrot2NraCp7u0LRpU5w8ebLWatp3796Fu7v7v17puzY8PDzQv39//PDDD5g/fz5OnjyJcePG4cSJE9DT08OlS5eY6ACApKQkjBo1CtnZ2Zg9ezaWLVsGAJg5cyby8vLw559/MtPC4QDceeZwOJ/RqlUrWFlZYcWKFTA2NpZxyurWrctEh4uLC3x8fODh4cHE3v8ViAh5eXkQiUTQ19eXtxwORyFRU1PDvXv3YGlpWeP8w4cPYWdnx6Q91Pjx41GnTh3s3r0bAPD+/Xu0aNECpaWlMDY2RnJyMk6fPi3T5eDfpmHDhrhy5coX16Rr16549uyZoDo+RUlJCc+fP4eRkZHUeF5eHoyMjATfrG3atCl27NiB3r17o7CwEPr6+oiIiJBUqk9ISEDv3r3x6tUrQXWoqakhJSWl1pZZjx8/hq2tLbN2ZhkZGSgsLIS9vT2Ki4sxd+5cREdHw9LSEtu2bVOITe3S0lIoKytLbUpxOCzgdxyHw5EiPT0dx44dq/UBixXTpk3DnDlz8OTJE3z33XcyBXW+tX6Xubm5mD9/PkJDQ/H+/XsAgI6ODjw9PbFu3TrUr19fzgrZoKhtiOQJXxNZTExMcPfu3Vq/x+7cuQNjY2MmWmJiYvDbb79J3gcFBaG8vBzp6emoW7cuFixYgE2bNgnuPL958wbl5eW1zpeVleHNmzeCavic2s5vPnz4wKQF0eDBg/HTTz/hl19+wblz59CgQQN06NBBMh8fHw9ra2vBdRgaGuLBgwe1Os+pqakwMDAQXEc1n9bQ0NDQwI4dO5jZrklLXFyczGZxaWkpWrduzew0nsOphjvPHA5Hivbt2+Phw4dyd56ri5Z5e3tLxqp7YbLudylvCgoK0KlTJxQWFmL8+PFo3rw5iAjJyck4fPgwoqOjkZCQAC0tLXlLFZyvjUT4lu4Rviay9OvXD0uXLkXfvn0lhdOqKSkpwbJlyySFh4Tm6dOnUpWsw8PDMWjQIEkUz9ixYxEQECC4jiZNmiA+Ph7NmzevcT4+Pp7ZieL27dsBVN2Te/fulfruqqiowJUrV2rV+W+ybNkyPHv2DN7e3mjQoAEOHTok1dXh8OHDTHLAe/TogTVr1qBPnz4yc0SEtWvXokePHoLrqKY2h/Xt27fMHdbMzMwav7c+fPiAJ0+eMNPB4VTDnWcOhyPFzJkzMWfOHOTm5sLOzg516tSRmmd14vv48WMmdv4v4OfnByUlJdy/fx+GhoZSc4sXL4aTkxO2b98u0+7lv5HPC9hx+JrUxOLFi3HixAlYWVlhxowZsLa2hkgkQkpKCn7//XdUVFRg0aJFTLSoqalJhdvGxsZi06ZNUvMsCjANHDgQixYtQs+ePWUiVXJzc7F48WKMGjVKcB0AsG3bNgBVjqG/v7+Uw6qiooImTZrA399fcB0aGho4ePBgrfOXL18WXANQdb9+9913aN++PebMmSN1v27ZsgVpaWlMNliq+ZLD+vTpUyYaPo2oCQsLk0oZq6ioQHh4eK0n9RyOkPCcZw6HI4VYLJYZ+1ZPfBWFDh06YMqUKRg/fnyN8/v378eePXtw/fp1xsrkgyK2IZI3fE1kycrKwo8//oiwsDBJeLBIJELv3r2xY8cONGnShIkOV1dXtG/fHuvWrcPVq1fh7OyMJ0+eSMLGL168iB9//BEPHz4UVMf79+/RsWNHZGdnY9SoUVIO2h9//AFTU1PExsZCW1tbUB2f4uLiIilC9a0THx+PcePGITk5WVJrpLrgX0BAANq2bSu4hmqH1cPDA4GBgTU6rBcvXsSDBw8E11L9LFL9/PEpderUQZMmTbBlyxZmESQcTjXceeZwOFJkZWV9cZ5loZBHjx7B19cXKSkpEIlEsLGxgY+PD5o2bcpMgyJQr149XL9+vdbcu9TUVHTq1An5+fmMlckH3oZIFr4mtfPmzRs8fPgQRIRmzZoxd9QuX76Mfv36oWHDhnj+/DlGjBiBffv2SeanTZuGoqIiBAYGCq7l3bt3+PnnnxEcHCzJb9bT08OwYcOwdu1a6OrqCq5BUXB0dPzqLgUJCQkCq/kfbt++Lblfrays0KpVK2a2FdFhNTc3R1xcHNOcbw7nS3DnmcPhKCRhYWFwc3NDq1at4OTkBCLCtWvXkJSUhDNnzqBnz57ylsgMZWVlPH36tNaiYLm5uWjUqNEXiwH9N6FIbYgUBb4mik1ycjIuXryIBg0aYMiQIVIRPrt370a7du2YOklEhNevX4OIYGhoKNdWd0+ePEFoaCiys7Px8eNHqbmtW7cKZnfFihVffW11eyShiYyMhLOzMxNbX4I7rBxO7XDnmcPhyKAIJ76Ojo7o3bs31q9fLzW+cOFCXLhwgelJgLxRUlJCbm6uTL5zNS9evEDDhg2/mZB6RWpDpCjwNeF8LSUlJSAiaGhoAKiKNjp58iRsbGzQu3dvplrCw8Ph5uYGc3NzPHjwAC1btkRmZiaICK1bt0ZERARTPfJGTU0NJiYmGD9+PMaNG4dGjRrJW5KEt2/fyi0yITw8HOHh4Xj58qVMjYf9+/fLRRPn20U2uZHD4XzThIWFwdbWFjdv3oS9vT1atmyJGzduoEWLFrh48SIzHSkpKZg4caLM+IQJE5CcnMxMhyJQHb5Xr169Gl8sqtIqEtVtiGqDZRsiRYGvieITGBiIs2fPSt7Pnz8furq66NSp0z+my/ybuLu7IygoCECVQ9SuXTts2bIFHh4e2LlzJzMdAPDzzz9jzpw5uHfvHtTU1HD8+HHk5OSgW7duGDJkCFMtisCzZ8/g4+ODEydOoEmTJujduzeOHj0qcyIvNBs2bEBwcLDk/ZAhQ1CvXj2YmJggKSmJqZYVK1agV69eCA8Px+vXr/HmzRupF4fDGn7yzOFwpFCUE19TU1Ns3bpV5gHq6NGjmDt37jcVfvq1uZBjx44VWIliMHPmTERGRiIuLq7GNkTt2rWDi4uLpB3OtwBfE8XH2toaO3fuhKurK65fv47u3bvD19cXf/31F5SVlXHixAkmOgwMDBAVFYUWLVpg7969+PXXX3H79m0cP34cS5cuRUpKChMdAKCtrY3ExEQ0bdoUenp6iI6ORosWLZCUlAR3d3dkZmYKZltPT++rw9XlUU8iMTER+/fvx+HDh1FZWYmRI0di4sSJcHBwENy2hYUFDh06hE6dOuHixYsYOnQogoODcfToUWRnZ+PChQuCa6jG2NgYGzduxOjRo5nZ5HC+BHeeORyOFGpqarh7965UX1IASEtLg729PUpLS5noWLlyJbZt24aFCxeiU6dOEIlEiI6OxoYNGzBnzhwsXryYiQ6O4vHixQu0bt0aSkpKtbYhSkhIqDVH/L8RviaKj4aGBlJTU9G4cWMsWLAAz58/R1BQEO7fvw9nZ2e8evWKuY6hQ4eiRYsWWLZsGXJycmBtbY3i4mImOgCgQYMGiIiIgK2tLVq0aIF169bBzc0NSUlJcHJyErSF139SoE1eG5PPnj3D7t27sX79eigrK6O0tBQdO3aEv78/WrRoIZhddXV1pKWlwdTUFD4+PigtLcWuXbuQlpaG9u3bMz3x1dfXx82bN7+5QqEcBYY4HA7nExo1akRHjx6VGQ8ODiZTU1NmOiorK2nr1q1kYmJCIpGIRCIRmZiYkK+vL1VWVjLToUhkZ2dTTk6O5P2NGzfIx8eHdu3aJUdV8iEzM5P69u1LYrFYcn+IxWLq27cvPX78WN7y5AJfE8XG0NCQEhISiIioVatWFBgYSEREDx8+JE1NTWY67OzsyM/Pj7Kzs0lHR4euXbtGRETx8fFUv359ZjqIiNzd3Wn37t1ERDRv3jyytLSk1atXU+vWral79+5MtdTGy5cvmdr7+PEjhYSEUN++fUlZWZk6dOhAe/bsocLCQsrOzqYRI0aQjY2NoBqMjY0pJiaGiIisrKwkzwSpqamkra0tqO3PmT9/Pq1cuZKpTQ7nSyjL23nncDiKxQ8//IDJkycjIyOjxhNfodm7dy9cXV1hYWGBWbNmYdasWXj//j0AMO0/qoh4eXlh8uTJGD16NHJzc9GjRw+0bNkShw4dQm5uLpYuXSpvicwwMzPDuXPn5N6GSJHga6LY9OzZE5MmTYKjoyPS0tLQv39/AMD9+/eZ9ZwGgKVLl8LLywuzZs1C9+7d0bFjRwDAhQsX4OjoyEwHUFVNu/p0efny5SgsLERwcDAsLS2xbds2plo+hYjw999/Y+/evTh79iw+fPjAxO7MmTNx+PBhAMCoUaOwceNGtGzZUjKvqamJ9evXC36/DBw4EF5eXmjWrBny8vLQt29fAFWh5LUVJRSK0tJS7N69G5cuXYK9vT3q1KkjNS9kRXYOpyZ42DaHw5GCiODr64stW7bg2bNnAICGDRti3rx58Pb2FryliaamJkpLS2FiYgIXFxe4urrC1dUVpqamgtr9v4Cenh5iY2NhbW2N7du3Izg4GDExMbhw4QKmTp2KjIwMeUvkcDi18PbtWyxevBg5OTn48ccf0adPHwBVbZBUVFSwaNEiZlpyc3Px/PlzODg4SNpm3bx5E3Xr1q21n/y3QEZGBvbv34/AwEAUFhaif//+GDRoEDw9PZnY7969OyZNmoRBgwZBRUWlxmvKy8sRExODbt26CaajrKwMfn5+yMnJwbhx4ySbKr6+vtDS0sKkSZMEs/05Li4utc6JRKJvriI7R/5w55nD4dSKPE58y8rKEBsbi6ioKFy+fBmxsbEoLS2FmZkZXF1d4eLiAhcXFzRs2JCZJkVBS0sL9+7dQ5MmTeDm5gYnJycsWLAA2dnZsLa25m2IOBzOPzJhwgT4+fnJfK8XFRVh5syZ31zrn9LSUhw7dgx79+5FbGwsevbsib///huJiYlSp75CU1ZWhsmTJ2PJkiWwsLBgZpfD4fxncOeZw+EoNNXO9OXLlxEZGYkbN27gw4cPKC8vl7c05rRv3x4uLi7o378/evXqhdjYWDg4OCA2NhaDBw/GkydP5C2Rw+F8gdLSUty5c0emX61IJMKAAQOYaFBSUsLz589hZGQkNf769Ws0aNBA8O9WRapyPW3aNBw5cgTW1tYYNWoUhg8fDn19fdSpUwdJSUmwtbUV1P7n6OrqIiEhQSGc54MHD2LXrl3IyMjA9evXYWZmBl9fX5ibm8Pd3V3e8jgcucFznjkcDlq3bo3w8HDo6enB0dHxiw82rFpVVVNRUYGPHz/iw4cPEqfZ3NycqQZFYcOGDfD09MSmTZswduxYScuS0NBQtGvXTs7qOBzOlzh//jxGjx6NvLw8mTmRSISKigpB7RcUFICIQER4//69VEuziooKnDt3TsahFgJfX1/J33l5eVi9ejV69+4tyb2+fv06wsLCsGTJEsG17N69GwsWLMDChQsVoqaGp6cnTp06hdmzZ8tVx86dO7F06VL89NNPWLNmjeTe1NXVha+vL3PnOS4uDiEhIcjOzpbpec2qxRuHUw13njkcDtzd3aGqqir5W+i85i9RWlqKa9euITIyEhEREYiPj4eFhQW6du2KGTNmoFu3bt9kyDYAODs74/Xr1ygoKJAqAjV58mRoaGjIURmHw/knZsyYgaFDh2Lp0qVyaRmmq6sLkUgEkUgEKysrmXmRSIQVK1YIruPTtk+DBg3CypUrMWPGDMmYt7c3fvvtN1y6dAmzZs0SVEtQUBACAgJgbGyM/v37Y/To0ZJcdHlgaWmJVatW4dq1a/juu++gqakpNe/t7c1Ex6+//oo9e/bAw8MD69evl4y3adMGc+fOZaKhmiNHjmDMmDHo1asXLl68iF69eiE9PR25ubnMctE5nE/hYdscDkehUFNTQ/369eHm5oauXbuiW7duTE5D/i/x6tUrPHjwQPIQbGhoKG9JHA7nH9DR0cHt27fl1q82KioKRARXV1ccP34c9erVk8ypqKjAzMyM+caklpZWjRWc09PT4ejoKGif50/JzMxEQEAADhw4gOLiYuTn5yM4OBiDBw9mYr+aL0VViUQiZkUh1dXVkZqaCjMzM2hrayMpKQkWFhZIT0+Hvb090/oa9vb2mDJlCqZPny7RYm5ujilTpsDY2JjJhg+H8ylieQvgcDiKhYWFRY1hhW/fvmWSh+Xg4IDc3FxERUXh6tWruHr1ao16vkWKioowYcIEGBsbo2vXrujSpQsaNmyIiRMnori4WN7yOBzOFxg8eDAiIyPlZr9bt27o3LkzxowZgzZt2qBbt26SV8eOHeUS0aOvr4+TJ0/KjJ86dQr6+vrMdDRp0gQrVqxAZmYmDh48iEGDBmHUqFFo1KgRs9NeAHj8+HGtL5bdFMzNzZGYmCgz/vfff8PGxoaZDgB49OiRpK2bqqoqioqKIBKJMGvWLOzevZupFg4H4GHbHA7nMzIzM2vMvfvw4QOTglQ3btxAUVERrl69isuXL2Pjxo0YMWIErKys4OzsLHnY+xZPo2fPno2oqCicOXMGTk5OAIDo6Gh4e3tjzpw52Llzp5wVcjic2vjtt98wZMgQXL16FXZ2djL9alk4acrKyjh+/DiWL18uuK2vYcWKFZg4cSIiIyMlOc+xsbE4f/489u7dy1yPSCRCnz590KdPH+Tn50vCuuVBdWCoPNKo5s2bh+nTp6O0tBREhJs3b+Lw4cNYu3Yt9u3bx1RLvXr1JJ0/TExMcO/ePdjZ2eHt27d805gjF3jYNofDAVBVdAoAPDw8EBgYiLp160rmKioqEB4ejosXL+LBgwfMtb1//x5Xr17FxYsXERAQgMLCwm+y2raBgQGOHTsGZ2dnqfHLly9j6NChePXqlXyEcTicf2Tv3r2YOnUq1NXVoa+vL+UUsQzJ9fDwgIeHB8aNG8fE3j9x48YNbN++HSkpKSAi2NrawtvbG+3bt2emITIyUuZ7VV4EBQVh06ZNSE9PBwBYWVlh3rx5GD16NFMde/bswerVq5GTkwOgynFdsWIFevfuDRMTE2Y6vLy80KZNG8yePRtr1qyBn58f3N3dcfHiRbRu3ZoXDOMwhzvPHA4HACAWV2VxiEQifP61UKdOHTRp0gRbtmzB999/z0xTZWUl4uLiEBkZicuXLyMmJgZFRUUwMzPD48ePmelQFDQ0NHDr1i2ZsLn79++jXbt2KCoqkpMyDofzTzRo0ADe3t5YuHCh5PtWHuzatQvLly/HyJEjayxK5ebmJidl8kNNTQ0mJiYYP348xo4dC1NTU7no2Lp1K5YsWYIZM2bAyckJRISYmBj8/vvvWL16teAF1Gri9evXqKysREVFBdauXYu9e/cyzXnOz89HaWkpGjZsiMrKSmzevBnR0dGwtLTEkiVLpIpncjgs4M4zh8ORwtzcHHFxcTAwMJCL/bi4OElP5+joaBQWFqJRo0ZwdnaGi4sLXFxc0KRJE7lokzfdu3eHvr4+goKCJG1mSkpKMHbsWOTn5+PSpUtyVsjhcGqjXr16iIuLk1vBsGq+5LizaJn1OZWVlXj48KFM72sA6Nq1KxMN+fn5OHToEA4cOIA7d+6ge/fumDhxIjw8PKCiosJEA1D1+7tixQqMGTNGajwwMBDLly8XfNP47du3mD59Oi5cuIA6depg4cKFmDFjBlasWIHNmzfD1tYWs2fPxogRIwTVUU15eTn++OMP9O7dGw0aNGBik8P5J7jzzOFwFAqxWAxjY2OJs+zs7CxTifVb5d69e+jTpw9KS0vh4OAAkUiExMREqKmpISwsDC1atJC3RA6HUwuzZs2CoaEhfvnlF3lLURhiY2Ph5eWFrKwsmYgneTjyAJCYmIj9+/fj8OHDqKysxMiRIzFx4kQ4ODgIbltNTQ337t2rsfq4nZ0dSktLBbU/bdo0nDlzBsOGDcP58+eRkpKC3r17o7S0FMuWLUO3bt0EtV8TGhoaSElJgZmZGXPbHE5NcOeZw+HIUFRUhKioKGRnZ+Pjx49Sc0IWtdm+fTt69uwJGxsbZGdnw9TUVK49pxWRkpISHDp0CKmpqZL8wJEjR0JdXV3e0jgczhfw9vZGUFAQHBwcYG9vL1MwbOvWrXJSJj9atWoFKysrrFixAsbGxjLf95/W3mDJs2fPsHv3bqxfvx7KysooLS1Fx44d4e/vL+gmZcuWLeHl5SWzwbJ69WoEBwfj7t27gtkGADMzM+zbtw89evRARkYGLC0t4e3tDV9fX0HtfgkXFxf4+PjAw8NDbho4nE/hzjOHw5Hi9u3b6NevH4qLi1FUVIR69erh9evX0NDQgJGRkaBFbZSVlfHs2TMYGRlBSUkJz58//yaranM4nP8+XFxcap0TiUSIiIhgpiUqKgqbN29GSkoKRCIRbGxsMG/ePHTp0oWZBgDQ1NREUlKSQkQXlZWV4fTp09i/fz8uXryINm3aYOLEiRgxYgTy8/OxYMECJCYmIjk5WTANx48fx7Bhw9CjRw84OTlBJBIhOjoa4eHhOHr0KDw9PQWzDVTVN8nKypK0LdPQ0MDNmzfRsmVLQe1+iZCQECxcuBCzZs2qMUff3t5eTso43yrceeZwOFI4OzvDysoKO3fuhK6uLpKSklCnTh2MGjUKPj4+GDhwoGC2GzdujJ9//hn9+vWDubk54uPja829bty4sWA6FInqKuhfw7dY6IfD4fxnHDp0COPHj8fAgQMlRamuXbuGkydP4sCBA/Dy8mKmxdXVFfPnz0efPn2Y2ayJmTNn4vDhwwCAUaNGYdKkSTIOY3Z2Npo0aSKTl/1vc+vWLWzbtk2q+vicOXPg6OgoqF0AUFJSQm5uLgwNDQEA2trauHPnDszNzQW3XRs15ehXFzaVV2g/59uGO88cDkcKXV1d3LhxA9bW1tDV1cX169dhY2ODGzduYOzYsUhNTRXM9u7duzFz5swvtqH61n4wv7Yq77e0JhzO/0UOHDiAYcOGyT3FwsbGBpMnT5ap3Lx161bs2bMHKSkpzLScPHkSixcvxrx582rsfc3qVLF79+6YNGkSBg0aVGuBsPLycsTExMgl75cVYrEYffv2haqqKgDgzJkzcHV1lTntZdkeKisr64vzPBeawxruPHM4HCkMDQ0RExMDKysrWFtbY/v27ejduzdSU1PRunVrFBcXC2r//fv3yMrKgr29PS5dugR9ff0ar2NRvIXD4XD+LYyNjVFUVIQhQ4Zg4sSJ6NSpk1x0qKqq4v79+zKh0g8fPkTLli0FL0r1KYpwqlhWVobJkydjyZIlsLCwENzel6gtXSkvLw9GRkaCr8f48eO/6rqAgABBdXA4ioyyvAVwOBzFwtHREfHx8bCysoKLiwuWLl2K169f4+DBg7CzsxPcvra2Nlq2bImAgAA4OTlJdsC/ZSIiIjBjxgzExsZCR0dHau7du3fo1KkT/P39mecrcjicr+fJkyc4e/YsDhw4ABcXF5ibm0v6CrNsw2Nqaorw8HAZ5zk8PJx5f2OhWy99DXXq1MHJkyexZMkSeUuRqThezYcPH5i0zFJEpzgoKOiL85+39eJwhIafPHM4HCni4+Px/v17uLi44NWrVxg7diyio6NhaWmJ/fv3o1WrVkx0lJSU4OLFi0hLS4NIJEKzZs3Qs2dPuYc8ygM3Nze4uLjIhFlWs337dly+fBknT55krIzD4fxvePnypaSvcGpqKvr06YOJEydiwIABX52q8b9l586d+OmnnzBhwgR06tRJUpTqwIED8PPzw5QpUwS1r4iMHz8ednZ2mD17tlzsb9++HUBVO7NVq1ZBS0tLMldRUYErV64gMzMTt2/flos+eaKnpyf1vqysDMXFxVBRUYGGhgby8/PlpIzzrcKdZw6Ho3CEhoZi0qRJeP36tdS4gYEB9u3bhwEDBshJmXwwMzPD+fPnYWNjU+N8amoqevXqhezsbMbKOBzO/5YbN25g//79CAwMhLGxMd6+fQtdXV0EBATA2dlZUNsnT57Eli1bJPnN1dW23d3dBbVbG8nJyTW2RmRVBHHNmjXYvHkzunfvXmNFZyFbNAKQFOTKyspCo0aNoKSkJJlTUVFBkyZNsHLlSrRv315QHf9XSE9Px48//oh58+ahd+/e8pbD+cbgzjOHw5HC1dUVJ06cgK6urtR4QUEBPDw8BG+ncu3aNTg7O8PNzQ1z5syROIzJycnYsmUL/vrrL0RGRqJjx46C6lAk1NTUcO/evVrbuTx8+BB2dnYoKSlhrIzD4fwnvHjxAgcPHkRAQAAyMjLg4eGBiRMnokePHigpKcHixYtx7NixfyyS9N9CRkYGPD09cffuXUmuMwBJv2dWRRC/VE1aJBIJ2qLxU1xcXHDixAmZ01aOLPHx8Rg1apSgRUw5nJrgzjOHw5FCLBYjNzdXpmDJy5cvYWJigrKyMkHt9+vXD6ampti1a1eN81OmTEFOTg7OnTsnqA5FomnTpti8eXOtPT5PnDiBuXPnMnvA43A4/zkDBgxAWFgYrKysMGnSJIwZMwb16tWTuubZs2do1KiR4O2QgCrn49M+z999953gNj9nwIABUFJSwp49e2BhYYGbN28iLy8Pc+bMwebNm3kdB06t3L59G926dUNBQYG8pXC+MXjBMA6HAwC4c+eO5O/k5GTk5uZK3ldUVOD8+fMwMTERXMf169exYcOGWuenT5/+X90qpCb69euHpUuXom/fvlBTU5OaKykpwbJly/D999/LSR2Hw/kajIyMEBUV9cWoGWNjY8GLaD158gQjRoxATEyMJMLo7du36NSpEw4fPsy0aNj169cREREBQ0NDiMViiMVidO7cGevWrYO3t7dccnw/P/1mzZMnTxAaGlpjGPvWrVvlokmehIaGSr0nIjx//hy//fYbnJyc5KSK8y3DnWcOhwMAaNWqFUQiEUQiEVxdXWXm1dXV8euvvwquo7S0VKai9KfUrVsXHz58EFyHIrF48WKcOHECVlZWmDFjBqytrSESiZCSkoLff/8dFRUVWLRokbxlcjicGigpKUF4eDj27dsHAPj555+lvsOUlJSwatUqqKmpQSQSCd63dsKECSgrK0NKSgqsra0BAA8ePMCECRMwceJEXLhwQVD7n1JRUSEpjmVgYIBnz579f+3deVBUZ7o/8G9DMIp4ZVEMGLYWQRFBHEaMiY4rohBFGHBElEUyJYSAXq6J5iYal3FhjCtxG21bSWKrAb1GnUYQoyJbJCwqAioKGLfIohEUCfTvD3/2tYNbctPntPD9VFnVfU5XnW/FJPD0+77PA0dHR9jY2KC0tFSwHMCjrs7//Oc/ceHCBQCAg4MD5syZg2nTpgmW4ejRo5gwYQLs7OxQWloKZ2dnXLlyBSqVCgMHDhQshy7x9fXVeC+RSNC9e3eMHDkSn3/+uTihqF1j8UxEAB6NDFGpVOqtc927d1ff69ChA8zNzTWamGiLg4MD0tPTnzlv8mkjVtq6Hj16IDMzE5GRkZg3b57GysjYsWOxYcMG9OjRQ+SURPQ0O3fuxMGDB9W7QxISEtCvXz/15ICSkhJYWlo+s5v+H+3kyZPIzMxUF84A4OjoiPXr1wu+kufs7IyioiJIpVJ4eHggPj4eHTp0wJYtWwSdubxq1Sp8+umniI6Oxttvvw2VSoVTp05h5syZuH37tmB/N/PmzUNcXBwWLVqELl26ICkpCebm5pg6dSq8vLwEyaBrhDjCQPSbqIiIdMiqVatUpqamqkOHDrW6d/DgQZWZmZlq1apVIiTTDTU1Narc3FxVTk6OqqamRuw4RPQCQ4cOVSUnJ6vfGxkZqS5duqR+n5iYqBo8eLBgeRwcHFQ5OTmtrufk5Kh69eolWA6VSqVSKpWqpKQklUqlUl26dEnVt29flUQiUXXr1k119OhRwXLY2tqqduzY0eq6XC5X2draCpbDyMhIdfHiRZVKpVIZGxurzp49q1KpVKqCggKVjY2NYDmI6Nm48kxErZSWlmL9+vXqZjJ9+vRBdHQ0+vTpo/Vnx8bGIjMzEz4+PnB0dNTotn3hwgX4+voiNjZW6zl0lYmJCf785z+LHYOIXlJZWRkcHBzU7zt27Kgxy3nQoEF4//33BcsTHx+PDz74AF988QX+9Kc/QSKR4PTp04iNjcXKlSsFywFAY8yQVCpFcXExampqYGJiIuiZ4+vXr2PIkCGtrg8ZMgTXr18XLEfnzp3VW/otLS1x6dIl9OvXDwBajW5sT3gOnHQJi2ci0vDNN99gypQpcHd3Vze2yc7ORv/+/fH1118jICBAq8/X09PD3r17sXv3buzatUs9hqJPnz747LPP8Le//U2rzyci+iPduXMHr732v79u/fTTTxr3W1paBO3jEBoaioaGBnh4eKhz/fLLL3jttdcQHh6O8PBw9WdramoEy/XYrzuQC8He3h579uzBxx9/rHF99+7d6N27t2A5Bg8ejFOnTsHJyQne3t6Ii4vDmTNnkJycjMGDBwuWQ5fwHDjpGo6qIiINUqkUwcHBWLRokcb1BQsWIDExkeOQiIh+g969e2P58uXw9/d/6v3HRdvFixcFybNjx46X/mxISIhWMjxZoD+PTCbTyvN/LSkpCZMnT8bo0aPx9ttvQyKRICMjA0ePHsWePXueOSbwj1ZeXo579+7BxcUFDQ0N+K//+i9kZGTA3t4eq1ev1nozOV00aNAgeHl5qc+BFxYWapwDj4yMFDsitTMsnolIg6GhIYqKilo15bpw4QJcXV3R0NAgWJaWlhZcvHgRt27datU0ZNiwYYLlICL6vWJjY5GWloa8vLynjppzd3fH6NGjsXbtWpESCk9PTw82NjZwc3PD834N3bdvn2CZ8vLysHr1apw/fx4qlQpOTk6Ii4uDm5ubYBmotS5duqCgoAC9evWCiYkJMjIy0K9fPxQWFmLixIm4cuWK2BGpneG2bSLSMHz4cJw8ebJV8ZyRkYGhQ4cKliM7OxtBQUGoqKho9cuVRCJBc3OzYFmIiH6vjz/+GHv27IGjoyOio6Ph4OAAiUSCkpISJCQk4Jdffmm1XVgbWlpa0NLSorGF/ObNm9i0aRPq6+sxYcIEvPPOO1rPAQAzZ86EQqFAeXk5wsPDERwcLMp27Sf96U9/wpdffilqBmqN58BJ13DlmYg0bNq0CfPnz0dgYKD6jFV2djb27t2LhQsXwtLSUv3ZCRMmaC3HgAED4ODggIULF8LCwqJV85iuXbtq7dlERH+ky5cvIzIyEqmpqRqj5saMGYMNGzYIMpYpLCwMBgYG2LJlCwDg559/Rr9+/fDgwQNYWFiguLgY//M//4Px48drPQsANDY2Ijk5GTKZDJmZmfD29saMGTPg6ekpaLMw4NGs7evXr8Pc3FzjenV1NczNzbX6Ze1vaY4mxhl0sfn6+sLb2xvvvfcePvzwQ+zbtw+hoaFITk6GiYkJ0tLSxI5I7QyLZyLS8GQX2OfR9upv586dUVhY2O5mOhNR21VTU6M+22xvby/oaquDgwMSEhLg6ekJAPjiiy/wj3/8A+fPn0fXrl3x0UcfITc3F8eOHRMs02MVFRWQy+XYuXMnmpqaUFxcDCMjI8Ger6enhxs3brQqnq9du4ZevXrh/v37Wnv2k2fQq6ursWTJEowdO1bdsDMrKwspKSn49NNPBZs3rUt4Dpx0DbdtE5GGX58tFouHhwcuXrzI4pmI2gxTU1MMGjRIlGf/+OOPGp2jjx49Cn9/f/UunpCQEGzfvl2UbBKJBBKJBCqVStCfQevWrVM/f+vWrRoFe3NzM06cOKH1EY1PNmXz9/fHokWLEB0drb4WExODhIQEpKWltcvi+cldGYaGhtiwYYOIaYhYPBORjvrggw8QFxeHGzduoH///jAwMNC47+LiIlIyIqJXT8eOHTVWULOzs/HPf/5T4/69e/cEy/Pktu2MjAz4+PggISEBXl5eL70D6v9q9erVAACVSoVNmzZBX19ffa9Dhw6wtbXFpk2bBMkCACkpKVixYkWr62PHjsXcuXMFy6FLpFIpvv/+e5iZmWlcr6urw8CBAzkBhATH4pmIWqmvr8fx48dRWVmJhw8fatyLiYkRJMPjsS5PjjR5vDLBhmFERL+Nq6srEhMTsWzZMpw8eRI3b97EyJEj1fcvXbqk0dNCm6KioqBQKGBtbY2wsDAoFIpWxZEQLl++DAAYMWKE+gytmMzMzLBv3z7MmTNH4/r+/ftF+eejC65cufLUn/eNjY348ccfRUhE7R3PPBORhvz8fIwfPx4NDQ2or6+Hqakpbt++DUNDQ5ibmwv2LW9FRcVz7/OcExHRyzt27BjGjx8PS0tLXL9+HVOmTMG2bdvU96OiolBfX/+b5kD/Xnp6erC2toabm9tzm2UlJydrPYsukcvlmDFjBry8vNRnnrOzs6FUKrF161aEhoaKG1BABw4cAPCoYdiOHTs0moQ2Nzfj6NGjSE1NRWlpqVgRqZ1i8UxEGoYPHw4HBwds3LgRxsbGKCwshIGBAYKDgxEbGws/Pz+xIxIR0e9QXFyM1NRUvPHGGwgICNDYHr1lyxYMGjQIAwYM0HqO0NDQl+owLeQZ7KtXr+LAgQNP3XG1atUqwXLk5ORg3bp1GvOmY2Ji4OHhIVgGXfD4383HO86eZGBgAFtbW3z++efw8fERIx61YyyeiUiDsbExcnJy4OjoCGNjY2RlZaFv377IyclBSEgISkpKBMty6dIlrFmzBufPn4dEIkHfvn0RGxuLXr16CZaBiIjatqNHj2LChAmws7NDaWkpnJ2dceXKFahUKgwcOBDp6eliR2y37Ozs8P3336Nbt25iRyECAAjTkYGIXhkGBgbqFYEePXqgsrISwKO5yo9fCyElJQVOTk7Izc2Fi4sLnJ2dkZOTg379+iE1NVWwHEREbcmOHTtw6NAh9fsPP/wQxsbGGDJkyAuPy2jb3bt3sX//fkG/pAWAefPmIS4uDmfPnkXHjh2RlJSEqqoq/OUvf0FAQICgWVpaWlBWVoaMjAycOHFC4097dPny5VaFc11dnThhiMCVZyL6FU9PT4SGhiIoKAgzZ85Efn4+YmJikJiYiNraWuTk5AiSw83NDWPHjsXy5cs1rs+dOxdHjhzBDz/8IEgOIqK2xNHRERs3bsTIkSORlZWFUaNGYc2aNTh48CBee+01Qc8ZBwYGYtiwYYiOjsb9+/fh6uqqXvFVKBTqxpHa1qVLFxQUFKBXr14wMTFBRkYG+vXrh8LCQkycOBFXrlwRJEd2djaCgoJQUVHRaqtye22UuWLFCtja2mLy5MkAgICAACQlJcHCwgKHDx+Gq6uryAmpveHKMxFpWLp0KSwsLAAAixcvhpmZGSIjI3Hr1i1s2bJFsBznz5/HjBkzWl0PDw9HcXGxYDmIiNqSqqoq2NvbA3jUxfmvf/0r/v73v6u7cAvpxIkTGDp0KABg3759UKlUqKurw7p167BkyRLBcnTu3BmNjY0AAEtLS1y6dEl97/bt24LlmDlzJtzd3XH27FnU1NSgtrZW/aempkawHLpk8+bNsLKyAgCkpqYiLS0NSqUS48aNa9WVnEgIHFVFRBrc3d3Vr7t3747Dhw+LkqN79+4oKChA7969Na4XFBTA3NxclExERK86IyMjVFdXw9raGkeOHMHs2bMBtJ4DLYQ7d+7A1NQUAKBUKuHv7w9DQ0N4e3sLWhgNHjwYp06dgpOTE7y9vREXF4czZ84gOTkZgwcPFizHhQsX8M0336i/3CDg+vXr6uL54MGDCAwMhKenJ2xtbdtdEzXSDSyeiUgnvffee/j73/+O8vJyDBkyBBKJBBkZGVixYgXi4uLEjkdE9EoaM2YMIiIi4ObmhrKyMnh7ewMAzp07B1tbW0GzWFlZISsrC6amplAqlVAoFACA2tpadOzYUbAcq1atwr179wAAn332Ge7du4fdu3fD3t4eq1evFiyHh4cHLl68yOL5CSYmJqiqqoKVlRWUSqV6R4JKpWqX29hJfCyeieiFszafJNRZ408//RRdunTB559/jnnz5gF4tJ3us88+Q0xMjCAZiIjami+++AKffPIJqqqqkJSUBDMzMwBAXl4epkyZImiWWbNmYerUqTAyMoKNjQ2GDx8O4NF27v79+wuWQyqVql8bGhpiw4YNgj37SR988AHi4uJw48YN9O/fHwYGBhr3XVxcRMklJj8/PwQFBaF3796orq7GuHHjADzahcYvGUgMbBhGRFi4cKH69YMHD7BhwwY4OTnhrbfeAvCoicm5c+cQFRWFZcuWCZ7v559/BvCoqQsREbUdeXl5qKysxJgxY2BkZAQAOHToEIyNjfH222+LnE5YT87dfuzxnOP22jCsqakJa9euRVVVFUJDQ+Hm5gYAWLNmDYyMjBARESFyQmpvWDwTkYaIiAhYWFhg8eLFGtcXLFiAqqoqyGQykZIREdEf4cGDBygqKsKtW7fQ0tKivi6RSPDuu+8KlqOoqOiZq6n79++Hr6+v1p5tYmLy0juuhGrW9aJRYTY2NoLkIKJnY/FMRBq6du2K06dPt2rUdeHCBbi7u+POnTtae/bAgQNx9OhRmJiYvHArOUdVERH9dkqlEtOmTUN1dXWre0KvblpYWODUqVMa26YBICkpCdOnT0d9fb3Wnr1jxw716+rqaixZsgRjx45V77jKyspCSkoKPv30U3VTNRJHYmIiNm/ejPLycmRlZcHGxgZr1qyBnZ0dJk6cKHY8amd45pmINHTq1AkZGRmtiueMjAytN3CZOHEiXn/9dfXrl10VICKilxMdHY3AwEDMnz8fPXr0EDVLZGQkRo0ahczMTPWIxN27dyM8PBxyuVyrzw4JCVG/9vf3x6JFixAdHa2+FhMTg4SEBKSlpQlePBcXF6OyshIPHz7UuD5hwgRBc+iCjRs3Yv78+Zg1axb+8Y9/qL/cMTY2xpo1a1g8k+C48kxEGpYvX47PPvsMERER6hEd2dnZ2LZtGxYsWIC5c+eKnJCIiH6v//iP/0B+fj569eoldhQAQGxsLNLS0nDy5EkolUpEREQgMTER/v7+gmUwMjJ6agOqCxcuwM3NTd2JW9vKy8sxadIknDlzRn3WGYD6i+T2eObZyckJS5cuha+vL7p06YLCwkJIpVKcPXsWw4cPF3QONxEAtO5MQETt2ty5c7Fz507k5+cjJiYGMTExKCgowM6dO+Hl5SVYDqlU+tRthXV1da22+BER0cv561//iu+++07sGGpr167FwIEDMXjwYLz33nvYtWuXoIUzAJiZmWHfvn2tru/fv1/djVwIsbGxsLOzw82bN2FoaIhz587hxIkTcHd316m/MyFdvnxZ3STsSa+//rpWt/UTPQu3bRNRK4GBgQgMDATwqFj96quvsGzZMhQWFgr2zfeVK1ee+qzGxkZcvXpVkAxERG1NQkICAgICcPLkyaeOQ9L2KMADBw60uubr64vjx49jypQpkEgk6s8ItU154cKFmDFjBr777juNKRNKpRJbt24VJAPw6Jx1eno6unfvDj09Pejp6eGdd97BsmXLEBMTg/z8fMGy6Ao7OzsUFBS0apb273//G3379hUpFbVnLJ6J6KnS09Mhk8mQnJwMGxsb+Pv7Y9u2bVp/7pO/WKWkpKBr167q983NzTh69Cjs7Oy0noOIqC36+uuvkZKSgk6dOuG7777T6C0hkUi0Xjw/r4O2TCZTT3QQsnlZaGgo+vbti3Xr1iE5ORkqlQpOTk44deoUPDw8BMkAPPoZ93hcV7du3XDt2jU4OjrCxsYGpaWlguXQJXPmzMH777+PBw8eQKVSITc3F7t27cLSpUsF+Z2E6Nd45pmI1K5evQq5XA6ZTIb6+noEBgZi06ZNKCwshJOTkyAZHs+5fPK812MGBgawtbXF559/Dh8fH0HyEBG1JW+88QZiYmIwd+7cp84VJvEMHToUcXFx8PX1RVBQEGpra/HJJ59gy5YtyMvLw9mzZ8WOKIp//etfWLJkCaqqqgAAPXv2xMKFCzF27Fj07NlT5HTU3rB4JiIAwPjx45GRkQEfHx9MnToVXl5e0NfXh4GBgaDF82N2dnb4/vvv0a1bN0GfS0TUlpmamuL777/XmYZhv1ZXVwdjY2PBn9vS0oKLFy+2mn0NAMOGDRMkQ0pKCurr6+Hn54fy8nL4+PigpKQEZmZm2L17N0aOHClIDl11+/ZttLS0oLm5GUuXLsXWrVtx//59sWNRO8PimYgAAK+99hpiYmIQGRmpMaZKrOKZiIj+eLNnz0b37t3x8ccfix0FK1asgK2tLSZPngwACAgIQFJSEiwsLHD48GG4uroKkiM7OxtBQUGoqKhoteNJ6NnXv1ZTUwMTE5N2N7qxrq4O77//Po4cOQIDAwPMnTsX0dHRWLhwIVauXAknJyf853/+J6ZMmSJ2VGpneOaZiAAAJ0+ehEwmg7u7O/r06YNp06apf6ERS319PY4fP/7UeZfaPpdHRNQWNTc3Iz4+HikpKXBxcWnVMGzVqlWCZdm8eTO+/PJLAEBqairS0tKgVCqxZ88ezJkzB0eOHBEkx8yZM+Hu7o5Dhw7BwsJCpwpVU1NTsSOI4uOPP8aJEycQEhICpVKJ2bNnQ6lU4sGDBzh8+DD+8pe/iB2R2imuPBORhoaGBigUCshkMuTm5qK5uRmrVq1CeHg4unTpIliO/Px8jB8/Hg0NDaivr4epqSlu374NQ0NDmJubo7y8XLAsRERtxYgRI555TyKRID09XbAsnTp1QllZGaysrBAbG4sHDx5g8+bNKCsrg4eHB2prawXJ0blzZxQWFraa8yyU8PDwl/rc42Zq7YGNjQ22bduG0aNHo7y8HPb29oiJicGaNWvEjkbtHItnInqm0tJSbNu2DYmJiairq8OYMWOeOmZEG4YPHw4HBwds3LgRxsbGKCwshIGBAYKDgxEbGws/Pz9BchARkXZYWlrim2++wZAhQ+Do6IglS5YgICAApaWl+POf/4y7d+8KkmPkyJH48MMP4eXlJcjzfk1PTw82NjZwc3NrtW38SU+bRd1WGRgYoKKiApaWlgAAQ0ND5ObmwtnZWeRk1N5x2zYRPZOjoyPi4+OxbNkyfPvtt4J+611QUIDNmzdDX18f+vr6aGxshFQqRXx8PEJCQlg8ExH9DnK5HJMnT0anTp3EjgI/Pz8EBQWhd+/eqK6uxrhx4wA8+v+/kKvAH3zwAeLi4nDjxo2nzr52cXHR6vNnzpwJhUKB8vJyhIeHIzg4uN1u136spaVF4+9BX18fnTt3FjER0SNceSYindS9e3ecOnUKDg4OcHR0xLp16zB27FiUlJRg4MCBaGhoEDsiEdErx8LCAvX19QgICMCMGTMwZMgQ0bI0NTVh7dq1qKqqQmhoKNzc3AAAa9asgZGRESIiIgTJ8bSRXY/HJQrVMKyxsRHJycmQyWTIzMyEt7c3ZsyYAU9PT506gy0UPT09jBs3Dq+//joA4Ntvv8XIkSNbFdDJyclixKN2jMUzEekkT09PhIaGIigoCDNnzkR+fj5iYmKQmJiI2tpa5OTkiB2RiOiV09zcjEOHDkEul+PQoUOws7NDWFgYQkJC8MYbb4gdTxQVFRXPvW9jYyNQkkcqKiogl8uxc+dONDU1obi4GEZGRoJmEFtYWNhLfW779u1aTkKkicUzEemk06dP4+eff8aIESPw008/ISQkBBkZGbC3t4dMJsOAAQPEjkhE9Eq7desWvvzyS8jlcpSUlMDLywszZszAu++++9TVWG0pLi5+6lSFCRMmCJZBl1RWVkIul0Mul+Phw4coKSlpd8Uzka5i8UxERETUTuXk5EAmk2HHjh2wsLBAXV0djI2NsX37dgwfPlyrzy4vL8ekSZNw5swZ9TZpAOptykLPVxaziH9y23ZGRgZ8fHwQFhYGLy8vQb/IIKLn43+NRKSTRo4cibq6ulbX7969i5EjRwofiIiojbh58yZWrlyJfv36Yfjw4bh79y4OHjyIy5cv49q1a/Dz80NISIjWc8TGxsLOzg43b96EoaEhzp07hxMnTsDd3R3fffed1p//WHl5OVxdXeHs7Axvb2/4+vrC19cXkyZNwqRJk7T+/KioKFhYWGDFihXw8fHB1atXsXfvXowfP56FM5GO4cozEekkPT093LhxA+bm5hrXb926hZ49e6KpqUmkZEREr653330XKSkpcHBwQEREBKZPn96qs/O1a9fw5ptvoqWlRatZunXrhvT0dLi4uKBr167Izc2Fo6Mj0tPTERcXh/z8fK0+/7F3330X+vr6+Ne//gWpVIrc3FxUV1cjLi4OK1euxNChQ7X6fD09PVhbW8PNze25zcHYHItIfBxVRUQ6paioSP26uLgYN27cUL9vbm6GUqlEz549xYhGRPTKMzc3x/Hjx/HWW2898zMWFha4fPmy1rM0Nzerz/J269YN165dg6OjI2xsbFBaWqr15z+WlZWF9PR0dO/eHXp6etDT08M777yDZcuWISYmRutF/PTp09tlR22iVxGLZyLSKQMGDIBEIoFEInnq9uxOnTph/fr1IiQjInp13b9/H0ePHsW2bdsAAPPmzUNjY6P6vr6+PhYvXoyOHTtCIpEI0mHa2dkZRUVFkEql8PDwQHx8PDp06IAtW7ZAKpVq/fmPiV3Ey+VyrT+DiP4YLJ6JSKdcvnwZKpVKvXWue/fu6nsdOnSAubk59PX1RUxIRPTq2blzJw4ePAgfHx8AQEJCAvr164dOnToBAEpKSmBpaYnZs2cLlumTTz5BfX09AGDJkiXw8fHB0KFDYWZmBoVCIVgOXSnif+3u3btIT09Hnz590KdPH9FyENH/4plnIiIiojZu2LBhmD17troBVpcuXVBYWKguDr/88kt88cUXyMrKEjMmampqYGJiIug25pSUFNTX18PPzw/l5eXw8fFBSUkJzMzMsHv3bsGaVAYGBmLYsGGIjo7G/fv34erqiitXrkClUkGhUMDf31+QHET0bFx5JiKdVVpaivXr1+P8+fOQSCTo06cPoqOj+Q08EdFvVFZWBgcHB/X7jh07anRyHjRoEN5//31BsoSHh7/U52QymZaTPDJ27Fj1a6lUiuLiYlGK+BMnTuC///u/AQD79u2DSqVCXV0dduzYgSVLlrB4JtIB7H9PRDrpm2++gbOzM/Ly8uDq6goXFxf88MMP6N+/P/bu3St2PCKiV8qdO3fw2mv/u2by008/wdbWVv2+paVF4wy0Nsnlchw7dgx1dXWora195h8xmZqaCt7E686dO+rO50qlEv7+/jA0NIS3tzcuXLggaBYiejquPBORTvrwww8xb948LFq0SOP6ggUL8NFHHyEgIECkZEREr54333wTZ8+ehaOj41PvFxUV4c033xQky8yZM6FQKFBeXo7w8HAEBwe3GpclBF1bAbeyskJWVhZMTU2hVCrV575ra2vRsWNHQTIQ0fPxzDMR6SRDQ0MUFRXB3t5e4/qFCxfg6uqKhoYGkZIREb16YmNjkZaWhry8vFaF2P379+Hu7o7Ro0dj7dq1guRpbGxEcnIyZDIZMjMz4e3tjRkzZsDT01OwFV89PT3Y2NjAzc0Nz/t1eN++fYLk2bBhA2JjY2FkZAQbGxv88MMP0NPTw/r165GcnIxjx44JkoOIno3FMxHppPHjxyMgIABhYWEa17dv3w6FQoGUlBSRkhERvXpu3ryJAQMGoEOHDoiOjoaDgwMkEglKSkqQkJCAX375Bfn5+ejRo4fg2SoqKiCXy7Fz5040NTWhuLhYPTpKm6KioqBQKGBtbS3qCviT8vLyUFlZiTFjxqj/GRw6dAjGxsZ4++23Rc1GRCyeiUhHbdq0CfPnz0dgYCAGDx4MAMjOzsbevXuxcOFCWFpaqj87YcIEsWISEb0yLl++jMjISKSmpqpXWiUSCcaMGYMNGzaINpapsrIScrkccrkcDx8+RElJiSDFM6AbK+CPFRUVwcXF5an39u/fD19fX0HzEFFrLJ6JSCc92QX2eSQSCZqbm7Wchoio7aipqcHFixcBAPb29qKstj5ZtGZkZMDHxwdhYWHw8vJ66f///9HEWgF/zMLCAqdOnWr1JUZSUhKmT5+unolNROJhwzAi0kktLS1iRyAiapNMTU0xaNAg0Z7/5HbpsLAwKBQKmJmZiZbnMYlEAolEApVKJcrPoMjISIwaNQqZmZmwsLAAAOzevRvh4eGQy+WC5yGi1rjyTERERESC0dPTg7W1Ndzc3J67NTo5OVnrWXRtBfxxY7eTJ09CqVQiIiICiYmJnPFMpCNYPBORzqqvr8fx48dRWVmJhw8fatyLiYkRKRUREf1fhIaGvtR54u3bt2s1x69XwIODg3ViBXzatGnIycnBjz/+iK+//hoTJ04UOxIR/X8snolIJ+Xn52P8+PFoaGhAfX09TE1Ncfv2bRgaGsLc3Bzl5eViRyQioleYLqyAHzhwoNW1pqYmzJ49G56enhoNMdkck0h8LJ6JSCcNHz4cDg4O2LhxI4yNjVFYWAgDAwMEBwcjNjYWfn5+YkckIqJXmC6sgLM5JtGrhcUzEekkY2Nj5OTkwNHREcbGxsjKykLfvn2Rk5ODkJAQlJSUiB2RiIiIiNoRcWYBEBG9gIGBgXpFoEePHqisrAQAdO3aVf2aiIjoj3b37l3s379fJ76kraurEzsCET2BxTMR6SQ3NzecPn0aADBixAjMnz8fX331FWbNmoX+/fuLnI6IiNqKwMBAJCQkAADu378Pd3d3BAYGon///khKShIsx4oVK7B79271+4CAAJiamqJnz54oLCwULAcRPRuLZyLSSUuXLlXPuVy8eDHMzMwQGRmJW7duYcuWLSKnIyKituLEiRMYOnQoAGDfvn1QqVSoq6vDunXrsGTJEsFybN68GVZWVgCA1NRUpKWlQalUYty4cZgzZ45gOYjo2XjmmYiIiIjarU6dOqGsrAxWVlaYPn06LC0tsXz5clRWVsLJyQn37t0TPEdsbCwePHiAzZs3o6ysDB4eHqitrRUkBxE9G1eeiYiIiKjdsrKyQlZWFurr66FUKuHp6QkAqK2tRceOHQXLYWJigqqqKgCAUqnE6NGjAQAqlYqdtol0xGtiByAieuxFszaf9MMPP2g5DRERtQezZs3C1KlTYWRkBBsbGwwfPhzAo+3cQvbY8PPzQ1BQEHr37o3q6mqMGzcOAFBQUAB7e3vBchDRs7F4JiKd4evrq3794MEDbNiwAU5OTnjrrbcAANnZ2Th37hyioqJESkhERG1NVFQUPDw8UFlZiTFjxqhnL0ulUkHPPK9evRq2traoqqpCfHw8jIyMAADXr1/nzz0iHcEzz0SkkyIiImBhYYHFixdrXF+wYAGqqqogk8lESkZERG1JUVERXFxcnnpv//79Gl/sElH7xuKZiHRS165dcfr0afTu3Vvj+oULF+Du7o47d+6IlIyIiNoSCwsLnDp1ClKpVON6UlISpk+fjvr6ekHzFBcXo7KyEg8fPtS4PmHCBEFzEFFr3LZNRDqpU6dOyMjIaFU8Z2RkCNrAhYiI2rbIyEiMGjUKmZmZ6hGJu3fvRnh4OORyuWA5ysvLMWnSJJw5cwYSiQSP17ce9wJh0zAi8bF4JiKdNGvWLERGRiIvLw+DBw8G8OjM87Zt27BgwQKR0xERUVsxf/58VFdXY/To0Th58iSUSiUiIiKQmJgIf39/wXLExsbCzs4OaWlpkEqlyM3NRXV1NeLi4rBy5UrBchDRs3HbNhHprD179mDt2rU4f/48AMDJyQmxsbHo3bs3BgwYIG44IiJqU6ZNm4acnBz8+OOP+PrrrzFx4kRBn9+tWzekp6fDxcUFXbt2RW5uLhwdHZGeno64uDjk5+cLmoeIWmPxTESvhLq6Onz11VfYtm0bCgsLuX2NiIh+twMHDrS61tTUhNmzZ8PT01PjfLFQZ41NTEyQl5cHqVSKXr16YevWrRgxYgQuXbqE/v37o6GhQZAcRPRs3LZNRDotPT0dMpkMycnJsLGxgb+/P7Zt2yZ2LCIieoU9r4O2TCZTT3SQSCSCfVnr7OyMoqIiSKVSeHh4ID4+Hh06dMCWLVtaNTMjInGweCYinXP16lXI5XLIZDLU19cjMDAQTU1NSEpKgpOTk9jxiIjoFdfS0iJ2hFY++eQTdWfvJUuWwMfHB0OHDoWZmRkUCoXI6YgI4LZtItIx48ePR0ZGBnx8fDB16lR4eXlBX18fBgYGKCwsZPFMRERaV1dXB2NjY7FjoKamBiYmJuqO20QkLq48E5FOOXLkCGJiYhAZGdlqTBUREdEfbcWKFbC1tcXkyZMBAAEBAUhKSoKFhQUOHz4MV1dXrT4/PDz8pT73eCs5EYlHT+wARERPOnnyJH7++We4u7vDw8MDCQkJ+Omnn8SORUREbdTmzZthZWUFAEhNTUVaWhqUSiXGjRuHOXPmaP35crkcx44dQ11dHWpra5/5h4jEx23bRKSTGhoaoFAoIJPJkJubi+bmZqxatQrh4eHo0qWL2PGIiKiN6NSpE8rKymBlZYXY2Fg8ePAAmzdvRllZGTw8PLReuEZFRUGhUMDa2hrh4eEIDg6GqampVp9JRL8PV56JSCcZGhoiPDwcGRkZOHPmDOLi4rB8+XKYm5sLNjaEiIjaPhMTE1RVVQEAlEolRo8eDQBQqVSCdNresGEDrl+/jo8++gjffvstrKysEBgYiJSUFHCNi0i3sHgmIp3n6OiI+Ph4XL16Fbt27RI7DhERtSF+fn4ICgrCmDFjUF1djXHjxgEACgoKYG9vL0iG119/HVOmTEFqaiqKi4vRr18/REVFwcbGBvfu3RMkAxG9GBuGEdErQ19fH76+vs+dz0lERPRbrF69Gra2tqiqqkJ8fDyMjIwAANevX0dUVJTgeSQSCSQSCVQqlU6O1CJqz3jmmYiIiIhIRI2NjUhOToZMJlOPawwLC4OXlxf09LhRlEhXcOWZiIiIiNq94uJiVFZW4uHDhxrXtd1n48mGYWFhYVAoFDAzM9PqM4no9+HKMxERERG1W+Xl5Zg0aRLOnDmj3i4NPNo+DUDrTcP09PRgbW0NNzc39TOfJjk5Was5iOjFuPJMRERERO1WbGws7OzskJaWBqlUitzcXFRXVyMuLg4rV67U+vOnT5/+3KKZiHQHV56JiIiIqN3q1q0b0tPT4eLigq5duyI3NxeOjo5IT09HXFwc8vPzxY5IRDqCHQiIiIiIqN1qbm5Wd9ju1q0brl27BgCwsbFBaWmpmNGISMdw2zYRERERtVvOzs4oKiqCVCqFh4cH4uPj0aFDB2zZsgVSqVTseESkQ7htm4iIiIjarZSUFNTX18PPzw/l5eXw8fFBSUkJzMzMoFAoMGrUKLEjEpGOYPFMRERERPSEmpoamJiYsJEXEWngtm0iIiIianfCw8Nf6nMymUzLSYjoVcGVZyIiIiJqd/T09GBjYwM3Nzc879fhffv2CZiKiHQZi2ciIiIianeioqKgUChgbW2N8PBwBAcHw9TUVOxYRKTDWDwTERERUbvU2NiI5ORkyGQyZGZmwtvbGzNmzICnpyfPOxNRKyyeiYiIiKjdq6iogFwux86dO9HU1ITi4mL1/GciIgDQEzsAEREREZHYJBIJJBIJVCoVWlpaxI5DRDqIxTMRERERtUuNjY3YtWsXxowZA0dHR5w5cwYJCQmorKzkqjMRtcJRVURERETU7jzZMCwsLAwKhQJmZmZixyIiHcYzz0RERETU7ujp6cHa2hpubm7PbQ6WnJwsYCoi0mVceSYiIiKidmf69OnsqE1EvwlXnomIiIiIiIhegA3DiIiIiIiIiF6AxTMRERERERHRC7B4JiIiIiIiInoBFs9EREREREREL8DimYiIiIiIiOgFWDwTERERERERvQCLZyIiIiIiIqIX+H8sHoZWIwdKygAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 1000x800 with 2 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA88AAAN+CAYAAAArHTkTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1gU1/s28HtpS5MqUpRQpKqABY2KBrGhRhRjr6BiiWJvIcZeiC12RY2ANXaNXzUqFmxYsBAbdpEYMSq2gIoC5/3Dl/m5LrCoa1b0/uSa6wozZ+Y8M7uLPPucOSMTQggQERERERERUYG0NB0AERERERER0aeOyTMRERERERGRCkyeiYiIiIiIiFRg8kxERERERESkApNnIiIiIiIiIhWYPBMRERERERGpwOSZiIiIiIiISAUmz0REREREREQqMHkmIiIiIiIiUoHJMxF9EUJDQ+Ho6KiRvlNSUiCTyRAbGyutS0hIwNixY/H48eP/JAaZTIaxY8f+J329K02+NsCnfW3e1bNnzzB27FjEx8e/9zHu3LmDsWPHIikpSWnb2LFjIZPJ3j/AL0B8fDxkMtl7vQYXL17E2LFjkZKSorRN05+Tonj48CHatWuHUqVKQSaTITg4WNMhffHS09MRERGBcuXKwcjICKampvDw8EDnzp1x9uzZj9o3f1/Q50hH0wEQEf0XRo0ahQEDBmg6DElCQgLGjRuH0NBQmJmZffT+jh49ijJlynz0ft7Hp/baFGfPnj3DuHHjAAB16tR5r2PcuXMH48aNg6OjIypWrKiwLSwsDI0aNfrAKKkgFy9exLhx41CnTh2lRLk4fE4mTJiAzZs3Izo6GmXLloWFhYWmQ/qiZWRkoHr16sjIyMCwYcPg4+OD58+f48qVK9i0aROSkpLg7e390frn7wv6HDF5JqIvQtmyZTUdgkZVr15d0yEU6Et/bYqTMmXKfLJfwnyoZ8+ewdDQUGl9Tk4OsrOzIZfLNRDV/ykOn5Pz58+jbNmy6Nix43vt//z5cxgYGKg5qi/X+vXrce3aNezbtw8BAQEK2wYPHozc3NyP2v/n/PuCvlwctk1Exd79+/fRs2dP2NvbQy6Xw8rKCn5+ftizZ4/UJr8hjzKZDOHh4YiJiYG7uzsMDAzg6+uLY8eOQQiBadOmwcnJCcbGxqhbty6uXbumsL+joyNCQ0OV4qlTp06hVb+xY8di2LBhAAAnJyfIZDKFYZ5r165Fw4YNYWtrCwMDA3h6euKHH35AZmamwnFCQ0NhbGyMa9euoUmTJjA2Noa9vT2GDBmCrKwspXN9e2jy+fPn0bx5c5ibm0NfXx8VK1bEsmXLFNrExsZCJpMpDSPNb2jqmTNn0LRpU5QqVQpyuRx2dnb49ttvcfv27QKvRd55qPu1qVOnDipUqIBDhw6hevXqMDAwQOnSpTFq1Cjk5OQUGg8A3L17F7169UKZMmWgp6cHJycnjBs3DtnZ2VKbvOH406ZNw5QpU+Do6AgDAwPUqVMHV65cwatXr/DDDz/Azs4OpqamaNGiBe7du6fU19q1a1GjRg0YGRnB2NgYgYGBOHPmjNI1UvVap6SkwMrKCgAwbtw46X2V9x69du0aunbtCldXVxgaGqJ06dIICgrCuXPnpH7i4+NRtWpVAEDXrl2lY+S9d/Ibhpmbm4upU6fCw8MDcrkcpUqVQpcuXZRe97zXJDExEbVr14ahoSGcnZ3x888/F+mP+NzcXMydOxcVK1aEgYEBzMzMUL16dWzduvW9Yzl48CBq1qwJQ0NDdOvWTXpNp06diokTJ8LJyQlyuRz79+8HAJw8eRLNmjWDhYUF9PX1UalSJaxbt05l7CdPnkS7du2k94ijoyPat2+PW7duSW1iY2PRunVrAEBAQIB07fNu98jvc/LixQtERETAyckJenp6KF26NPr27at0O4ijoyOaNm2KnTt3onLlyjAwMICHhweio6NVxg68Ho7dp08flC5dGnp6enB2dsbIkSMV3nsymQx79uxBcnKy0u+0/OTFtGnTJlSqVAn6+vrSqImifP4AYOHChfDx8YGxsTFKlCgBDw8P/PjjjwrXVCaTIS4uDl27doWFhQWMjIwQFBSEGzduKMUUHR0NHx8f6Ovrw8LCAi1atEBycrJCm3f5vasqPnWea37S09MBALa2tvlu19L6vzQg77N95swZfPfddzAxMYGpqSk6deqE+/fvK+xX1H+j8vt98aHvRSKNE0RExVxgYKCwsrISixcvFvHx8WLLli1i9OjRYs2aNVKbkJAQ4eDgoLAfAOHg4CBq1qwpNm3aJDZv3izc3NyEhYWFGDRokGjevLnYtm2bWLVqlbC2thbe3t4iNzdX2t/BwUGEhIQoxePv7y/8/f2ln2/evCkAiJiYGCGEEH/99Zfo16+fACA2bdokjh49Ko4ePSqePHkihBBiwoQJYubMmWL79u0iPj5eREVFCScnJxEQEKDQT0hIiNDT0xOenp5i+vTpYs+ePWL06NFCJpOJcePGKZ3rmDFjpJ8vXbokSpQoIcqWLSuWL18utm/fLtq3by8AiClTpkjtYmJiBABx8+ZNhePt379fABD79+8XQgiRkZEhLC0tha+vr1i3bp04cOCAWLt2rejdu7e4ePFifi+bwnmo+7Xx9/cXlpaWws7OTsyZM0fs2rVL9O/fXwAQffv2LfTapKWlCXt7e+Hg4CAWLVok9uzZIyZMmCDkcrkIDQ2V2uW9rg4ODiIoKEhs27ZNrFy5UlhbWws3NzfRuXNn0a1bN/HHH3+IqKgoYWxsLIKCghT6njRpkpDJZKJbt25i27ZtYtOmTaJGjRrCyMhIXLhwQeEaqXqtX7x4IXbu3CkAiO7du0vvq2vXrgkhhDhw4IAYMmSI2LBhgzhw4IDYvHmzCA4OFgYGBuLSpUtCCCGePHkiveY//fSTdIy//vpLCCHEmDFjxNt/OvTs2VMAEOHh4WLnzp0iKipKWFlZCXt7e3H//n2l18TV1VVERUWJuLg40adPHwFALFu2rND3iBBCdO7cWchkMhEWFiZ+//138ccff4hJkyaJ2bNnv1csFhYWwt7eXsydO1fs379fHDhwQHpNS5cuLQICAsSGDRvE7t27xc2bN8W+ffuEnp6eqF27tli7dq3YuXOnCA0NVfhsC6H82RBCiPXr14vRo0eLzZs3iwMHDog1a9YIf39/YWVlJcV17949MXnyZAFAzJ8/X7r29+7dk94Db35OcnNzRWBgoNDR0RGjRo0Su3fvFtOnTxdGRkaiUqVK4sWLF1JbBwcHUaZMGVGuXDmxfPlysWvXLtG6dWsBQBw4cKDQ6/78+XPh7e0tjIyMxPTp08Xu3bvFqFGjhI6OjmjSpIkQ4vV77+jRo6JSpUrC2dlZ6XdafhwcHIStra1wdnYW0dHRYv/+/eLEiRNF/vz99ttvAoDo16+f2L17t9izZ4+IiooS/fv3l9rkvZft7e2lz+LixYtFqVKlhL29vXj06JHUNu/at2/fXmzfvl0sX75cODs7C1NTU3HlyhWpXVF/7xYlPnWea34OHz4sAIiqVauKzZs3iwcPHhTYNu+z7eDgIIYNGyZ27dolfvnlF+n99PLlS6ltUf+Nyu/3xYe8F4k+BUyeiajYMzY2FgMHDiy0TUEJmo2NjcjIyJDWbdmyRQAQFStWVEjGZs2aJQCIs2fPSuveN3kWQohp06blm5S+LTc3V7x69UocOHBAABB//vmnwjkBEOvWrVPYp0mTJsLd3V3pXN9MENu1ayfkcrlITU1VaNe4cWNhaGgoHj9+LIQoevJ88uRJAUBs2bKl0PPJz8d4bfz9/QUA8fvvvysct0ePHkJLS0vcunVLoa83r02vXr2EsbGxQhshhJg+fboAICW1ea+rj4+PyMnJUYqnWbNmCvsPHDhQAJASitTUVKGjoyP69eun0O7ff/8VNjY2ok2bNgrXqCiv9f3795XOpyDZ2dni5cuXwtXVVQwaNEhan5iYqPR+zfP2H8PJyckCgOjTp49Cu+PHjwsA4scff5TW5b0mx48fV2hbrlw5ERgYWGisBw8eFADEyJEjC2zzPrHs3btXoW3ea1q2bFmFZEEIITw8PESlSpXEq1evFNY3bdpU2NraSu+B/JLnt2VnZ4uMjAxhZGSkkPyvX7++wH3f/pzkfVEydepUhXZr164VAMTixYuldQ4ODkJfX1/hPf38+XNhYWEhevXqVWCcQggRFRWV73tvypQpAoDYvXu3tM7f31+UL1++0OO9GZO2tra4fPmywvqifv7Cw8OFmZlZoX3k/f5q0aKFwvojR44IAGLixIlCCCEePXokDAwMpC8D8qSmpgq5XC46dOggrSvqZ7Eo8anzXAsyfvx4oaenJwAIAMLJyUn07t1b4d8SIf7vs/3m7wIhhFi1apUAIFauXJnv8Qv7N6qg5Pl934tEnwIO2yaiYq9atWqIjY3FxIkTcezYMbx69arI+wYEBMDIyEj62dPTEwDQuHFjheFmeevfHGb5sdy4cQMdOnSAjY0NtLW1oaurC39/fwBQGkIok8kQFBSksM7b21tlnPv27UO9evVgb2+vsD40NBTPnj3D0aNH3ylmFxcXmJubY8SIEYiKisLFixffaf/8fOhrU6JECTRr1kxhXYcOHZCbm4uDBw8W2O+2bdsQEBAAOzs7ZGdnS0vjxo0BAAcOHFBo36RJE4Xhj3nxfPvttwrt8tanpqYCAHbt2oXs7Gx06dJFoR99fX34+/srDXl939c6T3Z2NiZPnoxy5cpBT08POjo60NPTw9WrV5XeV0WVN5z57dsXqlWrBk9PT+zdu1dhvY2NDapVq/bO5/DHH38AAPr27au2WMzNzVG3bt18j9WsWTPo6upKP1+7dg2XLl2S7uV98/Vq0qQJ0tLScPny5QJjy8jIwIgRI+Di4gIdHR3o6OjA2NgYmZmZ733t9+3bB0D5fFu3bg0jIyOl861YsSK++uor6Wd9fX24ubkV6XeFkZERWrVqpbA+r9+3+3kX3t7ecHNzU1hX1M9ftWrV8PjxY7Rv3x6///47Hjx4UGA/b9+DXbNmTTg4OEjvmaNHj+L58+dK19Le3h5169ZVOseifBaLEt/HONe3jRo1CqmpqYiOjkavXr1gbGyMqKgoVKlSBb/99ptS+7evVZs2baCjoyNdK+Dd/o3Kz/u+F4k+BUyeiajYW7t2LUJCQvDrr7+iRo0asLCwQJcuXXD37l2V+749G6yenl6h61+8eKGmqPOXkZGB2rVr4/jx45g4cSLi4+ORmJiITZs2AXg9oc6bDA0Noa+vr7BOLperjDM9PT3f++Ds7Oyk7e/C1NQUBw4cQMWKFfHjjz+ifPnysLOzw5gxY97py4w3fehrY21trXRMGxsbAIWf3z///IP//e9/0NXVVVjKly8PAEp/uL5vnP/88w8AoGrVqkp9rV27Vqmf932t8wwePBijRo1CcHAw/ve//+H48eNITEyUZuB9H4XdU2lnZ6d0nS0tLZXayeVylf3fv38f2tra0uunjlgKug80v215r9XQoUOVXqs+ffoAUH5fvKlDhw6YN28ewsLCsGvXLpw4cQKJiYmwsrL6oGuvo6Mj3eeeRyaTwcbGRm3XPj09HTY2Nkr3rpYqVQo6Ojrv/LviTfm9BkX9/HXu3BnR0dG4desWWrZsiVKlSuHrr79GXFyc0jHze9+8eY3e9b1TlM9iUeL7GOeaH2tra3Tt2hVRUVE4e/YsDhw4AD09vXxnb3/7Wuno6MDS0lK6Bu/6b1R+3ve9SPQp4GzbRFTslSxZErNmzcKsWbOQmpqKrVu34ocffsC9e/ewc+fOj9avvr6+0gQxwOs/eEqWLPlex9y3bx/u3LmD+Ph46Zt8AGp/HrSlpSXS0tKU1t+5cwcApPjz/kB8+zzzSxS8vLywZs0aCCFw9uxZxMbGYvz48TAwMMAPP/yg1viLIi/heVPeFyr5/fGWp2TJkvD29sakSZPy3Z73BcOHyrvGGzZsgIODg1qOWZiVK1eiS5cumDx5ssL6Bw8evPfj0vKuY1pamtKsunfu3Hnvz8HbrKyskJOTg7t37xaY9L5rLIU9f/btbXn7RkRE4Lvvvst3H3d393zXP3nyBNu2bcOYMWMUPgdZWVl4+PBhgTGoYmlpiezsbNy/f18hgRZC4O7du9LEbx/K0tISx48fhxBC4brcu3cP2dnZH/Qa5/cavMvnr2vXrujatSsyMzNx8OBBjBkzBk2bNsWVK1cUPlP5fZF69+5duLi4SOcIoMDfie97jqri+xjnWhTffPMNGjZsiC1btuDevXsoVaqUtO3u3bsoXbq09HN2djbS09Ola/Rf/RtF9Kli5ZmIPitfffUVwsPD0aBBA5w+ffqj9uXo6IizZ88qrLty5Uqhwzfz5D325u1v2vP+mHz7sTiLFi36kFCV1KtXT/oj6E3Lly+HoaGh9GirvNl93z7PN2c4fptMJoOPjw9mzpwJMzOzj/46FOTff/9VinP16tXQ0tLCN998U+B+TZs2lR654+vrq7SoK3kODAyEjo4Orl+/nm8/vr6+73zMgt5XwOvX5e331fbt2/H3338X+Rhvyxv2vHLlSoX1iYmJSE5ORr169YoefCHyhrEuXLhQI7G4u7vD1dUVf/75Z4GvVYkSJfLdVyaTQQihdO1//fVXpZnf3+Xa553P2+e7ceNGZGZmqu3a16tXDxkZGdiyZYvC+uXLlyvEoS7v8/kzMjJC48aNMXLkSLx8+RIXLlxQ2L5q1SqFnxMSEnDr1i3pqQg1atSAgYGB0rW8ffu2dIvLhygovo9xrm/6559/8p3JPicnB1evXoWhoaHSF2dvX6t169YhOztbulb/1b9RRJ8qVp6JqFh78uQJAgIC0KFDB3h4eKBEiRJITEzEzp07C6wQqUvnzp3RqVMn9OnTBy1btsStW7cwdepUpWGU+fHy8gIAzJ49GyEhIdDV1YW7uztq1qwJc3Nz9O7dG2PGjIGuri5WrVqFP//8U62xjxkzRrrfbvTo0bCwsMCqVauwfft2TJ06FaampgBeDyl2d3fH0KFDkZ2dDXNzc2zevBmHDx9WON62bduwYMECBAcHw9nZGUIIbNq0CY8fP0aDBg3UGntRWVpa4vvvv0dqairc3NywY8cOLFmyBN9//73C/XZvGz9+POLi4lCzZk30798f7u7uePHiBVJSUrBjxw5ERUWp5dmljo6OGD9+PEaOHIkbN26gUaNGMDc3xz///IMTJ07AyMhIenRPUZUoUQIODg74/fffUa9ePVhYWKBkyZLS42FiY2Ph4eEBb29vnDp1CtOmTVM6l7Jly8LAwACrVq2Cp6cnjI2NYWdnl+8f8u7u7ujZsyfmzp0LLS0tNG7cGCkpKRg1ahTs7e0xaNCgD7pGeWrXro3OnTtj4sSJ+Oeff9C0aVPI5XKcOXMGhoaG6Nev30ePZdGiRWjcuDECAwMRGhqK0qVL4+HDh0hOTsbp06exfv36fPczMTHBN998g2nTpkmvxYEDB7B06VKlxKVChQoAgMWLF6NEiRLQ19eHk5NTviMlGjRogMDAQIwYMQJPnz6Fn58fzp49izFjxqBSpUro3LnzB51vni5dumD+/PkICQlBSkoKvLy8cPjwYUyePBlNmjRB/fr11dJPnqJ+/nr06AEDAwP4+fnB1tYWd+/eRWRkJExNTZWq7idPnkRYWBhat26Nv/76CyNHjkTp0qWlIfdmZmYYNWoUfvzxR3Tp0gXt27dHeno6xo0bB319fYwZM+adz6Mo8X2Mc33TihUrsGjRInTo0AFVq1aFqakpbt++jV9//RUXLlzA6NGjpdtJ8mzatAk6Ojpo0KABLly4gFGjRsHHxwdt2rQBgP/s3yiiT5ZGpysjIvpAL168EL179xbe3t7CxMREGBgYCHd3dzFmzBiRmZkptStoRue3H1uUN9vutGnTFNbnzaC7fv16aV1ubq6YOnWqcHZ2Fvr6+sLX11fs27evSLNtCyFERESEsLOzE1paWgoz7CYkJIgaNWoIQ0NDYWVlJcLCwsTp06eVjhESEiKMjIyUrkl+M5winxmYz507J4KCgoSpqanQ09MTPj4++c6wfOXKFdGwYUNhYmIirKysRL9+/cT27dsVYr506ZJo3769KFu2rDAwMBCmpqaiWrVqIjY2Vul4b/sYr03erL/x8fHC19dXyOVyYWtrK3788Uel2ZLzuzb3798X/fv3F05OTkJXV1dYWFiIKlWqiJEjR0ozgL9LPEL838y/iYmJCuu3bNkiAgIChImJiZDL5cLBwUG0atVK7NmzR+EaFfW13rNnj6hUqZKQy+UCgDQj/KNHj0T37t1FqVKlhKGhoahVq5Y4dOiQ0vtViNePxvHw8BC6uroK1ye//nJycsSUKVOEm5ub0NXVFSVLlhSdOnWSHm+Vp6CZmPN7/fOTk5MjZs6cKSpUqCD09PSEqampqFGjhvjf//6ntlgKek3z/Pnnn6JNmzaiVKlSQldXV9jY2Ii6deuKqKgoqU1+s23fvn1btGzZUpibm4sSJUqIRo0aifPnz+c7Y/+sWbOEk5OT0NbWVvjM53ednj9/LkaMGCEcHByErq6usLW1Fd9//73CI5iEeD3D8bfffqt0Pvm99vlJT08XvXv3Fra2tkJHR0c4ODiIiIgIhcdh5R3vXWbbzi8mIYr2+Vu2bJkICAgQ1tbWQk9PT9jZ2Yk2bdoozLqf95nbvXu36Ny5szAzM5Nm1b569apSv7/++qvw9vaW3l/NmzdXeGScEEX/LBYlPnWea34uXrwohgwZInx9fYWVlZXQ0dER5ubmwt/fX6xYsSLf+E+dOiWCgoKEsbGxKFGihGjfvr34559/FNoW9d+ogmbb/pD3IpGmyYQQ4r9J04mIiP4bderUwYMHD3D+/HlNh0JEGhIbG4uuXbsiMTHxvW6D+JKMHTsW48aNw/3799U2VwHR54j3PBMRERERERGpwOSZiIiIiIiISAUO2yYiIiIiIiJSgZVnIiIiIiIiKjYOHjyIoKAg2NnZQSaTKT1OLz8HDhxAlSpVoK+vD2dnZ0RFRb1zv0yeiYiIiIiIqNjIzMyEj48P5s2bV6T2N2/eRJMmTVC7dm2cOXMGP/74I/r374+NGze+U78ctk1ERERERETFkkwmw+bNmxEcHFxgmxEjRmDr1q1ITk6W1vXu3Rt//vknjh49WuS+WHkmIiIiIiIijcrKysLTp08VlqysLLUc++jRo2jYsKHCusDAQJw8eRKvXr0q8nF01BINEX2SQoJXaDoEtXpUykjTIahNhplc0yGojfFj9fzDRuoXMydD0yGojcXl65oOQa1iKx3WdAiUj/ZjDTUdglo1yeit6RDUpvP0XzQdgtp0zd2r6RAKpMm/HZ0qXse4ceMU1o0ZMwZjx4794GPfvXsX1tbWCuusra2RnZ2NBw8ewNbWtkjHYfJMREREREREGhUREYHBgwcrrJPL1VdskMlkCj/n3b389vrCMHkmIiIiIiIi5GoVPZFUN7lcrtZk+U02Nja4e/euwrp79+5BR0cHlpaWRT4O73kmIiIiIiKiz1aNGjUQFxensG737t3w9fWFrq5ukY/D5JmIiIiIiIggtGQaW95FRkYGkpKSkJSUBOD1o6iSkpKQmpoK4PUQ8C5dukjte/fujVu3bmHw4MFITk5GdHQ0li5diqFDh75Tvxy2TURERERERMXGyZMnERAQIP2cd690SEgIYmNjkZaWJiXSAODk5IQdO3Zg0KBBmD9/Puzs7DBnzhy0bNnynfpl8kxERERERETFRp06daQJv/ITGxurtM7f3x+nT5/+oH6ZPBMRERERERFytTU3YVhxwHueiYiIiIiIiFRg5ZmIiIiIiIg0+qiq4oCVZyIiIiIiIiIVmDwTERERERERqcBh20RERERERMRh2yqw8kxERERERESkAivPREREREREBMHKc6FYeSYiIiIiIiJSgZVnIiIiIiIiQq42K8+FYeWZiIiIiIiISAUmz0REREREREQqFLvkeezYsahYsaKmwyjUpxDj4sWLYW9vDy0tLcyaNes/7Ts2NhZmZmYaP8anTiaTYcuWLUVu/ym8r4iIiIjo85WrJdPYUhx8EslzQkICtLW10ahRI430n5KSAplMhqSkpHfeN78EaOjQodi7d696gntDTk4OZs6cCW9vb+jr68PMzAyNGzfGkSNHFNo9ffoU4eHhGDFiBP7++280bNgQMpkMx48fV2j39ddfQy6X49mzZ9K6ly9fwtDQEIsXL1Z7/J+60NBQyGQyyGQy6OrqwtnZGUOHDkVmZuYHHbegpDctLQ2NGzf+oGMTEREREdF/45NInqOjo9GvXz8cPnwYqampmg7ngxkbG8PS0lKtxxRCoF27dhg/fjz69++P5ORkHDhwAPb29qhTp45CAp+amopXr17h22+/ha2tLcqVKwdbW1vs379fapORkYEzZ86gVKlSSEhIkNYfP34cz58/R0BAwHvF+erVq/c+x09Bo0aNkJaWhhs3bmDixIlYsGABhg4d+l7HEkIgOzu7wO02NjaQy+XvGyoRERERkVrlamlpbCkONB5lZmYm1q1bh++//x5NmzZFbGyswvaff/4Z1tbWKFGiBLp3744XL14obE9MTESDBg1QsmRJmJqawt/fH6dPn1ZoI5PJsHDhQjRu3BgGBgZwcnLC+vXrpe1OTk4AgEqVKkEmk6FOnTpFOrajoyMAoEWLFpDJZNLPb1cac3NzMX78eJQpUwZyuRwVK1bEzp07pe15le9NmzYhICAAhoaG8PHxwdGjR6U269atw4YNG7B8+XKEhYXByckJPj4+WLx4MZo1a4awsDBkZmYiNjYWXl5eAABnZ2fIZDKkpKSgTp06iI+Pl4536NAhuLm5oVmzZgrr4+PjUbp0abi6uhY57nXr1qFOnTrQ19fHypUrlV7j9PR0VKtWDc2aNcOLFy8QHx8PmUyG7du3w8fHB/r6+vj6669x7tw5pX3zXL9+Hc2bN4e1tTWMjY1RtWpV7NmzR6FNVlYWhg8fDnt7e8jlcri6umLp0qXS9osXL6JJkyYwNjaGtbU1OnfujAcPHigcQy6Xw8bGBvb29ujQoQM6duwofTGxcuVK+Pr6okSJErCxsUGHDh1w7949hWsnk8mwa9cu+Pr6Qi6XY8WKFRg3bhz+/PNPqaqd9x5/e9TCiBEj4ObmBkNDQzg7O2PUqFHF/ssIIiIiIqLPhcaT57Vr18Ld3R3u7u7o1KkTYmJiIIQA8DphHDNmDCZNmoSTJ0/C1tYWCxYsUNj/33//RUhICA4dOoRjx47B1dUVTZo0wb///qvQbtSoUWjZsiX+/PNPdOrUCe3bt0dycjIA4MSJEwCAPXv2IC0tDZs2bSrSsRMTEwEAMTExSEtLk35+2+zZszFjxgxMnz4dZ8+eRWBgIJo1a4arV68qtBs5ciSGDh2KpKQkuLm5oX379lLlcvXq1XBzc0NQUJDS8YcMGYL09HTExcWhbdu2UlJ54sQJpKWlwd7eHgEBATh8+LB0vP3796NOnTrw9/dXqEjv379fqjoXNe4RI0ZI1fDAwECFbbdv30bt2rXh4eGBTZs2QV9fX9o2bNgwTJ8+HYmJiShVqhSaNWtWYLKYkZGBJk2aYM+ePThz5gwCAwMRFBSkMFKhS5cuWLNmDebMmYPk5GRERUXB2NgYwOsh0v7+/qhYsSJOnjyJnTt34p9//kGbNm3y7S+PgYGBFNPLly8xYcIE/Pnnn9iyZQtu3ryJ0NBQpX2GDx+OyMhIJCcno2HDhhgyZAjKly+PtLQ0pKWloW3btvn2VaJECcTGxuLixYuYPXs2lixZgpkzZxYaHxERERER/Tc0/pznpUuXolOnTgBeD5nNyMjA3r17Ub9+fcyaNQvdunVDWFgYAGDixInYs2ePQvW5bt26CsdbtGgRzM3NceDAATRt2lRa37p1a+k4EyZMQFxcHObOnYsFCxbAysoKAGBpaQkbG5siHztvPzMzM4X93jZ9+nSMGDEC7dq1AwBMmTIF+/fvx6xZszB//nyp3dChQ/Htt98CAMaNG4fy5cvj2rVr8PDwwJUrV+Dp6Znv8fPWX7lyBcHBwdKQcSsrKymuOnXqIDMzE4mJiahRowbi4+MxbNgwfPPNN+jcuTOePXsGHR0dHDt2DPPmzXunuAcOHIjvvvtOKa4rV66gQYMGaN68OWbPng2ZTHEigDFjxqBBgwYAgGXLlqFMmTLYvHlzvgmtj48PfHx8pJ8nTpyIzZs3Y+vWrQgPD8eVK1ewbt06xMXFoX79+gBeV97zLFy4EJUrV8bkyZOlddHR0bC3t8eVK1fg5uam1OeJEyewevVq1KtXDwDQrVs3aZuzszPmzJmDatWqISMjQ0rSAWD8+PHSeQGvh/Hr6OgU+h4BgJ9++kn6f0dHRwwZMgRr167F8OHDC90vT1ZWFrKyshTW5eS8gra2bpH2JyIiIqIvmygmE3dpikYrz5cvX8aJEyek5ExHRwdt27ZFdHQ0ACA5ORk1atRQ2Oftn+/du4fevXvDzc0NpqamMDU1RUZGhtK90/kdJ6/yXJCiHrswT58+xZ07d+Dn56ew3s/PT6l/b29v6f9tbW2lGIrq7eT0Ta6urihTpgzi4+Px9OlTnDlzBv7+/rC2toaTkxOOHDmCY8eO4fnz56hbt+47xe3r66vU3/Pnz1GrVi0EBwdjzpw5+cb25mtiYWEBd3f3Al+TzMxMDB8+HOXKlYOZmRmMjY1x6dIl6bVISkqCtrY2/P39893/1KlT2L9/P4yNjaXFw8MDwOsh4Xm2bdsGY2Nj6Ovro0aNGvjmm28wd+5cAMCZM2fQvHlzODg4oESJEtLw/rffD/ldj6LYsGEDatWqBRsbGxgbG2PUqFHv9F6LjIyU3qd5y7mr/3uvWIiIiIiISJFGK89Lly5FdnY2SpcuLa0TQkBXVxePHj0q0jFCQ0Nx//59zJo1Cw4ODpDL5ahRowZevnypct/Cks0PPbaqvoQQSut0dXWV2ufm5gIA3NzccPHixXyPnZdwurq6FhpDnTp1sH//fnh7e8PV1RWlSpUCAGnotlwuh4ODAxwdHfH06dMix21kZKTUl1wuR/369bF9+3YMGzYMZcqUKTS2PAW9JsOGDcOuXbswffp0uLi4wMDAAK1atZJeCwMDg0KPm5ubi6CgIEyZMkVpW94XFQAQEBCAhQsXQldXF3Z2dtJrkpmZiYYNG6Jhw4ZYuXIlrKyskJqaisDAQKX3Q37XQ5Vjx46hXbt2GDduHAIDA2Fqaoo1a9ZgxowZRT5GREQEBg8erLCuT8cN7xwLEREREX2ZcrVZeS6MxirP2dnZWL58OWbMmIGkpCRp+fPPP+Hg4IBVq1bB09MTx44dU9jv7Z8PHTqE/v37o0mTJihfvjzkcrnSJFD57Xfs2DGp8qinpwfg9aOg3vXYurq6Svu9ycTEBHZ2djh8+LDC+oSEhAKHYeenXbt2uHr1Kv73P+VK4owZM2BpaakwVDg/AQEBSEhIQFxcnFQ1BV4nz/Hx8YiPj5eGqn9o3FpaWlixYgWqVKmCunXr4s6dO0pt3nxNHj16hCtXrkivydsOHTqE0NBQtGjRAl5eXrCxsUFKSoq03cvLC7m5uThw4EC++1euXBkXLlyAo6MjXFxcFJY3k10jIyO4uLjAwcFB4cuMS5cu4cGDB/j555+le7iLOipAT0+v0PcIABw5cgQODg4YOXIkfH194erqilu3bhXp+HnkcjlMTEwUFg7ZJiIiIiJSD40lz9u2bcOjR4/QvXt3VKhQQWFp1aoVli5digEDBiA6OhrR0dG4cuUKxowZgwsXLigcx8XFBStWrEBycjKOHz+Ojh075luFXL9+vcJxTpw4gfDwcABAqVKlYGBgIE0i9eTJkyIf29HREXv37sXdu3cLrJYPGzYMU6ZMwdq1a3H58mX88MMPSEpKwoABA4p8vdq1a4cWLVogJCQES5cuRUpKCs6ePYtevXph69at+PXXX1VWPAMCApCZmYno6GiF4c3+/v44efIkjh07pvCIqg+NW1tbG6tWrYKPjw/q1q2Lu3fvKmwfP3489u7di/PnzyM0NBQlS5ZEcHBwvsdycXHBpk2bpC9YOnToIFXlgdevQ0hICLp16yZN5hUfH49169YBAPr27YuHDx+iffv2OHHiBG7cuIHdu3ejW7duKhNbAPjqq6+gp6eHuXPn4saNG9i6dSsmTJhQpOvg6OiImzdvIikpCQ8ePFC6Lznv/FJTU7FmzRpcv34dc+bMwebNm4t0fCIiIiIidcjVkmlsKQ40ljwvXboU9evXh6mpqdK2li1bIikpCa6urhg9ejRGjBiBKlWq4NatW/j+++8V2kZHR+PRo0eoVKkSOnfujP79+0vDkd80btw4rFmzBt7e3li2bBlWrVqFcuXKAXh9r/WcOXOwaNEi2NnZoXnz5kU+9owZMxAXFwd7e3tUqlQp33Pt378/hgwZgiFDhsDLyws7d+7E1q1bVQ6zflPeI6FGjhyJmTNnwsPDA7Vr18atW7ewf//+ApPONzk5OcHBwQH//vuvQvJcunRpfPXVV3jx4oVC8qyOuHV0dPDbb7+hfPnyqFu3rkK19ueff8aAAQNQpUoVpKWlYevWrdIogLfNnDkT5ubmqFmzJoKCghAYGIjKlSsrtFm4cCFatWqFPn36wMPDAz169EBmZiYAwM7ODkeOHEFOTg4CAwNRoUIFDBgwAKamptAqwnPlrKysEBsbi/Xr16NcuXL4+eefMX369CJdg5YtW6JRo0YICAiAlZUVfvvtN6U2zZs3x6BBgxAeHo6KFSsiISEBo0aNKtLxiYiIiIjo45OJvOdCfcZkMhk2b95cpASTPr74+HgEBATg0aNHMDMz03Q4n7WQ4BWaDkGtHpV69/vJP1UZZnJNh6A2xo+VR1PQpyFmToamQ1Abi8vXVTcqRmIrHVbdiP5z7ccaajoEtWqS0VvTIahN5+m/aDoEtemau1fTIRSoSd8tGut7x/xgjfVdVBp/VBURERERERFpHh9VVTiNPqqKiIiIiIiIqDj4IirPX8DI9GKlTp06fE2IiIiIiD4xxWXiLk1h5ZmIiIiIiIhIBSbPRERERERERCp8EcO2iYiIiIiIqHC52hy2XRhWnomIiIiIiIhUYOWZiIiIiIiIOGGYCqw8ExEREREREanAyjMRERERERFBsPJcKFaeiYiIiIiIiFRg8kxERERERESkAodtExEREREREScMU4GVZyIiIiIiIiIVWHkmIiIiIiIiVp5VYOWZiIiIiIiISAUmz0REREREREQqcNg2ERERERERIVebw7YLw8ozERERERERkQqsPBMREREREREEJwwrFJNnos9Y7PxHmg5BrUL7ajoC9TF+8kLTIaiNblaOpkOgAhjP36LpENSnlpumI6ACfJvZUdMhqE3Kt79rOgS12rviuqZDUJscD2tNh0DE5JmIiIiIiIj4qCpVeM8zERERERERkQpMnomIiIiIiIhU4LBtIiIiIiIi4rBtFVh5JiIiIiIiIlKBlWciIiIiIiKC0GbluTCsPBMRERERERGpwOSZiIiIiIiISAUO2yYiIiIiIiJOGKYCK89EREREREREKrDyTERERERERAArz4Vi5ZmIiIiIiIhIBVaeiYiIiIiICFpaQtMhfNJYeSYiIiIiIiJSgckzERERERERkQoctk1ERERERETQ0uaw7cKw8kxERERERESkAivPRERERERExAnDVGDlmT4JMpkMW7Zs0XQYRERERERE+WLyTP+Ju3fvol+/fnB2doZcLoe9vT2CgoKwd+9etfcVGxsLmUwGmUwGbW1tmJub4+uvv8b48ePx5MkTtfdHRERERESfPw7bpo8uJSUFfn5+MDMzw9SpU+Ht7Y1Xr15h165d6Nu3Ly5duqT2Pk1MTHD58mUIIfD48WMkJCQgMjISMTExOHLkCOzs7NTep7q8fPkSenp6mg6DiIiIiL4wHLZdOFae6aPr06cPZDIZTpw4gVatWsHNzQ3ly5fH4MGDcezYsXz3OXfuHOrWrQsDAwNYWlqiZ8+eyMjIkLbHx8ejWrVqMDIygpmZGfz8/HDr1i1pu0wmg42NDWxtbeHp6Ynu3bsjISEBGRkZGD58uNRu586dqFWrFszMzGBpaYmmTZvi+vXr0va6desiPDxcIbb09HTI5XLs27cPAJCVlYXhw4fD3t4ecrkcrq6uWLp0KQAgJycH3bt3h5OTEwwMDODu7o7Zs2crHC80NBTBwcGIjIyEnZ0d3NzcAAB///032rZtC3Nzc1haWqJ58+ZISUl5j1eAiIiIiIg+FJNn+qgePnyInTt3om/fvjAyMlLabmZmprTu2bNnaNSoEczNzZGYmIj169djz549UhKbnZ2N4OBg+Pv74+zZszh69Ch69uwJmUxWaCylSpVCx44dsXXrVuTk5AAAMjMzMXjwYCQmJmLv3r3Q0tJCixYtkJubCwAICwvD6tWrkZWVJR1n1apVsLOzQ0BAAACgS5cuWLNmDebMmYPk5GRERUXB2NgYAJCbm4syZcpg3bp1uHjxIkaPHo0ff/wR69atU4ht7969SE5ORlxcHLZt24Znz54hICAAxsbGOHjwIA4fPgxjY2M0atQIL1++LOLVJyIiIiIqOi1tobGlOOCwbfqorl27BiEEPDw8irzPqlWr8Pz5cyxfvlxKuOfNm4egoCBMmTIFurq6ePLkCZo2bYqyZcsCADw9PYt0bA8PD/z7779IT09HqVKl0LJlS4XtS5cuRalSpXDx4kVUqFABLVu2RL9+/fD777+jTZs2AICYmBiEhoZCJpPhypUrWLduHeLi4lC/fn0AgLOzs3Q8XV1djBs3TvrZyckJCQkJWLdunXQ8ADAyMsKvv/4qDdeOjo6GlpYWfv31V+lLgZiYGJiZmSE+Ph4NGzYs8vUkIiIiIqIPx8ozfVRCvP4WSVVV+E3Jycnw8fFRqFT7+fkhNzcXly9fhoWFBUJDQxEYGIigoCDMnj0baWlp7xXP9evX0aFDBzg7O8PExAROTk4AgNTUVACAXC5Hp06dEB0dDQBISkrCn3/+idDQUOlnbW1t+Pv7F9hnVFQUfH19YWVlBWNjYyxZskQ6fh4vLy+F+5xPnTqFa9euoUSJEjA2NoaxsTEsLCzw4sULhWHlb8rKysLTp08Vlqys7CJdFyIiIiIiKhyTZ/qoXF1dIZPJkJycXOR9hBAFJttvVmGPHj2KmjVrYu3atXBzcyvw/uk3JScnw8TEBJaWlgCAoKAgpKenY8mSJTh+/DiOHz8OAApDo8PCwhAXF4fbt28jOjoa9erVg4ODAwDAwMCg0P7WrVuHQYMGoVu3bti9ezeSkpLQtWtXpaHXbw9pz83NRZUqVZCUlKSwXLlyBR06dMi3r8jISJiamioskfPiVF4TIiIiIiLg9YRhmlqKAybP9FFZWFggMDAQ8+fPR2ZmptL2x48fK60rV64ckpKSFNofOXIEWlpa0mRaAFCpUiVEREQgISEBFSpUwOrVqwuN5d69e1i9ejWCg4OhpaWF9PR0JCcn46effkK9evXg6emJR48eKe3n5eUFX19fLFmyBKtXr0a3bt0UtuXm5uLAgQP59nno0CHUrFkTffr0QaVKleDi4lJg5fhNlStXxtWrV1GqVCm4uLgoLKampvnuExERgSdPnigsEeENVPZFRERERESqMXmmj27BggXIyclBtWrVsHHjRly9ehXJycmYM2cOatSoodS+Y8eO0NfXR0hICM6fP4/9+/ejX79+6Ny5M6ytrXHz5k1ERETg6NGjuHXrFnbv3o0rV64o3PcshMDdu3eRlpaG5ORkREdHo2bNmjA1NcXPP/8MANIs1osXL8a1a9ewb98+DB48ON9zCAsLw88//4ycnBy0aNFCWu/o6IiQkBB069YNW7Zswc2bNxEfHy9NCObi4oKTJ09i165duHLlCkaNGoXExESV16xjx44oWbIkmjdvjkOHDuHmzZs4cOAABgwYgNu3b+e7j1wuh4mJicIil3NaAyIiIiIqGlaeC8fkmT46JycnnD59GgEBARgyZAgqVKiABg0aYO/evVi4cKFSe0NDQ+zatQsPHz5E1apV0apVK9SrVw/z5s2Ttl+6dAktW7aEm5sbevbsifDwcPTq1Us6xtOnT2Fra4vSpUujRo0aWLRoEUJCQnDmzBnY2toCALS0tLBmzRqcOnUKFSpUwKBBgzBt2rR8z6F9+/bQ0dFBhw4doK+vr7Bt4cKFaNWqFfr06QMPDw/06NFDqpr37t0b3333Hdq2bYuvv/4a6enp6NOnj8prZmhoiIMHD+Krr77Cd999B09PT3Tr1g3Pnz+HiYlJ0S48ERERERGpjUzkzaBERAX666+/4OjoiMTERFSuXFnT4RSZ+HuOpkNQq9C+5poOQW1eybU1HYLa6GblaDoEKsDi2ps1HYLa6NVyU92oGImtoXoUUnHxbWZHTYegNg+//V3TIaiV+4p6mg5BbXJ2qZ7bprjQ6Vb4rYaaVP/XHRrre09YE431XVQc00lUiFevXiEtLQ0//PADqlevXqwSZyIiIiIiUh8O2yYqxJEjR+Dg4IBTp04hKipK0+EQEREREZGGsPJMVIg6deqAdzYQERER0ZdAS5t/9xaGlWciIiIiIiIiFVh5JiIiIiIiomLzyChNYeWZiIiIiIiISAUmz0REREREREQqcNg2ERERERERcdi2Cqw8ExEREREREanAyjMRERERERGx8qwCK89EREREREREKrDyTERERERERNDWZuW5MKw8ExEREREREanA5JmIiIiIiIhIBQ7bJiIiIiIiIk4YpgIrz0REREREREQqsPJMRERERERErDyrwMozERERERERkQpMnomIiIiIiIhU4LBtIiIiIiIighaf81woJs9En7OcbE1HQAXQzcrRdAj0BZBpyTQdgvpocbDcpypX8PfZJ0v2GX1utD+jc6Fii8kzERERERER8XtKFXh5iIiIiIiIiFRg5ZmIiIiIiIj4qCoVWHkmIiIiIiIiUoHJMxEREREREZEKHLZNREREREREHLatAivPRERERERERCqw8kxERERERETQ0mbluTCsPBMRERERERGpwOSZiIiIiIiISAUO2yYiIiIiIiJOGKYCK89EREREREREKrDyTERERERERKw8q8DKMxEREREREZEKrDwTERERERERK88qsPJMREREREREpAKTZyIiIiIiIip2FixYACcnJ+jr66NKlSo4dOhQoe1XrVoFHx8fGBoawtbWFl27dkV6enqR+2PyTERERERERNDSFhpb3tXatWsxcOBAjBw5EmfOnEHt2rXRuHFjpKam5tv+8OHD6NKlC7p3744LFy5g/fr1SExMRFhYWNGvzztHSURERERERKRBv/zyC7p3746wsDB4enpi1qxZsLe3x8KFC/Ntf+zYMTg6OqJ///5wcnJCrVq10KtXL5w8ebLIfTJ5pi+KTCbDli1b/tM+U1JSIJPJkJSUVOR9YmNjYWZm9tFiIiIiIiJ6m5aW0NiSlZWFp0+fKixZWVn5xvny5UucOnUKDRs2VFjfsGFDJCQk5LtPzZo1cfv2bezYsQNCCPzzzz/YsGEDvv3226Jfn6JfSqJP3927d9GvXz84OztDLpfD3t4eQUFB2Lt3r9r7KizBfTNJt7e3R1paGipUqKD2GIiIiIiIPgeRkZEwNTVVWCIjI/Nt++DBA+Tk5MDa2lphvbW1Ne7evZvvPjVr1sSqVavQtm1b6OnpwcbGBmZmZpg7d26RY2TyTJ+NlJQUVKlSBfv27cPUqVNx7tw57Ny5EwEBAejbt6/G4tLW1oaNjQ10dPhkOCIiIiKi/ERERODJkycKS0RERKH7yGQyhZ+FEErr8ly8eBH9+/fH6NGjcerUKezcuRM3b95E7969ixwjk2f6bPTp0wcymQwnTpxAq1at4ObmhvLly2Pw4ME4duxYvvucO3cOdevWhYGBASwtLdGzZ09kZGRI2+Pj41GtWjUYGRnBzMwMfn5+uHXr1jvFld+w7a1bt8LV1RUGBgYICAjAsmXLIJPJ8PjxY4V9d+3aBU9PTxgbG6NRo0ZIS0t7p76JiIiIiIpKW6a5RS6Xw8TERGGRy+X5xlmyZEloa2srVZnv3bunVI3OExkZCT8/PwwbNgze3t4IDAzEggULEB0dXeS/sZk802fh4cOH2LlzJ/r27QsjIyOl7fkNr3727BkaNWoEc3NzJCYmYv369dizZw/Cw8MBANnZ2QgODoa/vz/Onj2Lo0ePomfPngV+m1VUKSkpaNWqFYKDg5GUlIRevXph5MiR+cY3ffp0rFixAgcPHkRqaiqGDh36QX0TERERERV3enp6qFKlCuLi4hTWx8XFoWbNmvnu8+zZM2hpKaa/2traAF5XrIuC40jps3Dt2jUIIeDh4VHkfVatWoXnz59j+fLlUsI9b948BAUFYcqUKdDV1cWTJ0/QtGlTlC1bFgDg6empcIwnT57A2Nj4nWKNioqCu7s7pk2bBgBwd3fH+fPnMWnSJIV2r169QlRUlNR3eHg4xo8fX+Bxs7KylCZV0MvKhlzOjzkRERERqab1YTWi/9TgwYPRuXNn+Pr6okaNGli8eDFSU1OlYdgRERH4+++/sXz5cgBAUFAQevTogYULFyIwMBBpaWkYOHAgqlWrBjs7uyL1yb+q6bOQ923Ru1SFk5OT4ePjo1Cp9vPzQ25uLi5fvoxvvvkGoaGhCAwMRIMGDVC/fn20adMGtra2UvsSJUrg9OnTSsd2dXUtsN/Lly+jatWqCuuqVaum1M7Q0FBKnAHA1tYW9+7dK/C4kZGRGDdunMK60QMbYuygwAL3ISIiIiIqjtq2bYv09HSMHz9empx3x44dcHBwAACkpaUpPPM5NDQU//77L+bNm4chQ4bAzMwMdevWxZQpU4rcJ5Nn+iy4urpCJpMhOTkZwcHBRdqnsAkF8tbHxMSgf//+2LlzJ9auXYuffvoJcXFxqF69OgBAS0sLLi4u7xRrfv3mN1REV1dXKabChpRERERg8ODBCuv0/ol6p9iIiIiI6MulXYwqz8DrOY/69OmT77bY2Fildf369UO/fv3euz/e80yfBQsLCwQGBmL+/PnIzMxU2v72RFwAUK5cOSQlJSm0P3LkCLS0tODm5iatq1SpEiIiIpCQkIAKFSpg9erVHxSrh4cHEhMTFda9y8PZC5L/JAv8foyIiIiISB2YPNNnY8GCBcjJyUG1atWwceNGXL16FcnJyZgzZw5q1Kih1L5jx47Q19dHSEgIzp8/j/3796Nfv37o3LkzrK2tcfPmTURERODo0aO4desWdu/ejStXrijd9/yuevXqhUuXLmHEiBG4cuUK1q1bJ30z9qGTkRERERER0cfB5Jk+G05OTjh9+jQCAgIwZMgQVKhQAQ0aNMDevXuxcOFCpfaGhobYtWsXHj58iKpVq6JVq1aoV68e5s2bJ22/dOkSWrZsCTc3N/Ts2RPh4eHo1avXB8e5YcMGbNq0Cd7e3li4cKE023ZB0/ETEREREX1smnxUVXEgE0Wdl5uIPppJkyYhKioKf/31l1qPK1J/UevxNC20v5WmQyAqVpb4b9F0CGqjW8td0yGoVezXxzUdgto0zmin6RDU5nHTbZoOQa3cVzbQdAhqkxN3TNMhqI1OyEpNh1CgwUc/7PbED/FLjQ4a67uoeEMkkQYsWLAAVatWhaWlJY4cOYJp06ZJz5cmIiIiItKE4lIB1hQmz0QacPXqVUycOBEPHz7EV199hSFDhiAiIkLTYRERERERUQGYPBNpwMyZMzFz5kxNh0FEREREREXE5JmIiIiIiIigxWHbheJs20REREREREQqsPJMREREREREnDBMBVaeiYiIiIiIiFRg5ZmIiIiIiIhYeVaBlWciIiIiIiIiFZg8ExEREREREanAYdtEREREREQELZZWC8XLQ0RERERERKQCK89ERERERETECcNUYOWZiIiIiIiISAUmz0REREREREQqcNg2ERERERERcdi2Cqw8ExEREREREanAyjMRERERERFBi5XnQrHyTERERERERKQCk2ciIiIiIiIiFThsm+hzps2P+KfqlVxb0yGojW5WjqZDoAKIXKHpENQnN1fTEVABtGSfz++zz474jD43OZ/RuXzCtGWf0b8bHwErz0REREREREQqsCxFREREREREfFSVCqw8ExEREREREanAyjMRERERERGx8qwCK89EREREREREKjB5JiIiIiIiIlKBw7aJiIiIiIgIWhy2XShWnomIiIiIiIhUYOWZiIiIiIiIOGGYCqw8ExEREREREanA5JmIiIiIiIhIBQ7bJiIiIiIiIg7bVoGVZyIiIiIiIiIVWHkmIiIiIiIiPqpKBVaeiYiIiIiIiFRg5ZmIiIiIiIh4z7MKrDwTERERERERqcDkmYiIiIiIiEgFJs/0xZHJZNiyZYtGYxg7diwqVqyo0RiIiIiIiN6kLdPcUhwweabPzt27d9GvXz84OztDLpfD3t4eQUFB2Lt3r9r7io2NhUwmkxZbW1u0adMGN2/eLHS/oUOHfpR4iIiIiIjo4+CEYfRZSUlJgZ+fH8zMzDB16lR4e3vj1atX2LVrF/r27YtLly6pvU8TExNcvnwZQghcunQJvXr1QrNmzZCUlARtbW2FtkII5OTkwNjYGMbGxmqPhYiIiIjofRWXCrCmsPJMn5U+ffpAJpPhxIkTaNWqFdzc3FC+fHkMHjwYx44dy3efc+fOoW7dujAwMIClpSV69uyJjIwMaXt8fDyqVasGIyMjmJmZwc/PD7du3ZK2y2Qy2NjYwNbWFgEBARgzZgzOnz+Pa9euIT4+HjKZDLt27YKvry/kcjkOHTqkNGw7NDQUwcHBmDx5MqytrWFmZoZx48YhOzsbw4YNg4WFBcqUKYPo6OiPdu2IiIiIiKhgTJ7ps/Hw4UPs3LkTffv2hZGRkdJ2MzMzpXXPnj1Do0aNYG5ujsTERKxfvx579uxBeHg4ACA7OxvBwcHw9/fH2bNncfToUfTs2RMyWcFfyxkYGAAAXr16Ja0bPnw4IiMjkZycDG9v73z327dvH+7cuYODBw/il19+wdixY9G0aVOYm5vj+PHj6N27N3r37o2//vrrXS4LERERERGpAYdt02fj2rVrEELAw8OjyPusWrUKz58/x/Lly6WEe968eQgKCsKUKVOgq6uLJ0+eoGnTpihbtiwAwNPTs8Dj3b59G9OmTUOZMmXg5uaGBw8eAADGjx+PBg0aFBqLhYUF5syZAy0tLbi7u2Pq1Kl49uwZfvzxRwBAREQEfv75Zxw5cgTt2rVT2j8rKwtZWVkK6/SysiGX82NORERERKppcdh2oVh5ps+GEAIACq0Kvy05ORk+Pj4KlWo/Pz/k5ubi8uXLsLCwQGhoKAIDAxEUFITZs2cjLS1N4RhPnjyBsbExjIyMYG9vj5cvX2LTpk3Q09OT2vj6+qqMpXz58tDS+r+PpLW1Nby8vKSftbW1YWlpiXv37uW7f2RkJExNTRWWyHlxRb4WRERERERUMCbP9NlwdXWFTCZDcnJykfcRQhSYbOetj4mJwdGjR1GzZk2sXbsWbm5uCvdPlyhRAklJSTh37hwyMjJw6tQpVK1aVeFY+Q0jf5uurq5S//mty83NzXf/iIgIPHnyRGGJCC+82k1ERERElIePqiock2f6bFhYWCAwMBDz589HZmam0vbHjx8rrStXrhySkpIU2h85cgRaWlpwc3OT1lWqVAkRERFISEhAhQoVsHr1ammblpYWXFxc4OzsXKQk+WORy+UwMTFRWDhkm4iIiIhIPZg802dlwYIFyMnJQbVq1bBx40ZcvXoVycnJmDNnDmrUqKHUvmPHjtDX10dISAjOnz+P/fv3o1+/fujcuTOsra1x8+ZNRERE4OjRo7h16xZ2796NK1euFHrfMxERERFRccTKc+FYlqLPipOTE06fPo1JkyZhyJAhSEtLg5WVFapUqYKFCxcqtTc0NMSuXbswYMAAVK1aFYaGhmjZsiV++eUXafulS5ewbNkypKenw9bWFuHh4ejVq9d/fWpERERERKRBMpE3yxIRfXbE33M0HYJahfY113QIavNKrq3pENRGNytH0yFQARbX3qzpENRGr5ab6kbFSGyNRE2HoDbfZnbUdAhq8/Db3zUdglq5r6in6RDUJmfXMdWNigmdbqtVN9KQ9ddXaazv1mU//d8lrDwTERERERERH1WlAu95JiIiIiIiIlKBlWciIiIiIiKClox39BaGlWciIiIiIiIiFZg8ExEREREREanAYdtERERERERUbJ63rCmsPBMRERERERGpwMozERERERERccIwFVh5JiIiIiIiIlKBlWciIiIiIiKCFu95LhQrz0REREREREQqMHkmIiIiIiIiUoHDtomIiIiIiAjanDCsUKw8ExEREREREanAyjMRERERERFxwjAVWHkmIiIiIiIiUoHJMxEREREREZEKHLZNRERERERE0OKEYYVi5ZmIiIiIiIhIBVaeiYiIiIiICNqcMKxQrDwTERERERERqcDKMxEREREREfFRVSqw8kxERERERESkApNnIiIiIiIiIhU4bJuIiIiIiIj4qCoVWHkmIiIiIiIiUoGVZyIiIiIiIuKjqlRg5ZmIiIiIiIhIBSbPRERERERERCpw2DYRERERERFxwjAVWHkmIiIiIiIiUoGVZyIiIiIiIoIWJwwrFCvPRERERERERCqw8kxERERERETQ5j3PhWLlmYiIiIiIiEgFJs9EREREREREKnDYNhEREREREXHCMBVYeSYiIiIiIiJSgZVnIiIiIiIighYnDCsUK89E/59MJsOWLVs0HQYREREREX2CmDzTF+Pu3bvo168fnJ2dIZfLYW9vj6CgIOzdu1ftfeXk5CAyMhIeHh4wMDCAhYUFqlevjpiYGLX3RUREREREHx+HbdMXISUlBX5+fjAzM8PUqVPh7e2NV69eYdeuXejbty8uXbqk1v7Gjh2LxYsXY968efD19cXTp09x8uRJPHr0SK39EBERERGpCyurheP1oS9Cnz59IJPJcOLECbRq1Qpubm4oX748Bg8ejGPHjuW7z7lz51C3bl0YGBjA0tISPXv2REZGhrQ9Pj4e1apVg5GREczMzODn54dbt24BAP73v/+hT58+aN26NZycnODj44Pu3btj8ODB0v5CCEydOhXOzs4wMDCAj48PNmzYoBDDhQsX8O2338LExAQlSpRA7dq1cf369Y9whYiIiIiIqDBMnumz9/DhQ+zcuRN9+/aFkZGR0nYzMzOldc+ePUOjRo1gbm6OxMRErF+/Hnv27EF4eDgAIDs7G8HBwfD398fZs2dx9OhR9OzZEzLZ6/n9bWxssG/fPty/f7/AuH766SfExMRg4cKFuHDhAgYNGoROnTrhwIEDAIC///4b33zzDfT19bFv3z6cOnUK3bp1Q3Z2thquChERERGRIm2Z0NhSHHDYNn32rl27BiEEPDw8irzPqlWr8Pz5cyxfvlxKuOfNm4egoCBMmTIFurq6ePLkCZo2bYqyZcsCADw9PaX9f/nlF7Rq1Qo2NjYoX748atasiebNm6Nx48YAgMzMTPzyyy/Yt28fatSoAQBwdnbG4cOHsWjRIvj7+2P+/PkwNTXFmjVroKurCwBwc3NTyzUhIiIiIqJ3w8ozffaEeP1NVl5VuCiSk5Ph4+OjUKn28/NDbm4uLl++DAsLC4SGhiIwMBBBQUGYPXs20tLSpLblypXD+fPncezYMXTt2hX//PMPgoKCEBYWBgC4ePEiXrx4gQYNGsDY2Fhali9fLg3LTkpKQu3ataXEWZWsrCw8ffpUYcnKYpWaiIiIiEgdmDzTZ8/V1RUymQzJyclF3kcIUWCynbc+JiYGR48eRc2aNbF27Vq4ubkp3D+tpaWFqlWrYtCgQdi8eTNiY2OxdOlS3Lx5E7m5uQCA7du3IykpSVouXrwo3fdsYGDwTucZGRkJU1NThSVyXtw7HYOIiIiIvlxaMs0txQGTZ/rsWVhYIDAwEPPnz0dmZqbS9sePHyutK1euHJKSkhTaHzlyBFpaWgpDpytVqoSIiAgkJCSgQoUKWL16dYFxlCtXDsDrIdvlypWDXC5HamoqXFxcFBZ7e3sAgLe3Nw4dOoRXr14V6TwjIiLw5MkThSUivEGR9iUiIiIiosIxeaYvwoIFC5CTk4Nq1aph48aNuHr1KpKTkzFnzhzpnuM3dezYEfr6+ggJCcH58+exf/9+9OvXD507d4a1tTVu3ryJiIgIHD16FLdu3cLu3btx5coV6b7nVq1aYebMmTh+/Dhu3bqF+Ph49O3bF25ubvDw8ECJEiUwdOhQDBo0CMuWLcP169dx5swZzJ8/H8uWLQMAhIeH4+nTp2jXrh1OnjyJq1evYsWKFbh8+XK+5yiXy2FiYqKwyOWc1oCIiIiIikZLJjS2FAf8y5q+CE5OTjh9+jQmTZqEIUOGIC0tDVZWVqhSpQoWLlyo1N7Q0BC7du3CgAEDULVqVRgaGqJly5b45ZdfpO2XLl3CsmXLkJ6eDltbW4SHh6NXr14AgMDAQPz222+IjIzEkydPYGNjg7p162Ls2LHQ0Xn9sZswYQJKlSqFyMhI3LhxA2ZmZqhcuTJ+/PFHAIClpSX27duHYcOGwd/fH9ra2qhYsSL8/Pz+o6tGRERERER5ZCJvNiUi+uyIv+doOgS1Cu1rrukQ1OaVXFvTIaiNblaOpkOgAiyuvVnTIaiNXq3P62kDsTUSNR2C2nyb2VHTIajNw29/13QIauW+op6mQ1CbnF3HVDcqJnS6FXybn6bdeLpEY307m/TQWN9FxWHbRERERERERCoweSYiIiIiIiJSgfc8ExERERERUbGZuEtTWHkmIiIiIiIiUoGVZyIiIiIiIoKWTNMRfNpYeSYiIiIiIiJSgckzERERERERFTsLFiyAk5MT9PX1UaVKFRw6dKjQ9llZWRg5ciQcHBwgl8tRtmxZREdHF7k/DtsmIiIiIiIiaBejCcPWrl2LgQMHYsGCBfDz88OiRYvQuHFjXLx4EV999VW++7Rp0wb//PMPli5dChcXF9y7dw/Z2dlF7pPJMxERERERERUrv/zyC7p3746wsDAAwKxZs7Br1y4sXLgQkZGRSu137tyJAwcO4MaNG7CwsAAAODo6vlOfHLZNRERERERE0JJpbsnKysLTp08VlqysrHzjfPnyJU6dOoWGDRsqrG/YsCESEhLy3Wfr1q3w9fXF1KlTUbp0abi5uWHo0KF4/vx50a9P0S8lERERERERkfpFRkbC1NRUYcmvggwADx48QE5ODqytrRXWW1tb4+7du/nuc+PGDRw+fBjnz5/H5s2bMWvWLGzYsAF9+/Ytcowctk1ERERERESQabC2GhERgcGDByusk8vlhe4jkyk+W0sIobQuT25uLmQyGVatWgVTU1MAr4d+t2rVCvPnz4eBgYHKGJk8ExERERERkUbJ5XKVyXKekiVLQltbW6nKfO/ePaVqdB5bW1uULl1aSpwBwNPTE0II3L59G66urir75bBtIiIiIiIiKjb09PRQpUoVxMXFKayPi4tDzZo1893Hz88Pd+7cQUZGhrTuypUr0NLSQpkyZYrUL5NnIiIiIiIigkwm09jyrgYPHoxff/0V0dHRSE5OxqBBg5CamorevXsDeD0MvEuXLlL7Dh06wNLSEl27dsXFixdx8OBBDBs2DN26dSvSkG2Aw7aJiIiIiIiomGnbti3S09Mxfvx4pKWloUKFCtixYwccHBwAAGlpaUhNTZXaGxsbIy4uDv369YOvry8sLS3Rpk0bTJw4sch9MnkmIiIiIiIijU4Y9j769OmDPn365LstNjZWaZ2Hh4fSUO93UbyuDhEREREREZEGMHkmIiIiIiIiUoHDtomIiIiIiOi9Ju76ksiEEELTQRDRxxESvELTIRARqUVQ/Of1++zfpzmaDoG+APHNQjUdgtrU2Rqr6RDUpmvuXk2HUKD7L2I01reVfleN9V1UrDwTERERERFRsZsw7L/Gq0NERERERESkAivPREREREREBBl4z3NhWHkmIiIiIiIiUoHJMxEREREREZEKHLZNREREREREkMlYWy0Mrw4RERERERGRCqw8ExEREREREScMU4GVZyIiIiIiIiIVmDwTERERERERqcBh20RERERERMQJw1Tg1SEiIiIiIiJSgZVnIiIiIiIi4oRhKrDyTERERERERKQCK89EREREREQEGWurheLVISIiIiIiIlKByTMRERERERGRChy2TURERERERJDJOGFYYVh5JiIiIiIiIlKBlWciIiIiIiLihGEq8Op84u7evYsBAwbAxcUF+vr6sLa2Rq1atRAVFYVnz55pLK79+/cjICAAFhYWMDQ0hKurK0JCQpCdnf3R+46Pj4dMJsPjx4/fab+nT59i5MiR8PDwgL6+PmxsbFC/fn1s2rQJQgi1xRcaGorg4GC1HY+IiIiIiDSPledP2I0bN+Dn5wczMzNMnjwZXl5eyM7OxpUrVxAdHQ07Ozs0a9bsP4/rwoULaNy4Mfr374+5c+fCwMAAV69exYYNG5Cbm/tR+3716tV77ff48WPUqlULT548wcSJE1G1alXo6OjgwIEDGD58OOrWrQszMzP1BqvCq1evoKur+5/2SURERERE74eV509Ynz59oKOjg5MnT6JNmzbw9PSEl5cXWrZsie3btyMoKAjdunVD06ZNFfbLzs6GjY0NoqOjAQB16tRBv379MHDgQJibm8Pa2hqLFy9GZmYmunbtihIlSqBs2bL4448/pGM8evQIHTt2hJWVFQwMDODq6oqYmBgAQFxcHGxtbTF16lRUqFABZcuWRaNGjfDrr79CT08PABAbGwszMzNs2bIFbm5u0NfXR4MGDfDXX38pxLpw4UKULVsWenp6cHd3x4oVKxS2y2QyREVFoXnz5jAyMkJYWBgCAgIAAObm5pDJZAgNDQUAbNiwAV5eXjAwMIClpSXq16+PzMxMAMCPP/6IlJQUHD9+HCEhIShXrhzc3NzQo0cPJCUlwdjYGADw8uVLDB8+HKVLl4aRkRG+/vprxMfHS/HkndeuXbvg6ekJY2NjNGrUCGlpaQCAsWPHYtmyZfj9998hk8kgk8kQHx+PlJQUyGQyrFu3DnXq1IG+vj5WrlwJAIiJiYGnpyf09fXh4eGBBQsWSP29fPkS4eHhsLW1hb6+PhwdHREZGfmO7yQiIiIiItVkGvyvOGDy/IlKT0/H7t270bdvXxgZGeXbRiaTISwsDDt37pSSNwDYsWMHMjIy0KZNG2ndsmXLULJkSZw4cQL9+vXD999/j9atW6NmzZo4ffo0AgMD0blzZ2ko+KhRo3Dx4kX88ccfSE5OxsKFC1GyZEkAgI2NDdLS0nDw4MFCz+HZs2eYNGkSli1bhiNHjuDp06do166dtH3z5s0YMGAAhgwZgvPnz6NXr17o2rUr9u/fr3CcMWPGoHnz5jh37hzGjx+PjRs3AgAuX76MtLQ0zJ49G2lpaWjfvj26deuG5ORkxMfH47vvvoMQArm5uVizZg06duwIOzs7pTiNjY2ho/N6EEbXrl1x5MgRrFmzBmfPnkXr1q3RqFEjXL16VeG8pk+fjhUrVuDgwYNITU3F0KFDAQBDhw5FmzZtpIQ6LS0NNWvWlPYdMWIE+vfvj+TkZAQGBmLJkiUYOXIkJk2ahOTkZEyePBmjRo3CsmXLAABz5szB1q1bsW7dOly+fBkrV66Eo6NjodediIiIiIjUj8O2P1HXrl2DEALu7u4K60uWLIkXL14AAPr27YspU6ZIFdvhw4cDeF3JbN26tVRNBQAfHx/89NNPAICIiAj8/PPPKFmyJHr06AEAGD16NBYuXIizZ8+ievXqSE1NRaVKleDr6wsACglb69atsWvXLvj7+8PGxgbVq1dHvXr10KVLF5iYmEjtXr16hXnz5uHrr78G8DqB9/T0xIkTJ1CtWjVMnz4doaGh6NOnDwBg8ODBOHbsGKZPny5VlwGgQ4cO6Natm/TzzZs3AQClSpWShlpfv34d2dnZ+O677+Dg4AAA8PLyAgDcu3cPjx49goeHR6HX/Pr16/jtt99w+/ZtKckeOnQodu7ciZiYGEyePFk6r6ioKJQtWxYAEB4ejvHjxwN4nYgbGBggKysLNjY2Sn0MHDgQ3333nfTzhAkTMGPGDGmdk5MTLl68iEWLFiEkJASpqalwdXVFrVq1IJPJpHPLT1ZWFrKyshTW5eS8grY2h4YTERERkWoyGWurheHV+cS9/ay1EydOICkpCeXLl5cSpbCwMGlI9b1797B9+3aFZBMAvL29pf/X1taGpaWllFwCgLW1tbQ/AHz//fdYs2YNKlasiOHDhyMhIUFh/5iYGNy+fRtTp06FnZ0dJk2ahPLlyytUwHV0dKTkGwA8PDxgZmaG5ORkAEBycjL8/PwU4vTz85O253nzGAXx8fFBvXr14OXlhdatW2PJkiV49OgRAEiTgal6bt3p06chhICbmxuMjY2l5cCBA7h+/brUztDQUEqcAcDW1la6bqq8eS7379/HX3/9he7duyv0N3HiRKm/0NBQJCUlwd3dHf3798fu3bsLPHZkZCRMTU0VlnNX/1ekuIiIiIiIqHBMnj9RLi4ukMlkuHTpksJ6Z2dnuLi4wMDAQFrXpUsX3LhxA0ePHpWG9dauXVthv7cnppLJZArr8hLLvAm/GjdujFu3bmHgwIG4c+cO6tWrJw1NzlO6dGl07twZ8+fPx8WLF/HixQtERUUp9fO2N9e9vV0IobSuoGHrb9LW1kZcXBz++OMPlCtXDnPnzoW7uztu3rwJKysrmJubKyXlb8vNzYW2tjZOnTqFpKQkaUlOTsbs2bOldvldy6LO1v3mueRd6yVLlij0d/78eRw7dgwAULlyZdy8eRMTJkzA8+fP0aZNG7Rq1SrfY0dERODJkycKi5drUJHiIiIiIiLiPc+FY/L8ibK0tESDBg0wb948adKrwtoGBwcjJiYGMTEx6Nq1q1pisLKyQmhoKFauXIlZs2Zh8eLFBbY1NzeHra2tQqzZ2dk4efKk9PPly5fx+PFjafi0p6cnDh8+rHCchIQEeHp6FhpX3qRkOTk5CutlMhn8/Pwwbtw4nDlzBnp6eti8eTO0tLTQtm1brFq1Cnfu3FE6XmZmJrKzs1GpUiXk5OTg3r17cHFxUVjyG4JdWHxvx5Yfa2trlC5dGjdu3FDqz8nJSWpnYmKCtm3bYsmSJVi7di02btyIhw8fKh1PLpfDxMREYeGQbSIiIiIi9eA9z5+wBQsWwM/PD76+vhg7diy8vb2hpaWFxMREXLp0CVWqVJHahoWFoWnTpsjJyUFISMgH9z169GhUqVJFGh6+bds2KaldtGgRkpKS0KJFC5QtWxYvXrzA8uXLceHCBcydO1c6hq6uLvr164c5c+ZAV1cX4eHhqF69OqpVqwYAGDZsGNq0aYPKlSujXr16+N///odNmzZhz549hcbm4OAAmUyGbdu2oUmTJjAwMMCFCxewd+9eNGzYEKVKlcLx48dx//59KebJkycjPj4eX3/9NSZNmgRfX1/o6uri0KFDiIyMRGJiItzc3NCxY0d06dIFM2bMQKVKlfDgwQPs27cPXl5eaNKkSZGunaOjI3bt2oXLly/D0tISpqamBbYdO3Ys+vfvDxMTEzRu3BhZWVk4efIkHj16hMGDB2PmzJmwtbVFxYoVoaWlhfXr18PGxuY/f6wWEREREdGXjsnzJ6xs2bI4c+YMJk+ejIiICNy+fRtyuRzlypXD0KFDpYm2AKB+/fqwtbVF+fLl851R+l3p6ekhIiICKSkpMDAwQO3atbFmzRoAQLVq1XD48GH07t0bd+7cgbGxMcqXL48tW7bA399fOoahoSFGjBiBDh064Pbt26hVq5b0+CwACA4OxuzZszFt2jT0798fTk5OiImJQZ06dQqNrXTp0hg3bhx++OEHdO3aFV26dMGIESNw8OBBzJo1C0+fPoWDgwNmzJiBxo0bA3hdGT927Bh+/vlnTJw4Ebdu3YK5uTm8vLwwbdo0KcGNiYnBxIkTMWTIEPz999+wtLREjRo1ipw4A0CPHj0QHx8PX19fZGRkYP/+/QXOkB0WFgZDQ0NMmzYNw4cPh5GREby8vDBw4EAArycgmzJlCq5evQptbW1UrVoVO3bsgJYWB40QERERkXpxwrDCyURRb9akT9qzZ89gZ2eH6OhohdmcNSU2NhYDBw7E48ePNR3KFy0keIXqRkRExUBQ/Of1++zfp6pv7yH6UPHNQjUdgtrU2Rqr6RDUpmvuXk2HUKAXOZqbbFZf+9Ofq4eV52IuNzcXd+/exYwZM2BqaopmzZppOiQiIiIiIiqGZJwSq1BMnou51NRUODk5oUyZMoiNjYWODl9SIiIiIiIidWOmVcw5OjoW+TFJ/6XQ0FCEhoZqOgwiIiIiIiK1YPJMRERERERExeZ5y5rCQe1EREREREREKrDyTERERERERHxUlQq8OkREREREREQqsPJMREREREREvOdZBVaeiYiIiIiIiFRg8kxERERERESkAodtExEREREREScMU4FXh4iIiIiIiEgFVp6JiIiIiIiIE4apwMozERERERERkQpMnomIiIiIiIhU4LBtIiIiIiIigoy11ULx6hARERERERGpwMozERERERERQSbjhGGFYeWZiIiIiIiISAUmz0REREREREQqyIQQQtNBENHHEefURNMhqJWDC+80IXoXR/ZmajoEtYlvFqrpENRquukqTYegNpG9u2g6BLX5ptkyTYegViVMtDUdgtrUuzxA0yGoj06gpiMomNivub5lAZrru4hYeSYiIiIiIiJSgWUcIiIiIiIiAkSu5vouBnOVsfJMREREREREpAIrz0RERERERKTZynMxwMozERERERERkQpMnomIiIiIiIhU4LBtIiIiIiIi4rBtFVh5JiIiIiIiIlKBlWciIiIiIiJi5VkFVp6JiIiIiIiIVGDyTERERERERKQCh20TERERERERkMth24Vh5ZmIiIiIiIhIBVaeiYiIiIiIiBOGqcDKMxEREREREZEKrDwTERERERERK88qsPJMREREREREpAKTZyIiIiIiIiIVmDwTaUh8fDxkMhkeP35c5H3q1KmDgQMHfrSYiIiIiOgLJnI1txQDX1zyfPfuXQwYMAAuLi7Q19eHtbU1atWqhaioKDx79kxjce3fvx8BAQGwsLCAoaEhXF1dERISguzs7I/e9/skcQDw9OlTjBw5Eh4eHtDX14eNjQ3q16+PTZs2QQihtvhCQ0MRHBystuMVxtHRETKZDDKZDIaGhqhQoQIWLVr0wcfNL+mtWbMm0tLSYGpq+sHHJyIiIiKij+uLmjDsxo0b8PPzg5mZGSZPngwvLy9kZ2fjypUriI6Ohp2dHZo1a/afx3XhwgU0btwY/fv3x9y5c2FgYICrV69iw4YNyP3IDyp/9erVe+33+PFj1KpVC0+ePMHEiRNRtWpV6Ojo4MCBAxg+fDjq1q0LMzMz9QarwqtXr6Crq/vBxxk/fjx69OiBjIwMxMbGonfv3jAzM0Pbtm3VGpOenh5sbGw+NFwiIiIiIvX4yLlHcfdFVZ779OkDHR0dnDx5Em3atIGnpye8vLzQsmVLbN++HUFBQejWrRuaNm2qsF92djZsbGwQHR0N4HUVsV+/fhg4cCDMzc1hbW2NxYsXIzMzE127dkWJEiVQtmxZ/PHHH9IxHj16hI4dO8LKygoGBgZwdXVFTEwMACAuLg62traYOnUqKlSogLJly6JRo0b49ddfoaenBwCIjY2FmZkZtmzZAjc3N+jr66NBgwb466+/FGJduHAhypYtCz09Pbi7u2PFihUK22UyGaKiotC8eXMYGRkhLCwMAQEBAABzc3PIZDKEhoYCADZs2AAvLy8YGBjA0tIS9evXR2ZmJgDgxx9/REpKCo4fP46QkBCUK1cObm5u6NGjB5KSkmBsbAwAePnyJYYPH47SpUvDyMgIX3/9NeLj46V48s5r165d8PT0hLGxMRo1aoS0tDQAwNixY7Fs2TL8/vvvUkU4Pj4eKSkpkMlkWLduHerUqQN9fX2sXLkSABATEwNPT0/o6+vDw8MDCxYskPp7+fIlwsPDYWtrC319fTg6OiIyMlLhGpUoUQI2NjZwcXHBxIkT4erqii1btgAARowYATc3NxgaGsLZ2RmjRo1S+AJi7NixqFixIqKjo+Hs7Ay5XI6QkBAcOHAAs2fPls4hJSVFqeKfnp6O9u3bo0yZMjA0NISXlxd+++23fN/LRERERET03/piKs/p6enYvXs3Jk+eDCMjo3zbyGQyhIWF4ZtvvkFaWhpsbW0BADt27EBGRgbatGkjtV22bBmGDx+OEydOYO3atfj++++xZcsWtGjRAj/++CNmzpyJzp07IzU1FYaGhhg1ahQuXryIP/74AyVLlsS1a9fw/PlzAICNjQ3S0tJw8OBBfPPNNwWew7NnzzBp0iQsW7YMenp66NOnD9q1a4cjR44AADZv3owBAwZg1qxZqF+/PrZt24auXbuiTJkyUoIMAGPGjEFkZCRmzpwJbW1tNG/eHC1btsTly5dhYmICAwMDpKWloX379pg6dSpatGiBf//9F4cOHYIQArm5uVizZg06duwIOzs7pTjzEmcA6Nq1K1JSUrBmzRrY2dlh8+bNaNSoEc6dOwdXV1fpvKZPn44VK1ZAS0sLnTp1wtChQ7Fq1SoMHToUycnJePr0qfRlg4WFBe7cuQPgdTI7Y8YMxMTEQC6XY8mSJRgzZgzmzZuHSpUq4cyZM+jRoweMjIwQEhKCOXPmYOvWrVi3bh2++uor/PXXX0pfQLxNX19fSpBLlCiB2NhY2NnZ4dy5c+jRowdKlCiB4cOHS+2vXbuGdevWYePGjdDW1oaDgwOuXr2KChUqYPz48QAAKysrpKSkKPTz4sULVKlSBSNGjICJiQm2b9+Ozp07w9nZGV9//XWhMRIRERER0cf1xSTP165dgxAC7u7uCutLliyJFy9eAAD69u2LKVOmSBXbvIQoJiYGrVu3VkgKfXx88NNPPwEAIiIi8PPPP6NkyZLo0aMHAGD06NFYuHAhzp49i+rVqyM1NRWVKlWCr68vgNf31uZp3bo1du3aBX9/f9jY2KB69eqoV68eunTpAhMTE6ndq1evMG/ePCmRWrZsGTw9PXHixAlUq1YN06dPR2hoKPr06QMAGDx4MI4dO4bp06crJM8dOnRAt27dpJ9v3rwJAChVqpQ01Pr69evIzs7Gd999BwcHBwCAl5cXAODevXt49OgRPDw8Cr3m169fx2+//Ybbt29LSfbQoUOxc+dOxMTEYPLkydJ5RUVFoWzZsgCA8PBwKck0NjaGgYEBsrKy8h3iPHDgQHz33XfSzxMmTMCMGTOkdU5OTrh48SIWLVqEkJAQpKamwtXVFbVq1YJMJpPOLT/Z2dlYuXIlzp07h++//x4ApNcceP0aDhkyBGvXrlVInl++fIkVK1bAyspKWqenpwdDQ8NCh2mXLl0aQ4cOlX7u168fdu7cifXr1xcpec7KykJWVpbCupciB3oybZX7EhEREREVl4m7NOWLGrYNvK4uv+nEiRNISkpC+fLlpcQjLCxMqnLeu3cP27dvV0g2AcDb21v6f21tbVhaWkrJJQBYW1tL+wPA999/jzVr1qBixYoYPnw4EhISFPaPiYnB7du3MXXqVNjZ2WHSpEkoX768NHwZAHR0dKTkGwA8PDxgZmaG5ORkAEBycjL8/PwU4vTz85O253nzGAXx8fFBvXr14OXlhdatW2PJkiV49OgRAEiTgb19Ld92+vRpCCHg5uYGY2NjaTlw4ACuX78utTM0NJQSZwCwtbWVrpsqb57L/fv38ddff6F79+4K/U2cOFHqLzQ0FElJSXB3d0f//v2xe/dupWOOGDFCStr79u2LYcOGoVevXgBeD2WvVasWbGxsYGxsjFGjRiE1NVVhfwcHB4XEuahycnIwadIkeHt7w9LSEsbGxti9e7fS8QsSGRkJU1NThWXN4xvvHAcRERERESn7YpJnFxcXyGQyXLp0SWG9s7MzXFxcYGBgIK3r0qULbty4gaNHj2LlypVwdHRE7dq1FfZ7exIomUymsC4vscyb8Ktx48a4desWBg4ciDt37qBevXoKVUbgdeWxc+fOmD9/Pi5evIgXL14gKipKqZ+3vbnu7e1CCKV1BQ1bf5O2tjbi4uLwxx9/oFy5cpg7dy7c3d1x8+ZNWFlZwdzcXCkpf1tubi60tbVx6tQpJCUlSUtycjJmz54ttcvvWhZ1tu43zyXvWi9ZskShv/Pnz+PYsWMAgMqVK+PmzZuYMGECnj9/jjZt2qBVq1YKxxw2bBiSkpJw69YtZGRkYOrUqdDS0sKxY8fQrl07NG7cGNu2bcOZM2cwcuRIvHz5ssCY3sWMGTMwc+ZMDB8+HPv27UNSUhICAwOVjl+QiIgIPHnyRGFpZ+b8XrEQERER0ReIj6oq1BeTPFtaWqJBgwaYN2+eNOlVYW2Dg4MRExODmJgYdO3aVS0xWFlZITQ0FCtXrsSsWbOwePHiAtuam5vD1tZWIdbs7GycPHlS+vny5ct4/PixNHza09MThw8fVjhOQkICPD09C40rb1KynJwchfUymQx+fn4YN24czpw5Az09PWzevBlaWlpo27YtVq1aJd17/KbMzExkZ2ejUqVKyMnJwb179+Di4qKwvMss03p6ekqx5cfa2hqlS5fGjRs3lPpzcnKS2pmYmKBt27ZYsmQJ1q5di40bN+Lhw4fS9pIlS8LFxQV2dnYKXzwcOXIEDg4OGDlyJHx9feHq6opbt26p7RwOHTqE5s2bo1OnTvDx8YGzszOuXr1apOMDgFwuh4mJicLCIdtEREREROrxxdzzDAALFiyAn58ffH19MXbsWHh7e0NLSwuJiYm4dOkSqlSpIrUNCwtD06ZNkZOTg5CQkA/ue/To0ahSpYo0PHzbtm1SUrto0SIkJSWhRYsWKFu2LF68eIHly5fjwoULmDt3rnQMXV1d9OvXD3PmzIGuri7Cw8NRvXp1VKtWDcDrimmbNm1QuXJl1KtXD//73/+wadMm7Nmzp9DYHBwcIJPJsG3bNjRp0gQGBga4cOEC9u7di4YNG6JUqVI4fvw47t+/L8U8efJkxMfH4+uvv8akSZPg6+sLXV1dHDp0CJGRkUhMTISbmxs6duyILl26YMaMGahUqRIePHiAffv2wcvLC02aNCnStXN0dMSuXbtw+fJlWFpaFvpc5LFjx6J///4wMTFB48aNkZWVhZMnT+LRo0cYPHgwZs6cCVtbW1SsWBFaWlpYv349bGxsivRYLRcXF6SmpmLNmjWoWrUqtm/fjs2bNxf5HI4fP46UlBQYGxvDwsIi3+Nv3LgRCQkJMDc3xy+//IK7d++q/PKDiIiIiEgtikkFWFO+mMozAJQtWxZnzpxB/fr1ERERAR8fH/j6+mLu3LkYOnQoJkyYILWtX78+bG1tERgYmO+M0u9KT08PERER8Pb2xjfffANtbW2sWbMGAFCtWjVkZGSgd+/eKF++PPz9/XHs2DFs2bIF/v7+0jEMDQ0xYsQIdOjQATVq1ICBgYF0DAAIDg7G7NmzMW3aNJQvXx6LFi1CTEwM6tSpU2hspUuXxrhx4/DDDz/A2toa4eHhMDExwcGDB9GkSRO4ubnhp59+wowZM9C4cWMAryvjx44dQ6dOnTBx4kRUqlQJtWvXxm+//YZp06ZJCW5MTAy6dOmCIUOGwN3dHc2aNcPx48dhb29f5GvXo0cPuLu7w9fXF1ZWVtLs4vkJCwvDr7/+itjYWHh5ecHf3x+xsbFS5dnY2BhTpkyBr68vqlatipSUFOzYsQNaWqo/Cs2bN8egQYMQHh6OihUrIiEhAaNGjSrSOQwdOhTa2tooV64crKys8r2PedSoUahcuTICAwNRp04d2NjYIDg4uEjHJyIiIiKij0sminpz6Rfm2bNnsLOzQ3R0tMJszpoSGxuLgQMHSs8EJiqKOKeiVfeLCweXL2qwDNEHO7K38NuUipP4ZqGaDkGtppuu0nQIahPZu4umQ1Cbb5ot03QIalXC5PO5fave5QGaDkF9dAI1HUHBnvymub5N22uu7yLiX6Jvyc3Nxd27dzFjxgyYmpqiWbNmmg6JiIiIiIjooxNC9TxDH0vhz/H5NDB5fktqaiqcnJxQpkwZxMbGQkeHl4iIiIiIiOhLx8zwLY6OjkV+TNJ/KTQ0FKGhoZoOg4iIiIiIPle5nDCsMF/UhGFERERERERE74PJMxEREREREZEKHLZNREREREREfM6zCqw8ExEREREREanAyjMRERERERGx8qwCK89EREREREREKrDyTERERERERKw8q8DKMxEREREREZEKTJ6JiIiIiIiIVOCwbSIiIiIiIuKwbRVYeSYiIiIiIiJSgZVnIiIiIiIiAnJZeS4MK89EREREREREKjB5JiIiIiIiIlKBw7aJiIiIiIiIE4apwMozERERERERkQqsPBMRERERERErzyoweSb6jN2+laXpENTqczsfIiq6PouzNR2CWg3t2VHTIahN86bLNB2C2jx69Hm9zx6lfz7nk7t1jaZDUBut7wI1HQK9JybPRERERERExMqzCrznmYiIiIiIiEgFJs9EREREREREKnDYNhEREREREQG5HLZdGFaeiYiIiIiIiFRg8kxERERERESvJwzT1PIeFixYACcnJ+jr66NKlSo4dOhQkfY7cuQIdHR0ULFixXfqj8kzERERERERFStr167FwIEDMXLkSJw5cwa1a9dG48aNkZqaWuh+T548QZcuXVCvXr137pPJMxERERERERUrv/zyC7p3746wsDB4enpi1qxZsLe3x8KFCwvdr1evXujQoQNq1Kjxzn0yeSYiIiIiIiKNDtvOysrC06dPFZasrKx8w3z58iVOnTqFhg0bKqxv2LAhEhISCjy9mJgYXL9+HWPGjHmvy8PkmYiIiIiIiDQqMjISpqamCktkZGS+bR88eICcnBxYW1srrLe2tsbdu3fz3efq1av44YcfsGrVKujovN9Dp/ioKiIiIiIiItLoo6oiIiIwePBghXVyubzQfWQymcLPQgildQCQk5ODDh06YNy4cXBzc3vvGJk8ExERERERkUbJ5XKVyXKekiVLQltbW6nKfO/ePaVqNAD8+++/OHnyJM6cOYPw8HAAQG5uLoQQ0NHRwe7du1G3bl2V/TJ5JiIiIiIiIiBXaDqCItHT00OVKlUQFxeHFi1aSOvj4uLQvHlzpfYmJiY4d+6cwroFCxZg37592LBhA5ycnIrUL5NnIiIiIiIiKlYGDx6Mzp07w9fXFzVq1MDixYuRmpqK3r17A3g9DPzvv//G8uXLoaWlhQoVKijsX6pUKejr6yutLwyTZyIiIiIiIipW2rZti/T0dIwfPx5paWmoUKECduzYAQcHBwBAWlqaymc+vyuZEKJ41OaJ6J3FaL37w9+JiD5F5e520nQIarWg5+dTv2h+aKWmQ1CbJ4+yNR0CFSBkw1eaDkFttL6L0XQIBRJX85/d+r8gc43QWN9FxUdVEREREREREanw+XztSURERERERO9Pg4+qKg5YeVYjmUyGLVu2aDqMDxIbGwszMzNNh/HB3j6PsWPHomLFihqLh4iIiIiIirfPPnkODQ2FTCaTZl17U58+fSCTyRAaGvrfB/aW4hJnfhwdHTFr1qz/vN/Vq1dDW1s732umSmZmJkaMGAFnZ2fo6+vDysoKderUwbZt2z5CpEREREREVNx99skzANjb22PNmjV4/vy5tO7Fixf47bff8NVXn87kA8Ulzo/l5cuX79Q+Ojoaw4cPx5o1a/Ds2bN32rd3797YsmUL5s2bh0uXLmHnzp1o2bIl0tPT3+k4RERERESfjVyhuaUY+CKS58qVK+Orr77Cpk2bpHWbNm2Cvb09KlWqJK3buXMnatWqBTMzM1haWqJp06a4fv26tP3ly5cIDw+Hra0t9PX14ejoiMjIgmekGz9+PKytrZGUlATg9YO4XV1doa+vD2tra7Rq1eq94ixKrCkpKZDJZNi0aRMCAgJgaGgIHx8fHD16VOE4sbGx+Oqrr2BoaIgWLVooJY/Xr19H8+bNYW1tDWNjY1StWhV79uyRttepUwe3bt3CoEGDIJPJIJPJpG0bN25E+fLlIZfL4ejoiBkzZigc29HRERMnTkRoaChMTU3Ro0cP1K1bF+Hh4Qrt0tPTIZfLsW/fPoXzS0hIwA8//AAPDw9s2LChwNchP//73//w448/okmTJnB0dESVKlXQr18/hISEKMQ3YcIEdOjQAcbGxrCzs8PcuXMVjvPLL7/Ay8sLRkZGsLe3R58+fZCRkaHQ5siRI/D394ehoSHMzc0RGBiIR48eAQCEEJg6dSqcnZ1hYGAAHx8fhXN59OgROnbsCCsrKxgYGMDV1RUxMZ/uDI1ERERERJ+rLyJ5BoCuXbsqJB3R0dHo1q2bQpvMzEwMHjwYiYmJ2Lt3L7S0tNCiRQvk/v8b5+fMmYOtW7di3bp1uHz5MlauXAlHR0elvoQQGDBgAJYuXYrDhw+jYsWKOHnyJPr374/x48fj8uXL2LlzJ7755pv3irMoseYZOXIkhg4diqSkJLi5uaF9+/bIzn79GIbjx4+jW7du6NOnD5KSkhAQEICJEycq7J+RkYEmTZpgz549OHPmDAIDAxEUFCQ9M23Tpk0oU6aM9Hy1tLQ0AMCpU6fQpk0btGvXDufOncPYsWMxatQoxMbGKhx/2rRpqFChAk6dOoVRo0YhLCwMq1evRlZWltRm1apVsLOzQ0BAgMJ1+fbbb2FqaopOnTph6dKlSteoMDY2NtixYwf+/fffQttNmzYN3t7eOH36NCIiIjBo0CDExcVJ27W0tDBnzhycP38ey5Ytw759+zB8+HBpe1JSEurVq4fy5cvj6NGjOHz4MIKCgpCTkwMA+OmnnxATE4OFCxfiwoULGDRoEDp16oQDBw4AAEaNGoWLFy/ijz/+QHJyMhYuXIiSJUu+07kSERERERVJbq7mlmLgs3/Oc2hoKB4/foxff/0VZcqUwaVLlyCTyeDh4YG//voLYWFhMDMzU0rqAOD+/fsoVaoUzp07hwoVKqB///64cOEC9uzZo1BhzSOTybB+/Xr8/vvvOHnyJOLi4lCmTBkAr5PMrl274vbt2yhRooRa48wv1pSUFDg5OeHXX39F9+7dAQAXL15E+fLlkZycDA8PD3To0AGPHj3CH3/8IR2nXbt22LlzJx4/flzgNS1fvjy+//57qULs6OiIgQMHYuDAgVKbjh074v79+9i9e7e0bvjw4di+fTsuXLgg7VepUiVs3rxZapOVlQU7OzssXLgQbdq0AQBUqlQJwcHBGDNmDAAgNzcXjo6OmDt3Lpo3b44HDx7Azs4OFy9ehIuLC4DXFfWBAwdK5zF27Fhs2bJFGgVw8OBBdOzYEf/88w98fHxQq1YttGrVCn5+flIsjo6O8PT0VLo+T58+xY4dO/K9NuvXr8f333+PBw8eAAA6dOiA1NRUHD58WKltZmYmSpYsiX379qFGjRrS+rCwMDx79gyrV69Gs2bNULJkSURHRxf4ehSGz3kmos8Fn/P86eJznum/wOc8/zfEhfEa61tWfrTG+i6qL6byXLJkSXz77bdYtmwZYmJi8O233ypV8K5fv44OHTrA2dkZJiYmcHJyAgCpyhoaGoqkpCS4u7ujf//+ColhnkGDBuHo0aM4dOiQlDgDQIMGDeDg4ABnZ2d07twZq1atyvc+3aLEWZRY83h7e0v/b2trCwC4d+8eACA5OVkhaQOg9HNmZiaGDx+OcuXKwczMDMbGxrh06ZJSP29LTk5WSEQBwM/PD1evXpWqrgDg6+ur0EYul6NTp05SspiUlIQ///xTYbK03bt3IzMzE40bNwbw+po1bNjwnRLMb775Bjdu3MDevXvRsmVLXLhwAbVr18aECRMU2uV3fZKTk6Wf9+/fjwYNGqB06dIoUaIEunTpgvT0dGRmZkrx16uXfwJ78eJFvHjxAg0aNICxsbG0LF++XBqC//3332PNmjWoWLEihg8fjoSEhALPKSsrC0+fPlVYXoni8S0eEREREdGn7otJngGgW7duiI2NxbJly/IdCh0UFIT09HQsWbIEx48fx/HjxwH830RWlStXxs2bNzFhwgQ8f/4cbdq0UbpvuUGDBvj777+xa9cuhfUlSpTA6dOn8dtvv8HW1hajR4+Gj49PvhVeVXEWJdY8urq60v/nVcvzhnYXZdDBsGHDsHHjRkyaNAmHDh1CUlISvLy8VE7uJYRQqs7n15+RkZHSurCwMMTFxeH27duIjo5GvXr14ODgIG2Pjo7Gw4cPYWhoCB0dHejo6GDHjh1YtmyZQmKuiq6uLmrXro0ffvgBu3fvxvjx4zFhwgSV55Z3Xrdu3UKTJk1QoUIFbNy4EadOncL8+fMBAK9evQIAGBgYFHicvNdh+/btSEpKkpaLFy9K9z03btwYt27dwsCBA3Hnzh3Uq1cPQ4cOzfd4kZGRMDU1VVi2I6XI14OIiIiIvnActl2oLyp5btSoEV6+fImXL18iMDBQYVt6ejqSk5Px008/oV69evD09JQmdXqTiYkJ2rZtiyVLlmDt2rXYuHEjHj58KG1v1qwZVq9ejbCwMKxZs0ZhXx0dHdSvXx9Tp07F2bNnkZKSojAJVlHifJdYVSlXrhyOHTumsO7tnw8dOoTQ0FC0aNECXl5esLGxQUpKikIbPT09paS1XLlySkOVExIS4ObmBm1t7ULj8vLygq+vL5YsWYLVq1crfIGQnp6O33//HWvWrFFIOJOSkpCRkaEwxPpdlStXDtnZ2Xjx4oW0Lr/r4+HhAQA4efIksrOzMWPGDFSvXh1ubm64c+eOQntvb2/s3bu3wP7kcjlSU1Ph4uKisNjb20vtrKysEBoaipUrV2LWrFlYvHhxvseLiIjAkydPFJZv4fg+l4KIiIiIiN7y+dxwUwTa2trSkNu3Ezhzc3NYWlpi8eLFsLW1RWpqKn744QeFNjNnzoStrS0qVqwILS0trF+/HjY2NjAzM1No16JFC6xYsQKdO3eGjo4OWrVqhW3btuHGjRv45ptvYG5ujh07diA3Nxfu7u7vFGdRYy2K/v37o2bNmpg6dSqCg4Oxe/du7Ny5U6GNi4sLNm3ahKCgIMhkMowaNUppUjJHR0ccPHgQ7dq1g1wuR8mSJTFkyBBUrVr1/7F352E15v//wJ+n0r4qKaQFpVRE9j1LdrLLIMsYY8m+y26MPcsHYWSXkGVoCGFSlpTClF0yowbZt6ju3x/9ur+O0ulkuTvN83Fd55rOfd/nnOd9zpn0vl/vBXPmzEGPHj1w9uxZrFq1CqtXry5QtkGDBmH48OHiLOA5tm7dClNTU3Tr1g1qavLXftq1a4fffvsN7dq1U/j8TZo0Qa9eveDu7g5TU1MkJCRgypQpaNq0KQwNDcXjIiMjxffn2LFj2L17Nw4fPgwAqFChAjIyMrBy5Uq0b98ekZGRWLt2rdzrTJ48GS4uLhg6dCiGDBkCTU1NnDx5Et26dYOZmRnGjRuH0aNHIysrCw0aNMCLFy8QFRUFfX199OvXD9OnT0eNGjVQpUoVpKen49ChQ3B0dMzznLS0tKClpSW3rYTsP3V9jIiIiIi+hIosGSWV/9xf1oaGhnKNoxxqamoICgpCTEwMnJ2dMXr0aCxatEjuGH19fSxYsADu7u6oWbMmkpKSEBoamqsRBwBdu3bF5s2b0adPH4SEhMDY2BghISHw8PCAo6Mj1q5di507d6JKlSpK5Sxo1oKoU6cONmzYgJUrV6JatWoICwvDtGnT5I5ZtmwZTExMUK9ePbRv3x6enp6oXr263DGzZ89GUlISKlSogFKlSgHI7uIeHByMoKAgODs7Y/r06Zg9e7bc2OX89OrVCxoaGvD29oa2tra4fePGjfDy8srzPe/SpQsOHTqEf//9V+Hze3p6YvPmzWjZsiUcHR0xYsQIeHp6Ijg4WO64sWPHIiYmBm5ubpgzZw6WLFki9gaoVq0ali5digULFsDZ2Rnbt2/PtXSZvb09wsLCEB8fj1q1aqFu3bo4cOAANDSyr1vNmTMH06dPx/z58+Ho6AhPT0/8/vvv4hh2TU1NTJ48Ga6urmjUqBHU1dVz9WggIiIiIqJvr9jPtk2q6f79+7CxsUF0dHSuxvr3ktcs4qqGs20TUXHB2baLLs62Td8DZ9v+PoRLfpK9tsxtjuKDJFZ8fnNTsfDhwwekpKRg0qRJqFOnjmQNZyIiIiIioo/957ptU9EWGRkJa2trxMTE5Bo/TEREREREJBVWnqlIadKkSYGW0PoePp1VnIiIiIioWOOEYfli5ZmIiIiIiIhIAVaeiYiIiIiICPhkSVqSx8ozERERERERkQJsPBMREREREREpwG7bRERERERExG7bCrDyTERERERERKQAK89EREREREQk6ZKxMsleueBYeSYiIiIiIiJSgJVnIiIiIiIi4phnBVh5JiIiIiIiIlKAjWciIiIiIiIiBdhtm4iIiIiIiNhtWwFWnomIiIiIiIgUYOWZiIiIiIiIgCzplqpSBaw8ExERERERESnAxjMRERERERGRAuy2TURERERERJwwTAE2nolIZXTsz19ZRMo4EJghdYSv5uoTTakjfFUehwKljvDVHGjXT+oIX02Tg5ukjkCfodayndQRiNh4JiIiIiIiIrDyrADHPBMREREREREpwMozERERERERcakqBVh5JiIiIiIiIlKAjWciIiIiIiIiBdhtm4iIiIiIiDhhmAKsPBMREREREREpwMozERERERERsfKsACvPRERERERERAqw8UxERERERESkALttExEREREREdd5VoCVZyIiIiIiIiIFWHkmIiIiIiIiThimACvPRERERERERAqw8kxERERERESsPCvAyjMRERERERGRAmw8ExERERERESnAbttERERERETEpaoUYOWZiIiIiIiISIEi23iWyWTYv3+/1DG+yKZNm2BsbCx1jC/26XnMnDkT1apVkyxPcVCY74aNjQ38/f2/SR4iIiIiImRlSXdTAUo1nn18fCCTyTBkyJBc+4YOHQqZTAYfH5+vla3QVCVnXqRqIO3YsQPq6up5vmeKvH79GhMnToSdnR20tbVRqlQpNGnSBIcOHfoGSb8dmUwm3gwMDODu7o6QkJAvft68PtMePXrgxo0bX/zcRERERET0fShdebayskJQUBDevn0rbnv37h127tyJ8uXLf9VwX0JVcn4r79+/V+r4jRs3YsKECQgKCsKbN2+UeuyQIUOwf/9+rFq1CteuXcORI0fQpUsXpKWlKfU8RUFgYCBSUlIQHR2NqlWrolu3bjh79myhniu/z0BHRwfm5uaFjUlERERERN+Z0o3n6tWro3z58nIVuZCQEFhZWcHNzU3cduTIETRo0ADGxsYwNTVFu3btcPv2bXH/+/fvMXz4cFhaWkJbWxs2NjaYP3/+Z1939uzZKF26NOLi4gAAq1evRqVKlaCtrY3SpUuja9euhcpZkKxJSUmQyWQICQlB06ZNoauri6pVq+ZqVG3atAnly5eHrq4uvLy8cjUeb9++jY4dO6J06dLQ19dHzZo1cfz4cXF/kyZNcO/ePYwePVqsgObYu3cvqlSpAi0tLdjY2GDJkiVyz21jY4O5c+fCx8cHRkZG+PHHH+Hh4YHhw4fLHZeWlgYtLS2Eh4fLnV9UVBQmTZqEypUrY8+ePZ/9HPLy+++/Y8qUKWjTpg1sbGxQo0YNjBgxAv369ZPLN2fOHHh7e0NfXx9lypTBypUr5Z5n6dKlcHFxgZ6eHqysrDB06FC8evVK7pjIyEg0btwYurq6MDExgaenJ54+fQoAEAQBCxcuhJ2dHXR0dFC1alW5c3n69Cl69+6NUqVKQUdHB5UqVUJgYKDc8xsbG8PCwgKVK1fG2rVroa2tjYMHDyIzMxMDBw6Era0tdHR04ODggOXLl8s91sfHB506dcL8+fNRpkwZ2Nvbf/Yz/bTbtqLvBhERERHRtyZkCpLdVEGhxjz3799frtGxceNGDBgwQO6Y169fY8yYMYiOjsaJEyegpqYGLy8vZP3//uwrVqzAwYMHERwcjOvXr2Pbtm2wsbHJ9VqCIGDkyJH47bffcObMGVSrVg0XL16Er68vZs+ejevXr+PIkSNo1KhRoXIWJGuOqVOnYty4cYiLi4O9vT169eqFjIwMAMD58+cxYMAADB06FHFxcWjatCnmzp0r9/hXr16hTZs2OH78OC5dugRPT0+0b98eycnJALIb9+XKlcPs2bORkpKClJQUAEBMTAy6d++Onj174sqVK5g5cyb8/PywadMmuedftGgRnJ2dERMTAz8/PwwaNAg7duxAenq6eMz27dtRpkwZNG3aVO59adu2LYyMjPDDDz/gt99+y/Ue5cfCwgKhoaF4+fJlvsctWrQIrq6uiI2NxeTJkzF69GgcO3ZM3K+mpoYVK1bg6tWr2Lx5M8LDwzFhwgRxf1xcHJo1a4YqVarg7NmzOHPmDNq3b4/MzEwAwLRp0xAYGIg1a9bgr7/+wujRo/HDDz/g9OnTAAA/Pz8kJCTgjz/+QGJiItasWQMzM7PP5i1RogQ0NDTw4cMHZGVloVy5cggODkZCQgKmT5+OKVOmIDg4WO4xJ06cQGJiIo4dO4ZDhw599jP9lKLvBhERERERSatQS1X16dMHkydPFiuykZGRCAoKwqlTp8RjunTpIveY3377Debm5khISICzszOSk5NRqVIlNGjQADKZDNbW1rleJyMjA3379sXFixcRGRmJcuXKAQCSk5Ohp6eHdu3awcDAANbW1rmqyQXNWZCsOcaNG4e2bdsCAGbNmoUqVarg1q1bqFy5MpYvXw5PT09MmjQJAGBvb4+oqCgcOXJEfHzVqlVRtWpV8f7cuXOxb98+HDx4EMOHD0fJkiWhrq4OAwMDWFhYiMctXboUzZo1g5+fn/jcCQkJWLRokdzYbQ8PD4wbN068b2VlhREjRuDAgQPo3r07gOxuyTljwgEgKysLmzZtEqvAPXv2xJgxY3Dr1i1UrFgx13ual3Xr1qF3794wNTVF1apV0aBBA3Tt2hX169eXO65+/fpy709kZCSWLVuGFi1aAABGjRolHmtra4s5c+bg559/xurVqwEACxcuhLu7u3gfAKpUqQIg+wLI0qVLER4ejrp16wIA7OzscObMGQQEBKBx48ZITk6Gm5sb3N3dASDPizU50tPTsWjRIrx48QLNmjVDiRIlMGvWLLl8UVFRCA4OFt9bANDT08OGDRugqakpbsvrM/2Uou9GQaSnp8tdKAGAD0IWSsiK7LyARERERFSUcKmqfBXqr2ozMzO0bdsWmzdvRmBgINq2bZurgnf79m14e3vDzs4OhoaGsLW1BQCxkubj44O4uDg4ODjA19cXYWFhuV5n9OjROHv2LCIiIsSGMwC0aNEC1tbWsLOzQ58+fbB9+/Y8x+kWJGdBsuZwdXUVf7a0tAQAPHz4EACQmJgoNtpyfHr/9evXmDBhApycnGBsbAx9fX1cu3ZNYXUxMTExz4bozZs3xaorALFRmENLSws//PADNm7cCCC7chsfHy/X4A4LC8Pr16/RunVrANnvWcuWLcXHFESjRo1w584dnDhxAl26dMFff/2Fhg0bYs6cOXLH5fX+JCYmivdPnjyJFi1aoGzZsjAwMEDfvn2RlpaG169fi/mbNWuWZ4aEhAS8e/cOLVq0gL6+vnjbsmWL2AX/559/RlBQEKpVq4YJEyYgKioq1/P06tUL+vr60NXVxdKlS7F48WLxvVm7di3c3d1RqlQp6OvrY/369bk+OxcXF7mGc0EV9rvxsfnz58PIyEjudhhJSmchIiIiIqLcCl2SGjBgADZt2oTNmzfn2RW6ffv2SEtLw/r163H+/HmcP38ewP9NolS9enXcvXsXc+bMwdu3b9G9e/dc45ZbtGiBf/75B0ePHpXbbmBggNjYWOzcuROWlpaYPn06qlatimfPnimdsyBZc5QoUUL8+ePKLZDdvVyR8ePHY+/evZg3bx4iIiIQFxcHFxcXhZN7CYIgN/75c6+np6eXa9ugQYNw7Ngx/P3339i4cSOaNWsmV+XfuHEjnjx5Al1dXWhoaEBDQwOhoaHYvHmzXMNckRIlSqBhw4aYNGkSwsLCMHv2bMyZM0fhueWc171799CmTRs4Oztj7969iImJwf/+9z8AwIcPHwBkT7L1OTmfw+HDhxEXFyfeEhISxHHPrVu3xr179zBq1Cg8ePAAzZo1k6vUA8CyZcsQFxeHlJQUPHnyBGPHjgUABAcHY/To0RgwYADCwsIQFxeH/v375zq/vD6Dgijsd+NjkydPxvPnz+VubWFTqDxERERE9B+UKUh3UwGF6rYNAK1atRL/sPf09JTbl5aWhsTERAQEBKBhw4YAgDNnzuR6DkNDQ/To0QM9evRA165d0apVKzx58gQlS5YEAHTo0AHt27eHt7c31NXV0bNnz/8LrqGB5s2bo3nz5pgxYwaMjY0RHh6Ozp07FzinMlkVcXJywrlz5+S2fXo/IiICPj4+8PLyApA9zjUpKUnuGE1NzVyNVicnp1yZoqKiYG9vD3V19Xxzubi4wN3dHevXr8eOHTvkJulKS0vDgQMHEBQUJHZ/BrIbog0bNsQff/yBdu3a5X/in+Hk5ISMjAy8e/dOrMTm9f5UrlwZAHDx4kVkZGRgyZIlUFPLvqbz6XhiV1dXnDhxQq779Mevp6WlheTkZDRu3PizuUqVKgUfHx/4+PigYcOGGD9+PBYvXizut7CwyLO7ekREBOrVq4ehQ4eK2z6eVC4/eX2meT2/ou+GIlpaWtDS0pLbxi7bRERERERfR6Ebz+rq6mKX208bcCYmJjA1NcW6detgaWmJ5ORkcaxrjmXLlsHS0hLVqlWDmpoadu/eDQsLC7kZiAHAy8sLW7duRZ8+faChoYGuXbvi0KFDuHPnDho1agQTExOEhoYiKysLDg4OSuUsaNaC8PX1Rb169bBw4UJ06tQJYWFhcuOdAaBixYoICQlB+/btIZPJ4Ofnl2tSMhsbG/z555/o2bMntLS0YGZmhrFjx6JmzZqYM2cOevTogbNnz2LVqlVyY3/zM2jQIAwfPlycBTzH1q1bYWpqim7duokN1hzt2rXDb7/9VqDGc5MmTdCrVy+4u7vD1NQUCQkJmDJlCpo2bQpDQ0PxuMjISPH9OXbsGHbv3o3Dhw8DACpUqICMjAysXLkS7du3R2RkJNauXSv3OpMnT4aLiwuGDh2KIUOGQFNTEydPnkS3bt1gZmaGcePGYfTo0cjKykKDBg3w4sULREVFQV9fH/369cP06dNRo0YNVKlSBenp6Th06BAcHR0L9B5WrFgRW7ZswdGjR2Fra4utW7ciOjpa7OKfn7w+07yeX9F3g4iIiIiIpPNFZSlDQ0O5xpH4pGpqCAoKQkxMDJydnTF69GgsWrRI7hh9fX0sWLAA7u7uqFmzJpKSkhAaGpqrEQcAXbt2xebNm9GnTx+EhITA2NgYISEh8PDwgKOjI9auXYudO3fKVU8LkrOgWQuiTp062LBhA1auXIlq1aohLCwM06ZNkztm2bJlMDExQb169dC+fXt4enqievXqcsfMnj0bSUlJqFChAkqVKgUgu4t7cHAwgoKC4OzsjOnTp2P27NlyY5fz06tXL2hoaMDb2xva2tri9o0bN8LLyyvP97xLly44dOgQ/v33X4XP7+npic2bN6Nly5ZwdHTEiBEj4OnpmatyPHbsWMTExMDNzQ1z5szBkiVLxN4A1apVw9KlS7FgwQI4Oztj+/btuZYus7e3R1hYGOLj41GrVi3UrVsXBw4cgIZG9jWgOXPmYPr06Zg/fz4cHR3h6emJ33//XWzgampqYvLkyXB1dUWjRo2grq6OoKCgAr2HQ4YMQefOndGjRw/Url0baWlpclXo/OT1mX6qIN8NIiIiIqJvScgSJLupAplQkMG6pNLu378PGxsbREdHS9Ygs7GxwahRo+Rm1KZvL1At7wnWVFXH/oXuLEP0n3QgMEPqCF9NVkLe85aoKg3nQMUHqYjwdv2kjvDVNDm4SeoI9Bn9XxSsaKES9LsoPkYiGdv6SPbaGj9sley1C4p/iRZjHz58QEpKCiZNmoQ6deqwkklERERERJ+nIhN3SYWzCRVjkZGRsLa2RkxMTK7xw0RERERERFRwrDwXY02aNCnQElrfg7IzRxMRERERERUlbDwTERERERERkMnVXvLDbttERERERERECrDyTERERERERCqzZJRUWHkmIiIiIiIiUoCVZyIiIiIiIuJSVQqw8kxERERERESkABvPRERERERERAqw2zYREREREREBnDAsX6w8ExERERERESnAyjMRERERERFB4IRh+WLlmYiIiIiIiEgBNp6JiIiIiIiIFGC3bSIiIiIiIgKysqROUKSx8kxERERERESkACvPREREREREBHDCsHyx8kxERERERESkABvPRERERERERAqw2zZRMRY0YqTUEb6qU/eeSx2BSKU0wSapI3w1f04qXpPYNMkqPl0j+17ZKXWEr2ZLBx+pI9DnGK6WOsFX0z+ri9QRPksoRr+bvgVWnomIiIiIiIgUYOWZiIiIiIiIOGGYAqw8ExERERERESnAyjMRERERERGx8qwAK89ERERERERECrDxTERERERERKQAu20TERERERERl6pSgJVnIiIiIiIiIgVYeSYiIiIiIiIgM0vqBEUaK89ERERERERECrDxTERERERERKQAu20TERERERERJwxTgJVnIiIiIiIiIgVYeSYiIiIiIiIgk5Xn/LDyTERERERERKQAK89EREREREQEcMxzvlh5JiIiIiIiIlKAjWciIiIiIiIiBYpl41kmk2H//v1Sx/gimzZtgrGxsdQxvlhSUhJkMhni4uL+0xmIiIiIiIo6IVOQ7KYKvlvj2cfHBzKZDEOGDMm1b+jQoZDJZPDx8flecT5LVXLmxcbGBv7+/t/1NW/duoX+/fujXLly0NLSgq2tLXr16oWLFy9+1xzK2rt3L2rXrg0jIyMYGBigSpUqGDt2rNSxiIiIiIioiPqulWcrKysEBQXh7du34rZ3795h586dKF++/PeMki9VyfmtvH//vkDHXbx4ETVq1MCNGzcQEBCAhIQE7Nu3D5UrVy7SDdHjx4+jZ8+e6Nq1Ky5cuICYmBjMmzevwOdNRERERFQsZQnS3VTAd208V69eHeXLl0dISIi4LSQkBFZWVnBzcxO3HTlyBA0aNICxsTFMTU3Rrl073L59W9z//v17DB8+HJaWltDW1oaNjQ3mz5//2dedPXs2SpcuLXbbXb16NSpVqgRtbW2ULl0aXbt2LVTOgmTN6TIcEhKCpk2bQldXF1WrVsXZs2flnmfTpk0oX748dHV14eXlhbS0NLn9t2/fRseOHVG6dGno6+ujZs2aOH78uLi/SZMmuHfvHkaPHg2ZTAaZTCbu27t3L6pUqQItLS3Y2NhgyZIlcs9tY2ODuXPnwsfHB0ZGRvjxxx/h4eGB4cOHyx2XlpYGLS0thIeHQxAE+Pj4oFKlSoiIiEDbtm1RoUIFVKtWDTNmzMCBAwc++3mcPn0atWrVgpaWFiwtLTFp0iRkZGSI+/fs2QMXFxfo6OjA1NQUzZs3x+vXr8X9gYGBcHR0hLa2NipXrozVq1fLPf+FCxfg5uYGbW1tuLu749KlS3L7Dx06hAYNGmD8+PFwcHCAvb09OnXqhJUrV4rHzJw5E9WqVUNAQACsrKygq6uLbt264dmzZ+Ix0dHRaNGiBczMzGBkZITGjRsjNjZW7rWePXuGwYMHo3Tp0tDW1oazszMOHTok7o+KikKjRo2go6MDKysr+Pr6yp2rou8qERERERF9H999zHP//v0RGBgo3t+4cSMGDBggd8zr168xZswYREdH48SJE1BTU4OXlxeysrIAACtWrMDBgwcRHByM69evY9u2bbCxscn1WoIgYOTIkfjtt99w5swZVKtWDRcvXoSvry9mz56N69ev48iRI2jUqFGhchYka46pU6di3LhxiIuLg729PXr16iU2GM+fP48BAwZg6NChiIuLQ9OmTTF37ly5x7969Qpt2rTB8ePHcenSJXh6eqJ9+/ZITk4GkN24L1euHGbPno2UlBSkpKQAAGJiYtC9e3f07NkTV65cwcyZM+Hn54dNmzbJPf+iRYvg7OyMmJgY+Pn5YdCgQdixYwfS09PFY7Zv344yZcqgadOmiIuLw19//YWxY8dCTS331+hz47X/+ecftGnTBjVr1kR8fDzWrFmD3377TTzflJQU9OrVCwMGDEBiYiJOnTqFzp07QxCyr0atX78eU6dOxbx585CYmIhffvkFfn5+2Lx5s/h5tGvXDg4ODoiJicHMmTMxbtw4uQwWFhb466+/cPXq1Twz5rh16xaCg4Px+++/48iRI4iLi8OwYcPE/S9fvkS/fv0QERGBc+fOoVKlSmjTpg1evnwJAMjKykLr1q0RFRWFbdu2ISEhAb/++ivU1dUBAFeuXIGnpyc6d+6My5cvY9euXThz5ox40aKg31UiIiIiIvr2vvs6z3369MHkyZPFimxkZCSCgoJw6tQp8ZguXbrIPea3336Dubk5EhIS4OzsjOTkZFSqVAkNGjSATCaDtbV1rtfJyMhA3759cfHiRURGRqJcuXIAgOTkZOjp6aFdu3YwMDCAtbV1rmpyQXMWJGuOcePGoW3btgCAWbNmoUqVKrh16xYqV66M5cuXw9PTE5MmTQIA2NvbIyoqCkeOHBEfX7VqVVStWlW8P3fuXOzbtw8HDx7E8OHDUbJkSairq8PAwAAWFhbicUuXLkWzZs3g5+cnPndCQgIWLVokN3bbw8NDrpFpZWWFESNG4MCBA+jevTuA7IpvzpjwmzdvAgAqV66c673Lz+rVq2FlZYVVq1ZBJpOhcuXKePDgASZOnIjp06cjJSUFGRkZ6Ny5s/i5uri4iI+fM2cOlixZgs6dOwMAbG1tkZCQgICAAPTr1w/bt29HZmYmNm7cCF1dXVSpUgV///03fv75Z/E5RowYgYiICLi4uMDa2hp16tRBy5Yt0bt3b2hpaYnHvXv3Dps3bxa/OytXrkTbtm2xZMkSWFhYwMPDQ+7cAgICYGJigtOnT6Ndu3Y4fvw4Lly4gMTERNjb2wMA7OzsxOMXLVoEb29vjBo1CgBQqVIlrFixAo0bN8aaNWsK/F3NkZ6eLnexAwCyMj5ATaNEgT8fIiIiIvoPy8xSfMx/2HevPJuZmaFt27bYvHkzAgMD0bZtW5iZmckdc/v2bXh7e8POzg6GhoawtbUFALHK6uPjg7i4ODg4OMDX1xdhYWG5Xmf06NE4e/YsIiIixMYPALRo0QLW1taws7NDnz59sH37drx586ZQOQuSNYerq6v4s6WlJQDg4cOHAIDExETUrVtX7vhP779+/RoTJkyAk5MTjI2Noa+vj2vXruV6nU8lJiaifv36ctvq16+PmzdvIjMzU9zm7u4ud4yWlhZ++OEHbNy4EQAQFxeH+Ph4scGdUwn+uHt4QeSc68ePq1+/Pl69eoW///4bVatWRbNmzeDi4oJu3bph/fr1ePr0KQDg0aNHuH//PgYOHAh9fX3xNnfuXLGrfGJiIqpWrQpdXV3x+T99L/X09HD48GHcunUL06ZNg76+PsaOHYtatWrJfRfKly8v992pW7cusrKycP36dQDZn9+QIUNgb28PIyMjGBkZ4dWrV+JnEhcXh3LlyokN50/FxMRg06ZNcufi6emJrKws3L17t8Df1Rzz588Xc+Tc7lzcU6DPhYiIiIiI8ifJUlUDBgzApk2bsHnz5jy7Qrdv3x5paWlYv349zp8/j/PnzwP4v4msqlevjrt372LOnDl4+/YtunfvnmssaIsWLfDPP//g6NGjctsNDAwQGxuLnTt3wtLSEtOnT0fVqlXlxrIWNGdBsuYoUeL/qn85Dcecrt05DdH8jB8/Hnv37sW8efMQERGBuLg4uLi4KJzkShCEXA3cvF5PT08v17ZBgwbh2LFj+Pvvv7Fx40Y0a9ZMrAbnNAgTExMVZi9oHplMBnV1dRw7dgx//PEHnJycsHLlSjg4OODu3bvi+7V+/XrExcWJt6tXr+LcuXOfPbfPqVChAgYNGoQNGzYgNjYWCQkJ2LVr12ePz8md818fHx/ExMTA398fUVFRiIuLg6mpqfiZ6Ojo5Pv6WVlZ+Omnn+TOJT4+Hjdv3kSFChWU+q4CwOTJk/H8+XO5m507x0gTERERUcEIWYJkN1UgSeO5VatWeP/+Pd6/fw9PT0+5fWlpaUhMTMS0adPQrFkzODo6ipXHjxkaGqJHjx5Yv349du3ahb179+LJkyfi/g4dOmDHjh0YNGgQgoKC5B6roaGB5s2bY+HChbh8+TKSkpIQHh6uVE5lsiri5OQkNv5yfHo/IiICPj4+8PLygouLCywsLJCUlCR3jKamplw1Oee5z5w5I7ctKioK9vb24tjbz3FxcYG7uzvWr1+PHTt2yF1AqFatGpycnLBkyZJc47sBfLaB5+TkhKioKLlGblRUFAwMDFC2bFkA2Y3T+vXrY9asWbh06RI0NTWxb98+lC5dGmXLlsWdO3dQsWJFuVtOxd/JyQnx8fFyM6V/+l7mxcbGBrq6unKTdSUnJ+PBgwfi/bNnz0JNTU28cBAREQFfX1+0adNGnJDt8ePH4vGurq74+++/cePGjTxfs3r16vjrr79ynUvFihWhqakJoODfVSC7t4ChoaHcjV22iYiIiKi4Wr16NWxtbaGtrY0aNWogIiLis8eGhISgRYsWKFWqFAwNDVG3bt1chVZFvvuYZwBQV1cXK5afNuBMTExgamqKdevWwdLSEsnJyeJY4BzLli2DpaUlqlWrBjU1NezevRsWFha5Jqny8vLC1q1b0adPH2hoaKBr1644dOgQ7ty5g0aNGsHExAShoaHIysqCg4ODUjkLmrUgfH19Ua9ePSxcuBCdOnVCWFiY3HhnAKhYsSJCQkLQvn17yGQy+Pn55Wq02tjY4M8//0TPnj2hpaUFMzMzjB07FjVr1sScOXPQo0cPnD17FqtWrco1Q/XnDBo0CMOHDxdnAc8hk8kQGBiI5s2bo1GjRpgyZQoqV66MV69e4ffff0dYWBhOnz6d6/mGDh0Kf39/jBgxAsOHD8f169cxY8YMjBkzBmpqajh//jxOnDiBli1bwtzcHOfPn8ejR4/g6OgIIHsWbF9fXxgaGqJ169ZIT0/HxYsX8fTpU4wZMwbe3t6YOnUqBg4ciGnTpiEpKQmLFy+WyzBz5ky8efMGbdq0gbW1NZ49e4YVK1bgw4cPaNGihXictrY2+vXrh8WLF+PFixfw9fVF9+7dxTHlFStWxNatW+Hu7o4XL15g/PjxctXmxo0bo1GjRujSpQuWLl2KihUr4tq1a5DJZGjVqhUmTpyIOnXqYNiwYfjxxx+hp6eHxMREHDt2DCtXrlTqu0pERERE9MUyVaMCDAC7du3CqFGjsHr1atSvXx8BAQFo3bo1EhIS8lxe+M8//0SLFi3wyy+/wNjYGIGBgWjfvj3Onz+f77xCH5Ok8gxArIx9Sk1NDUFBQYiJiYGzszNGjx6NRYsWyR2jr6+PBQsWwN3dHTVr1kRSUhJCQ0PznPW5a9eu2Lx5M/r06YOQkBAYGxsjJCQEHh4ecHR0xNq1a7Fz505UqVJFqZwFzVoQderUwYYNG7By5UpUq1YNYWFhmDZtmtwxy5Ytg4mJCerVq4f27dvD09MT1atXlztm9uzZSEpKQoUKFVCqVCkA2dXN4OBgBAUFwdnZGdOnT8fs2bPlJgvLT69evaChoQFvb29oa2vL7atVqxYuXryIChUq4Mcff4SjoyM6dOiAv/76C/7+/nk+X9myZREaGooLFy6gatWqGDJkiNjQBbLf7z///BNt2rSBvb09pk2bhiVLlqB169YAIHaz3rRpE1xcXNC4cWNs2rRJrDzr6+vj999/R0JCAtzc3DB16lQsWLBALkPjxo1x584d9O3bF5UrV0br1q2RmpqKsLAwuYZpxYoV0blzZ7Rp0wYtW7aEs7Oz3EWHjRs34unTp3Bzc0OfPn3g6+sLc3Nzudfau3cvatasiV69esHJyQkTJkwQewe4urri9OnTuHnzJho2bAg3Nzf4+fmJY+KV/a4SEREREamq9PR0vHjxQu726WS4H1u6dCkGDhyIQYMGwdHREf7+/rCyssKaNWvyPN7f3x8TJkxAzZo1UalSJfzyyy+oVKkSfv/99wJnlAnKDBKl/5z79+/DxsYG0dHRuRrrxdnMmTOxf/9+cW1wVeU58qDUEb4qi3vPpY5ApFKaHNwkdYSv5lQHH6kjfFXF6bMpb6ul+CAVscWll9QR6DOK0/8z/bNOSB3hs177NpfstReVbIBZs2bJbZsxYwZmzpyZ69j3799DV1cXu3fvlusdO3LkSMTFxeXZA/ZTWVlZsLGxwYQJE8SlYhWRpNs2FX0fPnxASkoKJk2ahDp16vynGs5ERERERP9FgoQrVU2ePBljxoyR2/bxMrIfe/z4MTIzM1G6dGm57aVLl0ZqamqBXm/JkiV4/fq1uCxvQbDxTHmKjIxE06ZNYW9vjz17uNwRERERERF9O1paWp9tLH9OXqv4FGQp3Z07d2LmzJk4cOBArmGX+WHjmfLUpEkTpZZ9Km5mzpyZZxcRIiIiIqLiSshS3PAsCszMzKCurp6ryvzw4cNc1ehP7dq1CwMHDsTu3bvRvLly3dQlmzCMiIiIiIiISFmampqoUaMGjh07Jrf92LFjqFev3mcft3PnTvj4+GDHjh1o27at0q/LyjMRERERERGplDFjxqBPnz5wd3dH3bp1sW7dOiQnJ2PIkCEAssdQ//PPP9iyZQuA7IZz3759sXz5ctSpU0esWuvo6MDIyKhAr8nGMxERERERESFLwgnDlNWjRw+kpaVh9uzZSElJgbOzM0JDQ2FtbQ0ASElJQXJysnh8QEAAMjIyMGzYMAwbNkzc3q9fP2zatKlAr8nGMxEREREREamcoUOHYujQoXnu+7RBfOrUqS9+PTaeiYiIiIiICIKgGhOGSYUThhEREREREREpwMozERERERERQVChMc9SYOWZiIiIiIiISAE2nomIiIiIiIgUYLdtIiIiIiIigpDFCcPyw8ozERERERERkQKsPBMRERERERGyOGFYvlh5JiIiIiIiIlKAjWciIiIiIiIiBdhtm4iIiIiIiDhhmAKsPBMREREREREpwMozERERERERQeCEYfli45moGNN//k7qCEQkoVavuksd4avxefZc6ghf1aaDUif4ep4/y5Q6wlez3uOA1BG+qh/DO0od4avR1GKHWZIeG89EREREREQEQeCY5/zwEg4RERERERGRAmw8ExERERERESnAbttERERERETECcMUYOWZiIiIiIiISAFWnomIiIiIiAhZWZwwLD+sPBMREREREREpwMYzERERERERkQLstk1EREREREScMEwBVp6JiIiIiIiIFGDlmYiIiIiIiCBwwrB8sfJMREREREREpAArz0RERERERMQxzwqw8kxERERERESkABvPRERERERERAqw2zYRERERERFBEDhhWH5YeSYiIiIiIiJSgJVnIiIiIiIiQhYnDMsXK89E30lqaipatGgBPT09GBsbSx2HiIiIiIiUwMZzMeXj4wOZTAaZTAYNDQ2UL18eP//8M54+ffpVnl8mk2H//v1f5bm+p8LkFgQB69atQ+3ataGvrw9jY2O4u7vD398fb968KfDzLFu2DCkpKYiLi8ONGzeUTE5ERERERFJit+1irFWrVggMDERGRgYSEhIwYMAAPHv2DDt37pQ6mlI+fPiAEiVKSPb6ffr0QUhICKZNm4ZVq1ahVKlSiI+Ph7+/P2xsbNCpU6cCPc/t27dRo0YNVKpU6dsGJiIiIiIqBK7znD9WnosxLS0tWFhYoFy5cmjZsiV69OiBsLAwcX9gYCAcHR2hra2NypUrY/Xq1eK+9+/fY/jw4bC0tIS2tjZsbGwwf/58AICNjQ0AwMvLCzKZTLx/+/ZtdOzYEaVLl4a+vj5q1qyJ48ePy2XKq/JrbGyMTZs2AQCSkpIgk8kQHByMJk2aQFtbG9u2bUNaWhp69eqFcuXKQVdXFy4uLrkuAjRp0gS+vr6YMGECSpYsCQsLC8ycOVPc/7nc8fHxaNq0KQwMDGBoaIgaNWrg4sWLAIDg4GBs374dO3fuxJQpU1CzZk3Y2NigY8eOCA8PR9OmTQEA0dHRaNGiBczMzGBkZITGjRsjNjZW7rX37t2LLVu2QCaTwcfHBwDw/PlzDB48GObm5jA0NISHhwfi4+PFx+WXjYiIiIiIvh9Wnv8j7ty5gyNHjogV3PXr12PGjBlYtWoV3NzccOnSJfz444/Q09NDv379sGLFChw8eBDBwcEoX7487t+/j/v37wPIbiiam5sjMDAQrVq1grq6OgDg1atXaNOmDebOnQttbW1s3rwZ7du3x/Xr11G+fHml8k6cOBFLlixBYGAgtLS08O7dO9SoUQMTJ06EoaEhDh8+jD59+sDOzg61a9cWH7d582aMGTMG58+fx9mzZ+Hj44P69eujRYsWn83du3dvuLm5Yc2aNVBXV0dcXJz4Pm3fvh0ODg7o2LFjrowymQxGRkYAgJcvX4rvGwAsWbIEbdq0wc2bN2FgYIDo6Gj07dsXhoaGWL58OXR0dCAIAtq2bYuSJUsiNDQURkZGCAgIQLNmzXDjxg2ULFky32xERERERF+TkMWlqvLDxnMxdujQIejr6yMzMxPv3r0DACxduhQAMGfOHCxZsgSdO3cGANja2iIhIQEBAQHo168fkpOTUalSJTRo0AAymQzW1tbi85YqVQpAdsXYwsJC3F61alVUrVpVvD937lzs27cPBw8exPDhw5XKPmrUKDFbjnHjxok/jxgxAkeOHMHu3bvlGs+urq6YMWMGAKBSpUpYtWoVTpw4gRYtWnw2d3JyMsaPH4/KlSuLj8tx8+ZNODg4KMzr4eEhdz8gIAAmJiY4ffo02rVrh1KlSkFLSws6Ojria4eHh+PKlSt4+PAhtLS0AACLFy/G/v37sWfPHgwePDjfbERERERE9P2w8VyMNW3aFGvWrMGbN2+wYcMG3LhxAyNGjMCjR49w//59DBw4ED/++KN4fEZGhlhJ9fHxQYsWLeDg4IBWrVqhXbt2aNmyZb6v9/r1a8yaNQuHDh3CgwcPkJGRgbdv3yI5OVnp7O7u7nL3MzMz8euvv2LXrl34559/kJ6ejvT0dOjp6ckd5+rqKnff0tISDx8+zPe1xowZg0GDBmHr1q1o3rw5unXrhgoVKgDInixMJlN8Be7hw4eYPn06wsPD8e+//yIzMxNv3rzJ99xjYmLw6tUrmJqaym1/+/Ytbt++rTDbp3Lek49lZn6Aujor1UREREREX4pjnosxPT09VKxYEa6urlixYgXS09Mxa9YsZP3/BdzWr1+PuLg48Xb16lWcO3cOAFC9enXcvXsXc+bMwdu3b9G9e3d07do139cbP3489u7di3nz5iEiIgJxcXFwcXHB+/fvxWNkMhkEQZB73IcPH/LM/rElS5Zg2bJlmDBhAsLDwxEXFwdPT0+55waQq0uzTCYTz/dzZs6cib/++gtt27ZFeHg4nJycsG/fPgCAvb09EhMT8308kH2xISYmBv7+/oiKikJcXBxMTU1z5ftYVlYWLC0t5T6DuLg4XL9+HePHj1eY7VPz58+HkZGR3O36lf0KsxMRERERAdkThkl1UwVsPP+HzJgxA4sXL0ZmZibKli2LO3fuoGLFinI3W1tb8XhDQ0P06NED69evx65du7B37148efIEQHYjNTMzU+75IyIi4OPjAy8vL7i4uMDCwgJJSUlyx5QqVQopKSni/Zs3bxZouaeIiAh07NgRP/zwA6pWrQo7OzvcvHlT6fcgr9xAdiN59OjRCAsLQ+fOnREYGAgA8Pb2xo0bN3DgwIFcjxEEAc+fPxfz+fr6ok2bNqhSpQq0tLTw+PHjfLNUr14dqamp0NDQyPU5mJmZKcz2qcmTJ+P58+dyNweXTgV9a4iIiIiIKB9sPP+HNGnSBFWqVMEvv/yCmTNnYv78+Vi+fDlu3LiBK1euIDAwUBwTvWzZMgQFBeHatWu4ceMGdu/eDQsLCxgbGwPInj36xIkTSE1NFdeOrlixIkJCQhAXF4f4+Hh4e3vnqvp6eHhg1apViI2NxcWLFzFkyJACTYBVsWJFHDt2DFFRUUhMTMRPP/2E1NRUpd+DT3O/ffsWw4cPx6lTp3Dv3j1ERkYiOjoajo6OAIDu3bujR48e6NWrF+bPn4+LFy/i3r17OHToEJo3b46TJ0+K+bZu3YrExEScP38evXv3ho6OTr5Zmjdvjrp166JTp044evQokpKSEBUVhWnTpuHixYsKs31KS0sLhoaGcjd22SYiIiKigsrKkkl2UwVsPP/HjBkzBuvXr4enpyc2bNiATZs2wcXFBY0bN8amTZvEyrO+vj4WLFgAd3d31KxZE0lJSQgNDYWaWvZXZsmSJTh27BisrKzg5uYGILvBbWJignr16qF9+/bw9PRE9erV5V5/yZIlsLKyQqNGjeDt7Y1x48ZBV1dXYW4/Pz9Ur14dnp6eaNKkCSwsLAq8vvKnr/9xbnV1daSlpaFv376wt7dH9+7d0bp1a8yaNQtAdrfvHTt2YOnSpdi3bx8aN24MV1dXzJw5Ex07doSnpycAYOPGjXj69Cnc3NzQp08f+Pr6wtzcPN8sMpkMoaGhaNSoEQYMGAB7e3v07NkTSUlJKF26tMJsRERERET0/ciETwegElGx0cUnWOoIX5X+s3TFBxGR6NcdiofFqAqLZ7nnx1Blm8rlPX+FKjIyKT7zz7abYSB1hK/qx/DcS22qqpZHt0gd4avp/faY1BE+60aLDpK9tv2xg5K9dkGx8kxERERERESkABvPRERERERERAoUn342REREREREVGiCoBoTd0mFlWciIiIiIiIiBVh5JiIiIiIiIghZio/5L2PlmYiIiIiIiEgBNp6JiIiIiIiIFGC3bSIiIiIiIoKQxQnD8sPKMxEREREREZECrDwTERERERERsjhhWL5YeSYiIiIiIiJSgJVnIiIiIiIiQlamIHWEIo2VZyIiIiIiIiIF2HgmIiIiIiIiUoDdtomIiIiIiIgThinAyjMRERERERGRAqw8ExERERERETKzOGFYflh5JiIiIiIiIlKAjWciIiIiIiIiBdhtm4iIiIiIiJCVKXWCoo2NZ6JirN2WAKkjfFWe3bWkjkCkUo7op0sd4as5GDRC6ghf1bL2OlJH+GoGtR8qdYSv5vngJVJH+KqaYJPUEb6asA4+Ukf4anpLHYAKjY1nIiIiIiIiQhYnDMsXxzwTERERERERKcDKMxEREREREXHMswKsPBMREREREREpwMYzERERERERkQLstk1EREREREScMEwBVp6JiIiIiIiIFGDlmYiIiIiIiJCVJXWCoo2VZyIiIiIiIiIF2HgmIiIiIiIiUoDdtomIiIiIiAhZmZwwLD+sPBMREREREREpwMozERERERERIZMThuWLlWciIiIiIiIiBVh5JiIiIiIiIo55VoCVZyIiIiIiIiIF2HgmIiIiIiIiUoDdtomIiIiIiAhZnDAsX6w8ExERERERESnAxjOprNTUVLRo0QJ6enowNjaWOo7SfHx80KlTpwIfn5SUBJlMhri4uG+WiYiIiIj+u7KyBMluqoCN5wLy8fGBTCaDTCaDhoYGypcvj59//hlPnz79Ks8vk8mwf//+r/Jc31NhcguCgHXr1qF27drQ19eHsbEx3N3d4e/vjzdv3hT4eZYtW4aUlBTExcXhxo0bSibP7dSpU+JnLJPJUKpUKbRu3Rrx8fFf9Lyfa/QuX74cmzZt+qLnJiIiIiKi74ONZyW0atUKKSkpSEpKwoYNG/D7779j6NChUsdS2ocPHyR9/T59+mDUqFHo2LEjTp48ibi4OPj5+eHAgQMICwsr8PPcvn0bNWrUQKVKlWBubv7V8l2/fh0pKSk4fPgwnj59ilatWuH58+eFeq73799/dp+RkZFKVsyJiIiIiP6L2HhWgpaWFiwsLFCuXDm0bNkSPXr0kGvsBQYGwtHREdra2qhcuTJWr14t7nv//j2GDx8OS0tLaGtrw8bGBvPnzwcA2NjYAAC8vLwgk8nE+7dv30bHjh1RunRp6Ovro2bNmjh+/Lhcprwqv8bGxmJFM6fqGRwcjCZNmkBbWxvbtm1DWloaevXqhXLlykFXVxcuLi7YuXOn3PM0adIEvr6+mDBhAkqWLAkLCwvMnDlT3P+53PHx8WjatCkMDAxgaGiIGjVq4OLFiwCA4OBgbN++HTt37sSUKVNQs2ZN2NjYoGPHjggPD0fTpk0BANHR0WjRogXMzMxgZGSExo0bIzY2Vu619+7diy1btkAmk8HHxwcA8Pz5cwwePBjm5uYwNDSEh4eHXOU4v2w5zM3NYWFhgVq1amHJkiVITU3FuXPnCvR52NjYYO7cufDx8YGRkRF+/PFH2NraAgDc3Nwgk8nQpEkTALm7bR85cgQNGjSAsbExTE1N0a5dO9y+fRtERERERN9DVqZ0N1XAxnMh3blzB0eOHEGJEiUAAOvXr8fUqVMxb948JCYm4pdffoGfnx82b94MAFixYgUOHjyI4OBgXL9+Hdu2bRMbm9HR0QCyG98pKSni/VevXqFNmzY4fvw4Ll26BE9PT7Rv3x7JyclK5504cSJ8fX2RmJgIT09PvHv3DjVq1MChQ4dw9epVDB48GH369MH58+flHrd582bo6enh/PnzWLhwIWbPno1jx47lm7t3794oV64coqOjERMTg0mTJonv0/bt2+Hg4ICOHTvmyiiTyWBkZAQAePnyJfr164eIiAicO3cOlSpVQps2bfDy5UvxtVu1aoXu3bsjJSUFy5cvhyAIaNu2LVJTUxEaGoqYmBhUr14dzZo1w5MnTxRmy4uOjg6A7Gp9QT+PRYsWwdnZGTExMfDz88OFCxcAAMePH0dKSgpCQkLyfK3Xr19jzJgxiI6OxokTJ6CmpgYvLy9kcdpDIiIiIiLJcakqJRw6dAj6+vrIzMzEu3fvAABLly4FAMyZMwdLlixB586dAQC2trZISEhAQEAA+vXrh+TkZFSqVAkNGjSATCaDtbW1+LylSpUCkF0xtrCwELdXrVoVVatWFe/PnTsX+/btw8GDBzF8+HClso8aNUrMlmPcuHHizyNGjMCRI0ewe/du1K5dW9zu6uqKGTNmAAAqVaqEVatW4cSJE2jRosVncycnJ2P8+PGoXLmy+LgcN2/ehIODg8K8Hh4ecvcDAgJgYmKC06dPo127dihVqhS0tLSgo6MjvnZ4eDiuXLmChw8fQktLCwCwePFi7N+/H3v27MHgwYPzzfaptLQ0zJo1CwYGBqhVqxbMzc0L9Hl4eHjIvbdJSUkAAFNTU7n36VNdunSRu//bb7/B3NwcCQkJcHZ2zu/tAgCkp6cjPT1dbtsHIQslZLxGRkRERESKqcrEXVLhX9VKaNq0KeLi4nD+/HmMGDECnp6eGDFiBB49eoT79+9j4MCB0NfXF29z584Vu936+PggLi4ODg4O8PX1LdDY3tevX2PChAlwcnKCsbEx9PX1ce3atUJVnt3d3eXuZ2ZmYt68eXB1dYWpqSn09fURFhaW67ldXV3l7ltaWuLhw4f5vtaYMWMwaNAgNG/eHL/++qtc12NBECCTyRTmffjwIYYMGQJ7e3sYGRnByMgIr169yvfcY2Ji8OrVK/F8cm53794VM+SXLUe5cuWgr68PMzMzJCYmYvfu3TA3Ny/w5/Hpe11Qt2/fhre3N+zs7GBoaCh29y7o5z1//nzxvcq5HUZSobIQEREREZE8Vp6VoKenh4oVKwLI7obdtGlTzJo1S6w6rl+/Xq5qCwDq6uoAgOrVq+Pu3bv4448/cPz4cXTv3h3NmzfHnj17Pvt648ePx9GjR7F48WJUrFgROjo66Nq1q9wkVDKZDIIgf4UorwnB9PT05O4vWbIEy5Ytg7+/P1xcXKCnp4dRo0blmuDq0y7NMplMYTfimTNnwtvbG4cPH8Yff/yBGTNmICgoCF5eXrC3t0diYmK+jweyLzY8evQI/v7+sLa2hpaWFurWrZvvBFxZWVmwtLTEqVOncu3LmZgrv2w5IiIiYGhoiFKlSsHQ0FDcXpDPA8j9XhdU+/btYWVlhfXr16NMmTLIysqCs7Nzvuf8scmTJ2PMmDFy24KMcnePJyIiIiLKSyZHC+aLjecvMGPGDLRu3Ro///wzypYtizt37qB3796fPd7Q0BA9evRAjx490LVrV7Rq1QpPnjxByZIlUaJECWRmyo+Uj4iIgI+Pj9iwe/XqldgFOEepUqWQkpIi3r9582aBlnuKiIhAx44d8cMPPwDIbnjevHkTjo6OBT19AMgzNwDY29vD3t4eo0ePRq9evRAYGAgvLy94e3ujZ8+eOHDgQK5xz4Ig4MWLFzAyMkJERARWr16NNm3aAADu37+Px48f55ulevXqSE1NhYaGhjiePC+fy5bD1tY2z1mwC/J55EVTUxMA8nyfcqSlpSExMREBAQFo2LAhAODMmTMKn/tjWlpaYnf1HOyyTURERET0dfAv6y/QpEkTVKlSBb/88gtmzpyJ+fPnY/ny5bhx4wauXLmCwMBAcUz0smXLEBQUhGvXruHGjRvYvXs3LCwsxEaajY0NTpw4gdTUVHHt6IoVKyIkJARxcXGIj4+Ht7d3rqqvh4cHVq1ahdjYWFy8eBFDhgzJdwKsHBUrVsSxY8cQFRWFxMRE/PTTT0hNTVX6Pfg099u3bzF8+HCcOnUK9+7dQ2RkJKKjo8VGeffu3dGjRw/06tUL8+fPx8WLF3Hv3j0cOnQIzZs3x8mTJ8V8W7duRWJiIs6fP4/evXuLk3d9TvPmzVG3bl106tQJR48eRVJSEqKiojBt2jRcvHhRYbaCvGeKPo+8mJubQ0dHB0eOHMG///6b57JXJiYmMDU1xbp163Dr1i2Eh4fnqiITEREREZF02Hj+QmPGjMH69evh6emJDRs2YNOmTXBxcUHjxo2xadMmcdyqvr4+FixYAHd3d9SsWRNJSUkIDQ2Fmlr2R7BkyRIcO3YMVlZWcHNzA5Dd4DYxMUG9evXQvn17eHp6onr16nKvv2TJElhZWaFRo0bw9vbGuHHjoKurqzC3n58fqlevDk9PTzRp0gQWFhZyyyYV1Ke51dXVkZaWhr59+8Le3h7du3dH69atMWvWLADZ3b537NiBpUuXYt++fWjcuDFcXV0xc+ZMdOzYEZ6engCAjRs34unTp3Bzc0OfPn3g6+urcC1nmUyG0NBQNGrUCAMGDIC9vT169uyJpKQklC5dWmE2RQryeeRFQ0MDK1asQEBAAMqUKZPnTONqamoICgpCTEwMnJ2dMXr0aCxatKhAuYiIiIiIvoasTEGymyqQCZ8OmCWiYiNQrZnUEb4qz+5aig8iItHR4HTFB6mIg0EjpI7wVS3bvkHqCF/NoPZDpY7w1fQevETqCPQZpzr4SB3hq9m8v4/UET5rfylPyV6706Ojkr12QXHMMxEREREREaEAIxL/09htm4iIiIiIiEgBNp6JiIiIiIiIFGC3bSIiIiIiIlKZibukwsozERERERERkQKsPBMREREREREnDFOAlWciIiIiIiIiBVh5JiIiIiIiImRlccxzflh5JiIiIiIiIlKAjWciIiIiIiIiBdhtm4iIiIiIiJCZKXWCoo2VZyIiIiIiIiIFWHkmIiIiIiIiThimACvPRERERERERAqw8UxERERERESkALttExEREREREbI4YVi+WHkmIiIiIiIilbN69WrY2tpCW1sbNWrUQERERL7Hnz59GjVq1IC2tjbs7Oywdu1apV6PjWciIiIiIiJCVpYg2U1Zu3btwqhRozB16lRcunQJDRs2ROvWrZGcnJzn8Xfv3kWbNm3QsGFDXLp0CVOmTIGvry/27t1b4Ndk45mIiIiIiIhUytKlSzFw4EAMGjQIjo6O8Pf3h5WVFdasWZPn8WvXrkX58uXh7+8PR0dHDBo0CAMGDMDixYsL/JpsPBMREREREZGk0tPT8eLFC7lbenp6nse+f/8eMTExaNmypdz2li1bIioqKs/HnD17Ntfxnp6euHjxIj58+FCwkAIR0Rd49+6dMGPGDOHdu3dSR/lixelcBKF4nQ/PpegqTufDcym6itP58FyKruJ2PqpmxowZAgC524wZM/I89p9//hEACJGRkXLb582bJ9jb2+f5mEqVKgnz5s2T2xYZGSkAEB48eFCgjDJBELgSNhEV2osXL2BkZITnz5/D0NBQ6jhfpDidC1C8zofnUnQVp/PhuRRdxel8eC5FV3E7H1WTnp6eq9KspaUFLS2tXMc+ePAAZcuWRVRUFOrWrStunzdvHrZu3Ypr167leoy9vT369++PyZMni9siIyPRoEEDpKSkwMLCQmFGLlVFREREREREkvpcQzkvZmZmUFdXR2pqqtz2hw8fonTp0nk+xsLCIs/jNTQ0YGpqWqDX5ZhnIiIiIiIiUhmampqoUaMGjh07Jrf92LFjqFevXp6PqVu3bq7jw8LC4O7ujhIlShToddl4JiIiIiIiIpUyZswYbNiwARs3bkRiYiJGjx6N5ORkDBkyBAAwefJk9O3bVzx+yJAhuHfvHsaMGYPExERs3LgRv/32G8aNG1fg12S3bSL6IlpaWpgxY0aBu9kUZcXpXIDidT48l6KrOJ0Pz6XoKk7nw3Mpuorb+RR3PXr0QFpaGmbPno2UlBQ4OzsjNDQU1tbWAICUlBS5NZ9tbW0RGhqK0aNH43//+x/KlCmDFStWoEuXLgV+TU4YRkRERERERKQAu20TERERERERKcDGMxEREREREZECbDwTERERERERKcDGMxEREREREZECbDwTERERERERKcDGMxH952VkZOD48eMICAjAy5cvAQAPHjzAq1evJE5GxcXdu3dx8+bNXNtv3ryJpKSk7x/oG3j27JnUEYiIiL4prvNMRAq5ublBJpMV6NjY2NhvnObrunfvHlq1aoXk5GSkp6ejRYsWMDAwwMKFC/Hu3TusXbtW6ohK+ffffzFu3DicOHECDx8+xKerEWZmZkqUrHD++ecfREZG4uHDh8jKypLb5+vrK1Eq5fn4+GDAgAGoVKmS3Pbz589jw4YNOHXqlDTBCmnBggWwsbFBjx49AADdu3fH3r17YWFhgdDQUFStWlXihPkbM2ZMgY9dunTpN0xC/2UvXrxAeHg4HBwc4OjoKHUcpcTGxqJEiRJwcXEBABw4cACBgYFwcnLCzJkzoampKXFCom+DjWciUqhTp05SR/hmRo4cCXd3d8THx8PU1FTc7uXlhUGDBkmYrHB8fHyQnJwMPz8/WFpaFviiR1EUGBiIIUOGQFNTE6ampnLnIpPJVKrxfOnSJdSvXz/X9jp16mD48OESJPoyAQEB2LZtGwDg2LFjOHbsGP744w8EBwdj/PjxCAsLkzhh/i5dulSg41Tx/5/NmzfDzMwMbdu2BQBMmDAB69atg5OTE3bu3Alra2uJE+ZvxYoVBT5WlX4HANkXmRo1aoThw4fj7du3cHd3R1JSEgRBQFBQELp06SJ1xAL76aefMGnSJLi4uODOnTvo2bMnvLy8sHv3brx58wb+/v5SR8zX5cuXC3ysq6vrN0xCqkYmfFqWICL6DzEzM0NkZCQcHBxgYGCA+Ph42NnZISkpCU5OTnjz5o3UEZViYGCAiIgIVKtWTeooX8zKygpDhgzB5MmToaam2qOMjIyMcOrUKbi5ucltj4mJQZMmTcThAqpCR0cHN27cgJWVFUaOHIl3794hICAAN27cQO3atfH06VOpI/5nOTg4YM2aNfDw8MDZs2fRrFkz+Pv749ChQ9DQ0EBISIjUEfNla2tboONkMhnu3LnzjdN8XRYWFjh69CiqVq2KHTt2YMaMGYiPj8fmzZuxbt26Al/UKQqMjIwQGxuLChUqYMGCBQgPD8fRo0cRGRmJnj174v79+1JHzJeamhpkMlmu3lk5cvbJZDKV67FF3xYrz0T0n5aVlZXnP4x///03DAwMJEj0ZaysrD77x4CqefPmDXr27KnyDWcAaNiwIebPn4+dO3dCXV0dQHYX+vnz56NBgwYSp1OeiYkJ7t+/DysrKxw5cgRz584FAAiCwD80JXb//n1UrFgRALB//3507doVgwcPRv369dGkSRNpwxXA3bt3pY7wzTx//hwlS5YEABw5cgRdunSBrq4u2rZti/Hjx0ucTjmCIIhDaY4fP4527doByP436PHjx1JGK5Di/D2jb4uNZyJSSmZmJpYtW4bg4GAkJyfj/fv3cvufPHkiUbLCadGiBfz9/bFu3ToA2VebX716hRkzZqBNmzYSp1Oev78/Jk2ahICAANjY2Egd54sMHDgQu3fvxqRJk6SO8sUWLlyIRo0awcHBAQ0bNgQAREREiGMeVU3nzp3h7e2NSpUqIS0tDa1btwYAxMXFiQ03VRIdHY3du3fn+TutqFdqP6Wvr4+0tDSUL18eYWFhGD16NABAW1sbb9++lTjdf5uVlRXOnj2LkiVL4siRIwgKCgIAPH36FNra2hKnU467uzvmzp2L5s2b4/Tp01izZg2A7EZp6dKlJU6nWFEfvkBFFxvPRKSUWbNmYcOGDRgzZgz8/PwwdepUJCUlYf/+/Zg+fbrU8ZS2dOlSeHh4wMnJCe/evYO3tzdu3rwJMzMz7Ny5U+p4BWJiYiI3NvP169eoUKECdHV1UaJECbljVenixvz589GuXTscOXIELi4uuc5FlSZycnJywuXLl7Fq1SrEx8dDR0cHffv2xfDhw8VKlCpZtmwZbGxscP/+fSxcuBD6+voAgJSUFAwdOlTidMoJCgpC37590bJlSxw7dgwtW7bEzZs3kZqaCi8vL6njKa1FixYYNGgQ3NzccOPGDXHs819//aWSF9T+/vtvHDx4MM8LG6r0OwAARo0ahd69e0NfXx/ly5cXewL8+eef4sRbqsLf3x+9e/fG/v37MXXqVPGi2Z49e1CvXj2J0xVOQkJCnt+zDh06SJSIiiKOeSYipVSoUAErVqxA27ZtYWBggLi4OHHbuXPnsGPHDqkjKu3t27cICgpCTEwMsrKyUL16dfTu3Rs6OjpSRyuQzZs3F/jYfv36fcMkX9ecOXMwY8YMODg4oHTp0rkmDFPFii0VPa6urvjpp58wbNgwcd4DW1tb/PTTT7C0tMSsWbOkjqiUZ8+eYdq0abh//z5+/vlntGrVCgAwY8YMaGpqYurUqRInLLgTJ06gQ4cOsLW1xfXr1+Hs7CxOsFW9enWV/B1w8eJF3L9/Hy1atBAvOh0+fBjGxsZ5Tiqoat69ewd1dfVcFzuLsjt37sDLywtXrlyRGwed828Oh6LQx9h4JiKl6OnpITExEeXLl4elpSUOHz6M6tWr486dO3Bzc8Pz58+ljlhgHz58gIODAw4dOgQnJyep49AnTExMsGzZMvj4+Egd5auIiIhAQEAA7ty5g927d6Ns2bLYunUrbG1tVXLc89atW8XzOXv2LKytreHv7w9bW1t07NhR6ngFpqenJ1ZlzczMcPLkSbi4uCAxMREeHh5ISUmROuJ/Vq1atdCqVSvMnj1bvLBhbm6O3r17o1WrVvj555+ljlgo79+/x927d1GhQgVoaKhuJ9Bnz55hz549uH37NsaPH4+SJUsiNjYWpUuXRtmyZaWOV2Dt27eHuro61q9fDzs7O1y4cAFpaWkYO3YsFi9eLA61IQIA1Z+FhYi+q3Llyol/TFasWFFckiY6OhpaWlpSRlNaiRIlkJ6erpLL0XzOixcv8ry9fPkyV1e0ok5LS6tYVGIAYO/evfD09ISOjg5iY2ORnp4OAHj58iV++eUXidMpb82aNRgzZgxat26NZ8+eiZUZY2PjIr9EzadKliwpznZetmxZXL16FUB2w0DVZtvPERERgR9++AH16tXDP//8AyD7YseZM2ckTqacxMREsbeMhoYG3r59C319fcyePRsLFiyQOJ3y3rx5g4EDB0JXVxdVqlRBcnIygOwlt3799VeJ0ynn8uXLqFSpEhYsWIDFixfj2bNnAIB9+/Zh8uTJ0oZT0tmzZzF79myUKlUKampqUFNTQ4MGDTB//nyVWw6Nvj02nolIKV5eXjhx4gSA7DWS/fz8UKlSJfTt2xcDBgyQOJ3yRowYgQULFiAjI0PqKF+FsbExTExMct2MjY2ho6MDa2trzJgxQ5wltSgbOXIkVq5cKXWMr2Lu3LlYu3Yt1q9fL9edsV69eoiNjZUwWeGsXLkS69evx9SpU8XZw4HsSYSuXLkiYTLlNWzYEMeOHQOQvQ7vyJEj8eOPP6JXr15o1qyZxOmUV5wu1Ojp6Yn5y5Qpg9u3b4v7VGFG509NnjwZ8fHxOHXqlNwEYc2bN8euXbskTKa8MWPGoH///rh586bcubRu3Rp//vmnhMmUl5mZKXahNzMzw4MHDwBkTyp2/fp1KaNREaS6fUWISBIfXx3v2rUrypUrh6ioKFSsWFElJ9U4f/48Tpw4gbCwMLi4uEBPT09uv6rNtLtp0yZMnToVPj4+qFWrFgRBQHR0NDZv3oxp06bh0aNHWLx4MbS0tDBlyhSp4+brwoULCA8Px6FDh1ClSpVcY+hU6bO5fv06GjVqlGu7oaGhWLFRJXfv3s21ZjWQ3Vvg9evXEiQqvFWrVuHdu3cAshs3JUqUwJkzZ9C5c2f4+flJnE55ORdq+vbtK87mDGRfqJk9e7aEyZRXp04dREZGwsnJCW3btsXYsWNx5coVhISEoE6dOlLHU9r+/fuxa9cu1KlTR67Hk5OTk9yFAVUQHR2NgICAXNvLli2L1NRUCRIVnrOzMy5fvgw7OzvUrl0bCxcuhKamJtatWwc7Ozup41ERw8YzEX2ROnXqqOQfMTmMjY3RpUsXqWN8NZs3b8aSJUvQvXt3cVuHDh3g4uKCgIAAnDhxAuXLl8e8efOKfOPZ2NgYnTt3ljrGV2FpaYlbt27lmu34zJkzKvnHma2tLeLi4nIt9/LHH3+o3PwBH892rqamhgkTJmDChAkSJvoyxelCzdKlS/Hq1SsAwMyZM/Hq1Svs2rULFStWxLJlyyROp7xHjx7B3Nw81/bXr1+r3PAhbW1tvHjxItf269evo1SpUhIkKrxp06aJF/3mzp2Ldu3aoWHDhjA1NVW5HgH07bHxTEQKHTx4EK1bt0aJEiVw8ODBfI9VtepzYGCg1BG+qrNnz2Lt2rW5tru5ueHs2bMAgAYNGohj7Yqy4vTZ/PTTTxg5ciQ2btwImUyGBw8e4OzZsxg3bpxKLvE2fvx4DBs2DO/evYMgCLhw4QJ27tyJ+fPnY8OGDVLHU+jFixcwNDQUf85PznGqojhdqPk4r66uLlavXi1hmi9Xs2ZNHD58GCNGjADwf7M5r1+/HnXr1pUymtI6duyI2bNnIzg4GED2uSQnJ2PSpEkqd0Ha09NT/NnOzg4JCQl48uRJrmUgiQAAAhGRAjKZTPj333/Fnz93U1NTkzgpVapUSZg4cWKu7RMnThTs7e0FQRCE6OhooUyZMt872n/elClTBB0dHfH/F21tbWHatGlSxyq0devWCeXLlxfPp1y5csKGDRukjlUgampqcr/T1NTUct1U9XfaggULBCcnJ+HcuXOCgYGBEBERIWzbtk0oVaqUsHLlSqnj/adFRkYKBgYGwpAhQwRtbW1h5MiRQvPmzQU9PT3h4sWLUsdTyvPnz4X69esLxsbGgrq6umBlZSWUKFFCaNSokfDq1Sup4xF9M1yqioj+8/bs2YPg4GAkJyfnmpFa1SZzOnjwILp164bKlSujZs2akMlkiI6OxrVr17Bnzx60a9cOa9aswc2bN7F06VKp4+ZSvXp1nDhxAiYmJnBzc8v3qr+qfTZA9my7CQkJyMrKgpOTkzhJjSrJyMjA9u3b4enpCQsLCzx+/BhZWVl5dkctqk6fPo369etDQ0MDp0+fzvfYxo0bf6dUX8/UqVOxbNkycSy3lpYWxo0bhzlz5kicTLGSJUvixo0bMDMzU1j5e/LkyXdM9nVcuXIFixcvRkxMDLKyslC9enVMnDgRLi4uUkcrlPDwcMTGxorn0rx5c6kjFUjnzp2xadMmGBoaKhwepErza9C3x27bRKSULVu2oEePHrmWpXr//j2CgoLQt29fiZIVzooVKzB16lT069cPBw4cQP/+/XH79m1ER0dj2LBhUsdTWocOHXD9+nWsXbsWN27cgCAIaN26Nfbv3y924yzKa6N27NhR/G516tRJ2jDfgK6uLtzd3XHv3j0kJyejcuXKUFNTrYUvNDQ08PPPPyMxMRFA9uy0qubjBrGtrS2srKxyNdIEQcD9+/e/d7SvYt68eZg6dapKXqhZtmwZDAwMxJ+LW7dZFxcXbN68WeoYhfLxhY0BAwZg+fLl8PDwgIeHh9TRlGZkZCR+twwNDYvd94y+HVaeiUgp6urqSElJyVVlSktLg7m5ubjeq6qoXLkyZsyYgV69esHAwADx8fGws7PD9OnT8eTJE6xatUrqiP9JmZmZOHPmDFxdXWFiYiJ1nELbvHkznj59ilGjRonbBg8ejN9++w0A4ODggKNHj8LKykqihIXTtGlTjBw5slhc4Chuv9OeP3+OzMxMuYnQgOwqrYaGhsqN4S5OQkNDoa6uLjfGFgCOHj2KrKwstG7dWqJkBaOvry/OSq2uro7U1FSVmxyM6Eux8kxEShEEIc8rtH///TeMjIwkSPRlkpOTUa9ePQCAjo4OXr58CQDo06cP6tSpoxKN58uXL8PZ2Rlqamq4fPlyvse6urp+p1RfJucPzMTERJVuPK9duxaDBw8W7x85cgSBgYHYsmULHB0dMXz4cMyaNUslJtn62NChQzF27Fj8/fffqFGjRq4l3lTlewZ8/nfaq1ev5NavVRU9e/ZE+/btMXToULntwcHBOHjwIEJDQyVKprzidmFj0qRJcss95hAEAZMmTSryjee6deuiU6dOqFGjBgRBgK+vL3R0dPI8duPGjd85XeF5eHggJCQExsbGcttfvHiBTp06ITw8XJpgVCSx8UxEBZIz/lQmk6FZs2bQ0Pi/Xx+ZmZm4e/cuWrVqJWHCwrGwsEBaWhqsra1hbW2Nc+fOoWrVqrh79y5UpWNOtWrVkJqaCnNzc1SrVg0ymSzP7DKZTKX+2HRxccGdO3dga2srdZRCu3HjBtzd3cX7Bw4cQIcOHdC7d28AwC+//IL+/ftLFa/QevToAQDw9fUVt+V871TlezZmzBgA2bn9/Pygq6sr7svMzMT58+dRrVo1idIV3vnz5/Ocz6BJkyaYOnWqBIkK73O/g9PT06Gpqfmd03y5mzdv5rmUW+XKlXHr1i0JEiln27ZtWLZsGW7fvg2ZTIbnz5+L4+pV2alTp3LNdwIA7969Q0REhASJqChj45mICiSne2ZcXBw8PT3lxs9pamrCxsZG5ZanALKvOP/++++oXr06Bg4ciNGjR2PPnj24ePGiyqwxfPfuXbHr3N27dyVO8/XMmzdPnOQor+qmKnQ/ffv2rVzOqKgoDBgwQLxvZ2eH1NRUKaJ9keLwPbt06RKA7AbalStX5BpjmpqaqFq1KsaNGydVvEJLT09HRkZGru0fPnzA27dvJUikvBUrVgDIvrCxYcMGuX9vMjMz8eeff6Jy5cpSxSs0IyMj3LlzJ9cyYrdu3cr1+60oKl26tFg5t7W1xdatW2FqaipxqsL7uKdWQkKC3O/izMxMHDlyBGXLlpUiGhVhHPNMRAWWmZmJrVu3wtPTE5aWllLH+SqysrKQlZUlVtKDg4Nx5swZVKxYEUOGDFHJ6kZx8fFEWh93q1Wl6qajoyPmzZuHzp074/Hjx7CwsMD58+dRo0YNAMCFCxfQoUMHlWtA//nnn6hXr55cDxQgeybuqKgoNGrUSKJkyvPx8cHKlSvFSapUXZMmTeDi4oKVK1fKbR82bBguX76sEpW0nN4m9+7dQ7ly5aCuri7uy7lYO3v2bNSuXVuqiIUyePBgnDt3Dvv27UOFChUAZDecu3Tpgpo1a6rc8A1Vp6amJv7bkldzSEdHBytXrpS74EnExjMRKUVbWxuJiYkq3ZW2ODp48GCBjuvQocM3TvL1FIclhObPn48VK1Zg6NChCA8Px6NHj3D16lVxv7+/Pw4dOoTjx49LmFJ5xWUsakZGBrS1tREXFwdnZ2ep43wVkZGRaN68OWrWrIlmzZoBAE6cOIHo6GiEhYWhYcOGEicsuKZNm2Lfvn25xqKqqufPn6NVq1a4ePEiypUrByB7vpCGDRvmOea2qHv9+jVOnz6d5zKPHw/pKKru3bsHQRBgZ2eHCxcuyE1+pqmpCXNzc7kLN0QAu20TkZKKwzjUjwUGBkJfXx/dunWT27579268efMG/fr1kyiZcj6d9Tivcc+qUq0FsqsAZcqUwYcPH2Bvb5+rwqkqJk6ciDdv3iAkJAQWFhbYvXu33P7IyEj06tVLonSF97lJttLS0lSi+2kODQ0NWFtbq8z/FwVRv359nD17FosWLUJwcDB0dHTg6uqK3377DZUqVZI6XoF9+PAB9+7dw4MHD1SuUfk5RkZGiIqKwrFjxxAfHy9+NqrUUyPHpUuX0KZNG7x58wavX79GyZIl8fjxY+jq6sLc3FwlGs/W1tb48OED+vbti5IlS8La2lrqSKQCWHkmIqWEhYVh4sSJKj0O9WMODg5Yu3YtmjZtKrf99OnTGDx4MK5fvy5Rsi/z8bJbqiYpKQkdO3YUK7RWVlYICQlB9erVJU5GOfMAHDhwAK1atZJb7z0zMxOXL1+Gg4MDjhw5IlVEpQUGBmL37t3Ytm1bruWdSFply5bF8ePH4ejoKHUU+kSTJk1gb2+PNWvWwNjYGPHx8ShRogR++OEHjBw5UmXmDAEAExMTxMTEqOS/l/T9sfFMREopDuNQP6atrY1r167lmsAlKSkJjo6OKjPBzqdUufHco0cPxMXFYcaMGdDW1saiRYuQmZmJCxcuSB2t0O7fvw+ZTCZ21bxw4QJ27NgBJycnuaWsirqcmcE3b96M7t27yy1TkzMW9ccff4SZmZlUEZXm5uaGW7du4cOHD7C2ts51QTA2NlaiZF/u7du3+PDhg9w2VbrA+euvv+LatWvYsGGDyvY++ZSqd3XOYWxsjPPnz8PBwQHGxsY4e/YsHB0dcf78efTr1w/Xrl2TOmKB9e/fHy4uLuIM/ET5KR6/iYjouzl58qTUEb4qc3NzXL58OVfjOT4+XqVnEVVlERER2LlzpzimuVatWrC2tsbbt28/u6ZoUeft7Y3BgwejT58+SE1NRYsWLVClShVs27YNqampmD59utQRCyQwMBAAYGNjg3HjxqlUF+3P+XTIg6p78+YNJkyYgODgYKSlpeXar0oXOM+fP48TJ04gLCwMLi4uub5vISEhEiUrnOLQ1TlHiRIlxAvopUuXRnJyMhwdHWFkZITk5GSJ0ymnYsWKmDNnDqKiovLsUadKnwt9e2w8E5FSVGGSJmX07NkTvr6+MDAwEMednT59GiNHjkTPnj0lTvfflJqaKrcMTbly5aCjo4N///0310UOVXH16lXUqlULQPaM7s7OzoiMjERYWBiGDBmiMo3nHDNmzJA6wldTnM4FAMaPH4+TJ09i9erV6Nu3L/73v//hn3/+QUBAgLjMkKowNjZWySUQP2f06NFo37692NX53Llzcl2dVYmbmxsuXrwIe3t7NG3aFNOnT8fjx4+xdetWuLi4SB1PKRs2bICxsTFiYmIQExMjt08mk7HxTHLYbZuICuXNmzd5djtzdXWVKFHhvH//Hn369MHu3bvFboFZWVno27cv1q5dq7JLVRkaGiI+Pl4lJ3ZTV1dHamqq3Mynqnw+AKCvr4+rV6/CxsYGHTp0QP369TFx4kQkJyfDwcFB5YYH/Pvvvxg3bhxOnDiBhw8f5pqcTpWqm8VN+fLlsWXLFjRp0gSGhoaIjY1FxYoVsXXrVuzcuROhoaFSR/zPKk5dnS9evIiXL1+iadOmePToEfr16ycu8xgYGIiqVatKHZHom2DlmYiU8ujRI/Tv3x9//PFHnvtV7Y9mTU1N7Nq1C3PmzBFnP3VxcVG5WTdNTEzkxqC/evUKbm5ucmPUAeDJkyffO5rSBEGAvb29wvNRhXPJUaVKFaxduxZt27bFsWPHMGfOHADAgwcPVHJ4gI+PD5KTk+Hn5wdLS8s8Z95WFZmZmVi2bBmCg4PzvCCoSt8zIDtvzkUmQ0NDMX+DBg3w888/SxntP684dXV2d3cXfy5VqhQvytB/BhvPRKSUUaNG4enTpzh37py4Bue///6LuXPnYsmSJVLHU9qpU6fEWUPt7e2ljlNo/v7+Ukf4anLG1RYnCxYsgJeXFxYtWoR+/fqJVZmDBw+K3blVyZkzZxAREYFq1apJHeWLzZo1Cxs2bMCYMWPg5+eHqVOnIikpCfv371e57vQAYGdnh6SkJFhbW8PJyQnBwcGoVasWfv/9d5Vc8mnPnj2fvbChapO5FYeuzm/fvsWxY8fQtGlTGBgYyO178eIFTp06BU9PT7mZ+FXB33//jYMHD+b5PVu6dKlEqahIEoiIlGBhYSGcP39eEARBMDAwEK5fvy4IgiAcOHBAqF+/vpTRCkVLS0uws7MT5syZI9y/f1/qOFSMZWRkCE+ePJHbdvfuXeHff/+VKFHhOTo6CrGxsVLH+Crs7OyEQ4cOCYIgCPr6+sKtW7cEQRCE5cuXC7169ZIyWqEsXbpUWL58uSAIghAeHi7o6OgImpqagpqamuDv7y9xOuUsX75c0NfXF4YNGyZoamoKP/30k9C8eXPByMhImDJlitTxlBYdHS2Eh4cLgiAIDx8+FFq3bi0YGBgIbm5uQlxcnMTpCsbf31/w8PD47P5mzZoJq1at+o6Jvtzx48cFXV1doUqVKoKGhoZQrVo1wdjYWDAyMhKaNm0qdTwqYth4JiKlGBgYCHfv3hUEQRCsra2FM2fOCIIgCHfu3BF0dHQkTFY4aWlpwvLlywU3NzdBXV1daNmypbBr1y4hPT1d6miFkpycLHcR4Pz588LIkSOFgIAACVMVTnE6lxwPHz4UIiIihDNnzggPHz6UOk6hHT16VGjZsqX4u0CV6erqCvfu3RMEIfviYExMjCAIgnD79m3B0NBQymhfRVJSkrB3716VaZx9zMHBQdixY4cgCNkXNm7fvi0IgiD4+fkJw4YNkzLaf1bNmjWFgwcPfnb/77//LtSsWfM7JvpyNWvWFPz8/ARB+L/v2cuXL4UOHToIq1evljgdFTVqimvTRET/x8HBAdevXwcAVKtWDQEBAfjnn3+wdu1aWFpaSpxOeSVLloSvry9iY2Nx8eJFODg4YNiwYbC0tISvry/i4+OljqgUb29vcTmx1NRUNG/eHBcuXMCUKVMwe/ZsidMppzidy+vXrzFgwABYWlqiUaNGaNiwIcqUKYOBAwfizZs3UsdTWo8ePXDq1ClUqFABBgYGKFmypNxNlZQrVw4pKSkAspesCQsLAwBER0erXNfTvFhbW6Nz584qOYFTcnIy6tWrBwDQ0dHBy5cvAQB9+vTBzp07pYz2RR4+fIiIiAicOXMGjx49kjqOUm7evJnvd8nV1RU3b978jom+XGJiIvr16wcA0NDQwNu3b6Gvr4/Zs2djwYIFEqejooaNZyJSyqhRo/DgwQMA2Uu8HDlyBOXLl8eKFSvwyy+/SJzuy1SrVg2TJk3CsGHD8Pr1a2zcuBE1atRAw4YN8ddff0kdr0A+XRLJxcUFUVFR2LFjBzZt2iRtOCUVp3MZM2YMTp8+jd9//x3Pnj3Ds2fPcODAAZw+fRpjx46VOp7S/P39sW7dOmzcuBGrVq3CsmXL5G6qxMvLCydOnAAAjBw5En5+fqhUqRL69u2LAQMGSJyucE6cOIF27dqhQoUKqFixItq1a4fjx49LHUtpFhYW4lrV1tbWOHfuHADg7t27uWZ4VwUvXrxAnz59ULZsWTRu3BiNGjVCmTJl8MMPP+D58+dSxyuQjIyMfBv8jx49QkZGxndM9OX09PSQnp4OAChTpgxu374t7nv8+LFUsaiokrr0TUSq7fXr10JMTIzw6NEjqaMU2vv374Xdu3cLrVu3FjQ0NIQ6deoI69evF169eiUkJycLvXr1EhwdHaWOWSB6enpiV9r27dsLv/76qyAIgnDv3j1BW1tbwmTKK07nYmpqKpw8eTLX9vDwcMHMzOz7B6LPOnfunLBkyRLhwIEDUkcplJUrVwoaGhpCz549heXLl4tjt0uUKCGsXLlS6nhKGThwoDBz5kxBEARhzZo1go6OjtC8eXPB2NhYGDBggMTplNetWzehUqVKwpEjR4Tnz58LL168EI4cOSI4ODgI3bp1kzpegdSuXVv8XZyX+fPnC7Vr1/6Oib5cx44dhXXr1gmCIAjjx48XKlasKMydO1eoXr260KxZM4nTUVHDxjMRFcjr16+FoUOHCmXKlBFKlSol9OrVS6UbzDmGDx8umJqaCqampsLIkSOFK1eu5Drm3r17gkwmkyCd8mrVqiVMnDhR+PPPPwVtbW1xnOPZs2eFsmXLSpxOOcXpXHR0dISEhIRc269evSro6upKkOjL3bp1S5g6darQs2dPcdKzP/74Q7h69arEyQouODhY8Pb2Frp166bSY+k/VqZMmTwbyatWrRIsLS0lSFR4mZmZwocPH8T7u3btEkaMGCEsX75cJeel0NXVFSIiInJt//PPP1Xm90BAQICgp6cn/P7777n2HTx4UNDT01O5/5du374txMfHC4KQ/bfOzz//LLi4uAheXl5CUlKSxOmoqGHjmYgKZNy4cYKurq7w448/CiNGjBDMzMyErl27Sh3ri3l4eAg7duzI9w+xDx8+CKdOnfqOqQrv5MmTgrGxsaCmpib0799f3D558mTBy8tLwmTKK07n4uHhIXTr1k14+/atuO3NmzdCt27dVLKycerUKbEKqKmpKU7ktGDBAqFLly4SpyuYgIAAQSaTCfb29oKrq6ugpqYmTJo0SepYX0xfX1+4efNmru03btwQ9PT0JEhUOOfOnROmTJkijB8/Xjh69KjUcb4KKysr4fLly7m2x8fHq9QFwd69ewsymUxwdHQUOnXqJHh5eQmVK1cW1NTUhJ49e0odTykvXrwQwsLChMOHDxeLggB9e2w8E1GB2NnZCTt37hTvnz9/XtDQ0BAyMjIkTEV5KU5LIhWXc7ly5YpQtmxZwdTUVPDw8BCaNWsmmJqaCmXLllWpSm2OOnXqCEuWLBEEQX4W5AsXLghlypSRMlqBOTs7C9OmTRPvBwYGCvr6+hIm+jq8vb2FhQsX5tq+aNEilWnYhISECOrq6oKenp5gZGQkqKmpCcuWLZM61hcLCAgQmjdvLjx48EDclpKSIrRs2VJYu3athMmUt2vXLqFjx46Ck5OT4OjoKHTs2FHYtWuX1LGUEh8fL5QpU0ZQU1MTZDKZYGRkJBw7dkzqWFTEyQRBBWdcIKLvTlNTE3fv3kXZsmXFbTo6Orhx4wasrKwkTPZ1JCQkIDk5Ge/fv5fb3qFDB4kSfZlHjx7h+vXrkMlksLe3R6lSpaSOVGjF5Vzevn2Lbdu24dq1axAEAU5OTujduzd0dHSkjqY0fX19XLlyBba2tjAwMEB8fDzs7OyQlJSEypUr4927d1JHVEhPTw9XrlyBnZ0dACAzMxM6OjpITk6GhYWFxOkKb+7cuVi8eDHq16+PunXrAgDOnTuHyMhIjB07FoaGhuKxvr6+UsXMV82aNVG1alWsXbsWGhoamDt3Lvz9/VV+8iY3NzfcunUL6enpKF++PIDsGcW1tLRQqVIluWNjY2OliPif0qZNGzx9+hRLliyBtrY2Zs2ahevXr+PatWtSR6MijI1nIioQdXV1pKamyjVcDAwMcPnyZdja2kqY7MvcuXMHXl5euHLlCmQymTiDq0wmA5D9B7Uqef36NUaMGIEtW7YgKysLQPZn17dvX6xcuRK6uroSJyy44nQuxU25cuUQHByMevXqyTWe9+3bh3HjxsnNVltUqampITU1Febm5uK2j89FVRX097FMJsOdO3e+cZrCMTQ0xMWLF2Fvbw8ASE9Ph56eHlJTU2FmZiZxusKbNWtWgY+dMWPGN0zy5WJjY1GiRAm4uLgAAA4cOIDAwEA4OTlh5syZ0NTUlDihYubm5ggNDYW7uzsAIC0tDebm5nj+/Dn09fUlTkdFlYbUAYhINQiCAB8fH7l1T9+9e4chQ4ZAT09P3BYSEiJFvEIbOXIkbG1tcfz4cdjZ2eHChQtIS0vD2LFjsXjxYqnjKe3jJZHq168PADhz5gx8fX0xduxYrFmzRuKEBafq53Lw4MECH6tqPRy8vb0xceJE7N69GzKZDFlZWYiMjMS4cePQt29fqeMV2IYNG+T+SM7IyMCmTZvkGmhFtTr7OXfv3pU6whd79eoVjI2NxftaWlrQ0dHBixcvVLrxXNQbxMr46aefMGnSJLi4uODOnTvo0aMHOnfujN27d+PNmzfw9/eXOqJCjx8/FnsAAICpqSl0dXXx6NEjNp7ps1h5JqIC6d+/f4GOCwwM/MZJvi4zMzOEh4fD1dUVRkZGuHDhAhwcHBAeHo6xY8fi0qVLUkdUipmZGfbs2YMmTZrIbT958iS6d++e7/qcRY2qn4uamlqBjpPJZCrXw+HDhw/w8fFBUFAQBEGAhoYGMjMz4e3tjU2bNkFdXV3qiArZ2NiIPUw+pyhXZwsqIyMD7969U6nGgJqaGjZv3gwjIyNxW69eveDv74/SpUuL21TtotPH3r17h127duH169do0aJFrm7bRZ2RkRFiY2NRoUIFLFiwAOHh4Th69CgiIyPRs2dP3L9/X+qICqmrq+PGjRtijzpBEGBlZYUzZ87AxsZGPO7joQ5ErDwTUYGoWqO4oDIzM8U/Ks3MzPDgwQM4ODjA2toa169flzid8t68eSP3x2UOc3NzvHnzRoJEhafq55LT1bw4KlGiBLZv3445c+YgNjYWWVlZcHNzU6kGQFJSktQRvqrQ0FCkpaWhT58+4rZ58+Zhzpw5yMjIgIeHB3bt2gUTExMJUxZcv379cm376aefxJ9V6aLT+PHj8f79eyxfvhwA8P79e9SpUwcJCQnQ1dXFhAkTEBYWhnr16kmctOAEQRB/xx0/fhzt2rUDAFhZWanM2HRBEMShAR9vc3NzE39Wpe8ZfR8FuyxORPSJW7du4ejRo3j79i0AQFU7sTg7O+Py5csAgNq1a2PhwoWIjIzE7NmzVXLcY926dTFjxgy5CZvevn2LWbNmiZMHqYricC7h4eFwcnLCixcvcu17/vw5qlSpgoiICAmSFd6LFy/EP5rt7OzQtWtXdO/eHRUqVMjzPFXRs2fPpI6gtMWLF8u9/1FRUZg+fTr8/PwQHByM+/fvY86cORImLLisrCyFN1Vq0Pzxxx9o1qyZeH/79u1ITk7GzZs38fTpU3Tr1g3z5s2TMKHy3N3dMXfuXGzduhWnT59G27ZtAWQPG8jromdRdPLkSYSHh8vdPt6W8zORnO8/wTcRqbLHjx8LHh4egkwmE9TU1MQlagYMGCCMGTNG4nTKO3LkiLB3715BEATh9u3bgqOjoyCTyQQzMzPhxIkTEqdTXnFaEqk4nEv79u2FpUuXfnb/8uXLhU6dOn3HRF8mJCREqFSpkvD69etc+16/fi3Y29sLBw8elCBZ4f36669CUFCQeL9r166CTCYTypQpI8TFxUmYTDmlSpUSYmNjxfujR48WPD09xfuHDx8WKlasKEW0/zwDAwO5tbd79uwp/Pjjj+L9S5cuCZaWllJEK7S4uDjB2dlZMDQ0FGbOnCluHz58uNCrVy8JkxF9WxzzTERK6du3Lx4+fIgNGzbA0dFRnJk2LCwMo0ePxl9//SV1xC/25MkTmJiYKBwPWVQVpyWRVP1crK2tceTIETg6Oua5/9q1a2jZsiWSk5O/c7LCadmyJbp3745BgwbluX/jxo3YtWsXjh49+p2TFZ6dnR22bduGevXq4dixY+jevTt27dqF4OBgJCcnIywsTOqIBaKjo4Pr16+LEyDVqlULXbt2xYQJEwAA9+7dg5OTE16/fi1lTKVs3rwZZmZmYlVzwoQJWLduHZycnLBz505YW1tLnLBgjI2NER0dLQ5rsLW1hZ+fHwYMGAAgewiBo6Oj2JNLlb179w4aGhrQ0FCdkaHFYeZw+o6kbbsTkaopXbq0WI3R19cXK8937twR9PT0pIxWaFlZWcKjR4+Ex48fSx2FihktLS25itOnbt68KWhra3/HRF/G0tJS4fmoWgVNW1tbSE5OFgRBEHx9fYXBgwcLgiAI169fF4yNjaWMphQ7OzvhyJEjgiAIwsuXLwVNTU3hzJkz4v6YmBjBzMxMqniFYm9vL/YAioqKEnR0dISAgAChffv2gpeXl8TpCq527drCkiVLBEEQhKtXrwpqamrCnTt3xP2nTp0SrK2tJUpXOLa2tnn+m/n06VPB1tZWgkSF5+7uLuzZs0cQhOweaNra2kKvXr2EihUrCiNHjpQ2HBU5qnNZiIiKhNevX+e5vu7jx4/llrFSBampqZgwYQIOHjyIly9fAsieVdPLywvz589XmXFbxWlJpOJ0LgBQtmxZXLlyBRUrVsxz/+XLl2FpafmdUxXe06dPkZGR8dn9Hz58wNOnT79joi9nYmKC+/fvw8rKCkeOHMHcuXMBZM/joErjart27YpRo0ZhypQpCA0NhYWFBerUqSPuv3jxIhwcHCRMqLz79++L/+/s378fXbt2xeDBg1G/fv1cs/AXZePHj0evXr1w+PBh/PXXX2jTpo3cetyhoaGoVauWhAmVl5SUlOf/H+np6fj7778lSFR4N27cQLVq1QAAu3fvRqNGjbBjxw5x5nBVWHaLvh82nolIKY0aNcKWLVvEiWdy1nhdtGgRmjZtKnG6gnvx4gXq1auHV69eoX///qhcuTIEQUBCQgJ27tyJM2fOIDY2ViWWd+nUqVOBjlOFWUOL07kAQJs2bTB9+nS0bt0a2tracvvevn2LGTNmiLPUqgIbGxtcvHgRlStXznP/xYsXVaYrbY7OnTvD29sblSpVQlpaGlq3bg0AiIuL++xFj6JoxowZePDgAXx9fWFhYYFt27bJLRm2c+dOtG/fXsKEytPX10daWhrKly8vDg0CAG1tbZXq4tylSxeEhobi8OHDaNmyJUaMGCG3X1dXF0OHDpUonXI+vsB59OhRueXEMjMzceLECbkLA6pAKAYzh9P3wzHPRKSUhIQENGnSBDVq1EB4eDg6dOiAv/76C0+ePEFkZCQqVKggdcQCmTNnDrZs2YKoqChxjcccDx8+RP369dG/f39MmTJFooRUHPz777+oXr061NXVMXz4cDg4OEAmkyExMRH/+9//kJmZidjYWJXp5TB16lRs27YNFy5cyJU5NTUVtWvXxg8//KBSMwd/+PABy5cvx/379+Hj4yMuU+Pv7w99ff3Pju+mb6937964du0a3NzcsHPnTiQnJ8PU1BQHDx7ElClTcPXqVakj/ufkrF8vk8lyrbJRokQJ2NjYYMmSJSp1UdDDwwNWVlZo3rw5Bg4ciISEBFSsWBGnT59Gv379it2ydvRl2HgmIqWlpqZizZo1iImJQVZWFqpXr45hw4apVPfTOnXq4KeffkL//v3z3L9x40asX78eZ8+e/c7JCic8PBzDhw/HuXPnYGhoKLfv+fPnqFevHtauXYuGDRtKlLDgitO5ANkTNf388884evSo+MemTCaDp6cnVq9eDRsbG2kDKuHly5eoW7cukpOT8cMPP8hdDNi+fTusrKxw7tw5GBgYSB2VioFnz55h2rRpuH//Pn7++We0atUKQHaVXVNTE1OnTpU4oWI5SyEWhKur6zdM8nXZ2toiOjoaZmZmUkf5YpcvX0bv3r2RnJyMMWPGYMaMGQCAESNGIC0tDTt27JA4IRUlbDwT0X9SyZIlcfbs2c+OAbx27Rrq1auHJ0+efOdkhdOhQwc0bdpU7Nb4qRUrVuDkyZPYt2/fd06mvOJ0Lh97+vQpbt26BUEQUKlSJZiYmEgdqVCeP3+OyZMnY9euXeL4ZhMTE/To0QO//PILjI2NpQ1YCFu3bkVAQADu3LmDs2fPwtraGv7+/rC1tUXHjh2ljqeQm5tbgVcHiI2N/cZp6GNqampyVdr8PidVGIryX/Lu3Tuoq6ujRIkSUkehIoRjnolIKYGBgdDX10e3bt3ktu/evRtv3rxBv379JEqmnBcvXuT7R76xsTFevHjx/QJ9ofj4eCxYsOCz+1u2bInFixd/x0SFV5zO5WMmJiaoWbOm1DG+mJGREVavXo3//e9/ePz4MQRBQKlSpVR2abc1a9Zg+vTpGDVqFObNmyc2YIyNjeHv768SjeeCzhWgiiIiIsQLG7t370bZsmWxdetW2NraokGDBlLHU+ju3bviz5cuXcK4ceMwfvx41K1bFwBw9uxZLFmyBAsXLpQqYqGdOHECJ06cwMOHD8Uxwzk2btwoUarCefbsGfbs2YPbt29j/PjxKFmyJBISElC6dGmULVtW6nhUhLDxTERK+fXXX7F27dpc283NzTF48GCVaTwLgiCO3cpLXuO5irJ///0336vjGhoaePTo0XdMVHjF6VyKq7dv34qNZiC7a/q+ffvg6OgIT09PidMpZ+XKlVi/fj06deqEX3/9Vdzu7u6OcePGSZis4HK6mRY3e/fuRZ8+fdC7d2/ExsYiPT0dQPbwgV9++QWhoaESJ1Ts4wn0unXrhhUrVqBNmzbiNldXV1hZWcHPz0+lLoLMmjULs2fPhru7OywtLVX24hmQ3W27WbNmMDY2RlJSEn788UeULFkS+/btw71797BlyxapI1IRwsYzESnl3r17ec6kaW1tjeTkZAkSFY4gCLC3t//sP/iq1HAGiteSSMXpXIqrjh07onPnzhgyZAiePXuGWrVqQVNTE48fP8bSpUvx888/Sx2xwO7evStOEvYxLS0tvH79WoJElGPu3LlYu3Yt+vbti6CgIHF7vXr1MHv2bAmTFc6VK1fy/PfT1tYWCQkJEiQqvLVr12LTpk3o06eP1FG+2JgxY9C/f38sXLhQbr6G1q1bw9vbW8JkVBSx8UxESjE3N8fly5dzTXIUHx8PU1NTaUIVQmBgoNQRvqritCRScTqX4io2NhbLli0DAOzZswcWFha4dOkS9u7di+nTp6tU49nW1hZxcXG5ltj6448/4OTkJFEq5ZiYmBS48qcq8zgAwPXr19GoUaNc2w0NDfHs2bPvH+gLOTo6Yu7cufjtt9/E323p6emYO3cuHB0dJU6nnPfv36NevXpSx/gqoqOjERAQkGt72bJlkZqaKkEiKsrYeCYipfTs2RO+vr4wMDAQ/6g5ffo0Ro4ciZ49e0qcruBUpXt5QU2bNg0hISGwt7f/7JJIqjAzLVC8zqW4evPmjVihCQsLQ+fOnaGmpoY6derg3r17EqdTzvjx4zFs2DC8e/cOgiDgwoUL2LlzJ+bPn48NGzZIHa9A/P39pY7wTVhaWuLWrVu5LtaeOXMGdnZ20oT6AmvXrkX79u1hZWWFqlWrAsi+8CyTyXDo0CGJ0yln0KBB2LFjB/z8/KSO8sW0tbXznOPk+vXruZayJOJs20SklPfv36NPnz7YvXs3NDSyr79lZWWhb9++WLt2LTQ1NSVOqJz79+9DJpOhXLlyAIALFy5gx44dcHJywuDBgyVOp5zitCRScTqX4sjV1RWDBg2Cl5cXnJ2dceTIEdStWxcxMTFo27atylVr1q9fj7lz5+L+/fsAsitOM2fOxMCBAyVO9nU9evRIpRoDCxcuxObNm7Fx40a0aNECoaGhuHfvHkaPHo3p06dj+PDhUkdU2ps3b7Bt2zZcu3YNgiDAyckJ3t7e0NPTkzqaUkaOHIktW7bA1dUVrq6uueapWLp0qUTJlDd48GA8evQIwcHBKFmyJC5fvgx1dXV06tQJjRo1KrYXp6hw2HgmokK5ceMG4uPjoaOjAxcXl1xdHlVFw4YNMXjwYPTp0wepqamwt7eHs7Mzbty4AV9fX0yfPl3qiEorLksiAcXrXIqTPXv2wNvbG5mZmWjWrBnCwsIAAPPnz8eff/6JP/74Q+KEBZORkYHt27fD09MTFhYWePz4MbKysmBubi51tK9GEAT88ccf2LBhAw4fPixOuqUqpk6dimXLluHdu3cAsseijxs3DnPmzJE42X9b06ZNP7tPJpMhPDz8O6b5Mi9evECbNm3w119/4eXLlyhTpgxSU1NRt25dhIaGqtyFDfq22Hgmov80ExMTnDt3Dg4ODlixYgV27dqFyMhIhIWFYciQIbhz547UEYmKpNTUVKSkpKBq1arizPUXLlyAkZHRZ9dPL4p0dXWRmJioshcAP+fOnTvYuHEjNm/ejFevXqFt27bo0qULvLy8pI6mtDdv3iAhIQFZWVlwcnKCvr6+1JEKLa81xZctWwY7OzuVWBatOAsPD0dsbCyysrJQvXp1NG/eXOpIVARxzDMRKe3vv//GwYMHkZycjPfv38vtU6WuWgDw4cMHaGlpAQCOHz+ODh06AAAqV66MlJQUKaMRFVkDBgzA8uXLc81SXaVKFYwYMUKl1nitXbs2Ll26VCwaz+/evcOePXuwYcMGnDt3Di1atEBKSgri4uLg7OwsdTylPX/+HJmZmShZsiTc3d3F7U+ePIGGhgYMDQ0lTKe8j9cUnzt3rrimuImJicqsKV5clCxZEjdu3ICZmZn4+8zDwwMeHh5SR6MijpVnIlLKiRMn0KFDB9ja2uL69etwdnZGUlISBEFA9erVVaqrFpD9h3PTpk3Rtm1btGzZEufOnUPVqlVx7tw5dO3aFX///bfUEYmKHHV1daSkpOTq3vz48WNYWFggIyNDomTK2717NyZNmoTRo0ejRo0aubpourq6SpRMOUOHDkVQUBAcHBzwww8/oGfPnjA1NUWJEiUQHx+vMjOHf6x169Zo3749hg4dKrd97dq1OHjwoEqs8/wxJycn/PLLL+jUqRMMDAwQHx8POzs7XL16FU2aNMHjx4+ljqiU6Oho7N69O88L6SEhIRKlKhh9fX1cvnwZdnZ2UFdXR2pqqkrNB0DSYeWZiJQyefJkjB07FrNnz4aBgQH27t0Lc3Nz9O7dG61atZI68lPJOAAAV1pJREFUntIWLFgALy8vLFq0CP369RNnQD148CBq1aolcTqiouXFixcQBAGCIODly5dyS4llZmYiNDRU5cYL9+jRAwDg6+srbpPJZBAEATKZTKwOFnXr1q3DxIkTMWnSJLm1alXZ+fPn8+zN1KRJE5Wccb84rSkeFBSEvn37omXLljh27BhatmyJmzdvIjU1VSWGBtStWxedOnVCjRo1IAgCfH19oaOjk+exqtSThr49Np6JSCmJiYnYuXMnAEBDQwNv376Fvr4+Zs+ejY4dO6rU+q4AxKv9L168kJuMavDgwdDV1ZUwGVHRY2xsDJlMBplMBnt7+1z7ZTIZZs2aJUGywrt7967UEb6KLVu2IDAwEJaWlmjbti369Omjkhc0P5aenp5nL4YPHz7g7du3EiT6MsVhTfEcv/zyC5YtW4Zhw4bBwMAAy5cvh62tLX766SdYWlpKHU+hbdu2YdmyZbh9+zZkMhmeP38uTkpHlB82nolIKXp6euJsrWXKlMHt27dRpUoVAFC5Lmc51NXVkZGRgTNnzoiNAi6FRJTbyZMnIQgCPDw8sHfvXpQsWVLcp6mpCWtra5QpU0bChMq7d+8e6tWrJy69lyMjIwNRUVEqMxba29sb3t7eSEpKQmBgIIYNG4Y3b94gKysLCQkJKtc4A4CaNWti3bp1WLlypdz2tWvXokaNGhKlKrzisKZ4jtu3b6Nt27YA/q9yLpPJMHr0aHh4eBT5i2ilS5fGr7/+CiD7osbWrVthamoqcSpSBWw8E5FS6tSpg8jISDg5OaFt27YYO3Ysrly5gpCQENSpU0fqeEp7/fo1RowYgS1btiArKwtAdmO6b9++WLlyJavPRB9p3LgxMjIy0LdvX7i7u8PKykrqSF+sadOmeY7ffv78OZo2baoy3bZz2NjYYNasWZg5cyaOHj2KjRs34ocffsCoUaPQuXNnrFixQuqIBTZv3jw0b94c8fHxaNasGYDseTeio6PF5dFUSf/+/ZGRkYEJEybgzZs38Pb2RtmyZbF8+XL07NlT6nhKKVmyJF6+fAkge130q1evwsXFBc+ePcObN28kTqec4tL7hL4PThhGREq5c+cOXv2/9u48rOb8/R/485SS1GghQlqkqJSMUWpQoSJLavCRkGqMtaSxzWBkYixJTNahsswoQ2EwJUWUytaCiogKYbQM2qTO7w8/5+tM4ZzQ67zrflyX6+q83+ePp0vl3O/X63XfL17A2NgYFRUV+P7775GYmAhdXV1s3LiRM6s0b3z33Xc4ffo0goODYWlpCQBITEyEl5cXhg0bhm3btjFOSIjkUVRUxLVr15rFDg0pKSk8fvy4XrOgW7duoV+/fnj27BmjZJ9OSUmJYFt3RkYG6zhiSU9Px/r165Geno42bdrA2NgYS5YsQY8ePVhH+yhcnynu4uKCfv36Yf78+Vi1ahU2bdqEMWPGIDY2Fn379pX4hmH/VV5ejoSEhAabn73dD4EQKp4JIS1a+/btcejQIVhZWQldP3PmDMaPH49//vmHTTBCJJijoyMcHR3h5ubGOkqjOTk5AQCOHj0Ke3t7wcg64HXzs8zMTOjr6yM6OppVxEY5e/Zsvd9nRDJUVlaCz+cLdjTl5+cjKioKBgYGsLW1ZZxOPCUlJaiqqkLnzp1RV1eHgIAAwYP0ZcuWCfUQkXRpaWkYMWIEKioqUF5eDhUVFTx9+hTy8vJQU1NDXl4e64hEgtC2bUJIi1ZRUYGOHTvWu66mpsa5rWeENJXhw4djyZIluH79eoPjnd7MS5dk7dq1AwDw+XwoKioKddqVlZWFubk5vv32W1bxGs3e3h5dunTBtGnTMHXq1GaxtR54XXjW1NQIXePanOcxY8bAyckJM2bMQFlZGfr37w9ZWVk8ffoUgYGBnGm4+erVK/z111+ws7MD8Hr3xsKFC7Fw4ULGyRrHx8cHo0aNwrZt26CkpISUlBTIyMjA1dUV3t7erOMRCUMrz4SQD1JWVgaPxxPpvSUlJZ85zac1ZMgQqKqqYu/evYKxO5WVlZg6dSpKSkpw+vRpxgkJkTxSUlLvvMel8U4A4Ofnh++//77eAwCuKikpwf79+xEWFobMzEwMGTIEHh4ecHR0hKysLOt4YqmoqMDChQtx8OBBFBcX17vPpe8z4PVOp4SEBBgaGmLXrl349ddfkZaWhsOHD2P58uXIzs5mHVFk8vLyyM7O5txRrYYoKSkhNTUV+vr6UFJSQnJyMnr16oXU1FRMnToVOTk5rCMSCUIrz4SQDwoKCmId4bPZtGkT7O3t0bVrV5iYmIDH4yE9PR1ycnKIiYlhHY8QifSmuV5z8NNPP7GO8EmpqKjAy8sLXl5eSE9PR0hICGbPno2ZM2di0qRJ8PDwEMyzl3QLFizAmTNnsHXrVkyZMgVbtmzBgwcPsGPHDkGnZC6pqKgQzOA+deoUnJycICUlBXNzc+Tn5zNOJx4zMzOkpaU1i+JZRkZGsEDQsWNHFBQUoFevXmjXrh0KCgoYpyOShlaeCSEtXmVlJfbv34+cnBzw+XwYGBhg0qRJQts4CSHN0+PHj/H9998jLi4OT548wX8/FnFtdfO/Hj58iJ07d2LNmjVo1aoVqqqqMGDAAGzfvl0wZlBSdevWDXv37oWVlRW++OILXL16Fbq6uti3bx8OHDiAkydPso4oFmNjY3h6emLs2LEwMjJCdHQ0BgwYgCtXrsDBwQGPHj1iHVFkf/75JxYvXgwfH58Gj24YGxszSiY+W1tbuLm5wcXFBTNmzEBaWhq8vLywb98+lJaWIjU1lXVEIkGoeCaEiK22thZRUVHIzs4Gj8dDr169MGbMmHpzUgkhzVdCQgICAgKEfg8sWLAAAwcOZB1NLMOHD0dBQQHmzJkDdXX1ekdUxowZwyhZ49XU1ODo0aMICQlBbGws+vXrBw8PD0ycOBElJSVYtGgR0tPTkZWVxTrqeykoKODGjRvQ1NRE165dERkZif79++Pu3bvo3bs3Xrx4wTqiWA4dOgQXFxfU1tbCxsYGsbGxAIBffvkF586dw99//804oegaOrrB4/HA5/M5d3Tj8uXLeP78OaytrfHPP/9g6tSpguZnoaGhnNmpQZoGFc+EELFcv34dY8aMwaNHj6Cvrw/g9UiXDh064NixY+jduzfjhB927Ngxkd/LhcZHhDS1/fv3Y9q0aXBycoKlpSX4fD4uXLiAqKgohIWFwcXFhXVEkSkqKuL8+fPo06cP6yifxNy5c3HgwAEAgKurKzw9PWFkZCT0noKCAmhpaUn89ntjY2P8+uuvGDx4MGxtbWFsbIyAgABs3rwZ69atw/3791lHFNujR49QVFQEExMTQQF68eJFfPHFF+jZsyfjdKL70Dbz5rCdm5CGUPFMCBGLubk51NTUsGfPHsEoitLSUri5ueHJkydITk5mnPDD3tfs6G1ce3pOSFPp1asXpk+fDh8fH6HrgYGB+O233zjV+MjAwAC///47TE1NWUf5JIYMGQJPT084Ozu/s0HYq1evkJSUhMGDBzdxOvFs3LgR0tLS8PLywpkzZ+Dg4IDa2lq8evUKgYGBnO6EfP/+ffB4PHTp0oV1lBarsrISsbGxsLa2FpxFf+PZs2c4e/Ys7OzshMbYEULFMyFELG3atMHly5frnZW7fv06vvrqK1RWVjJKRghpKq1bt8aNGzegq6srdP327dswMjJCVVUVo2TiO3XqFDZs2IAdO3ZAS0uLdZyPUlNTg+nTp2PZsmXQ0dFhHeeTy8/Px5UrV9C9e3dObqWtq6uDv78/NmzYINhyrqioCF9fX/z4448iP9iVBHv37n3v/SlTpjRRksbbtGkTjh07hri4uAbvDx06FGPHjsXs2bObOBmRZHRAkRAiFn19fTx+/Lhe8fzkyZN6H6QlWXx8PObMmYOUlJR6s0L//fdfWFhYYPv27Zw7v0lIU9DQ0EBcXFy9n/m4uDjOzRWeMGECKioq0L17d8jLy0NGRkboPpfG78nIyCAqKgrLli1jHeWz0NTU5PR24B9//BG7d+/GmjVrBMcdkpKSsGLFClRVVWHVqlWsI4rsv6v+NTU1qKiogKysLOTl5TlRPP/+++/v/VmZN28eVq5cScUzEULFMyFELKtXr4aXlxdWrFgBc3NzAEBKSgpWrlyJtWvX4tmzZ4L3/rcolSRBQUH49ttvG8zYrl07fPfddwgMDKTimZAG+Pr6CkYhWVhYgMfjITExEWFhYdi0aRPreGJpbqP4xo4diyNHjmD+/Pmso3wScXFx2Lhxo6AxXc+ePTFv3jwMHTqUdTSx7dmzB7t27RLqpWFiYoIuXbpg1qxZnCqeS0tL613Lzc3FzJkzsWDBAgaJxJebm/veHQzGxsbIzc1twkSEC2jbNiFELG9vK3vTlfbNr5G3X0v6eWFNTU1ER0ejV69eDd7PycmBra0tzXgk5B2ioqKwYcMGwfnmN922udidujlZtWoVAgICMGTIkAZHCHl5eTFKJr7g4GD4+Pjgm2++wYABAwC8flh76NAhBAYGYs6cOYwTikdOTg6ZmZnQ09MTun7z5k306dOnWRx7unz5MlxdXZGTk8M6ygcpKiri7Nmz+PLLLxu8f+XKFVhZWeH58+dNnIxIMiqeCSFiSUhIEPm9ktyMRk5ODtevX3/nVvPbt2+jd+/ezeLDDCHk/e7cuYPQ0FDcuXMHmzZtgpqaGqKjo6GhoSHxs5D/S1tb+533eDwe8vLymjDNx+nSpQuWLFlSr0jesmULVq1ahYcPHzJK1jhmZmYwMzPD5s2bha7PnTsXly5dQkpKCqNkn05aWhoGDx4stAtNUpmbm2Ps2LFYtGhRg/fXrFmDI0eONIt/F/Lp0LZtQohYBgwY8M4Ork+fPkX79u2bOFHjdOnSBdeuXXtn8ZyZmQl1dfUmTkUIt1y+fFlozvO7VnAkWUJCAoYPHw5LS0ucO3cOq1atgpqaGjIzM7Fr1y4cOnSIdUSx3L17l3WET+bZs2ewt7evd93W1vadBY8kW7duHRwcHHD69GkMGDAAPB4PFy5cQGFhIU6ePMk6nlj+O/KRz+ejqKgIwcHBsLS0ZJRKPO7u7pg/fz4MDQ0xcuRIoXt//fUX/P39ERgYyCgdkVS08kwIEYujoyMiIyPrdQV9/PgxhgwZguvXrzNKJp65c+fi7NmzuHTpEuTk5ITuVVZWon///rC2tq63QkAIeT1mZ+LEiUhKSoKSkhIAoKysDBYWFjhw4ACnmoYNGDAA48aNw/z586GoqIiMjAzo6Ojg0qVLcHR0xIMHD1hHbLT/HqnhmkmTJqFPnz71ztAGBATgypUrgnnWXPLw4UNs2bIFOTk54PP5MDAwwKxZs9C5c2fW0cTy388APB4PHTp0gI2NDTZs2MCZh8+urq74448/0LNnT+jr64PH4yE7Oxu3bt3C+PHjOfk9Rj4vKp4JIWIxMzODgYEBQkNDBdeKiopgY2MDQ0NDzqzSPH78GH379oW0tDTmzJkj9J/mli1bUFtbi6tXr6Jjx46soxIicWxtbfHs2TPs2bMH+vr6AF6f23R3d0fbtm1x6tQpxglFp6CggGvXrkFbW1uoeL537x569uzJqbFbb+zduxfr168XNDvS09PDggULMHnyZMbJxOPv74+AgABYWloKnXlOSkqCr6+vUMNHLp3lJpLl4MGD+OOPP5Cbmws+nw89PT24uLhg/PjxrKMRCUTFMyFELMXFxRg0aBBsbW2xceNGPHjwADY2NjAxMUF4eDin5lTm5+dj5syZiImJEVqhsbOzw9atWzk/85WQz6VNmza4cOECTE1Nha5fvXoVlpaWnOoV0LVrVxw8eBAWFhZCxXNUVBS+//573Llzh3VEsQQGBmLZsmWYM2eO0DikLVu2wN/fHz4+Pqwjiux957ffJslnuTMzM0V+r7Gx8WdMQgj5FOjMMyFELKqqqoiJicHXX38NADhx4gT69u2L33//nVOFM/C64/bJkydRWlqK27dvg8/no0ePHlBWVmYdjRCJ1q1bN9TU1NS7/urVK3Tp0oVBosZzcXHBokWL8Oeff4LH46Gurg5JSUn4/vvvOTGr9r9+/fVXbNu2TSj7mDFjYGhoiBUrVnCqeG4O57f79OkDHo+HD61VSfqEiobcv38fx44dQ0FBAV6+fCl0j0tnha9evQoZGRn07t0bAHD06FGEhobCwMAAK1aseGefF9Iy0cozIaRRcnNz8fXXX2PYsGHYt28fZ8/UEULEd/ToUaxevRpbtmzBl19+CR6Ph8uXL2Pu3LlYtGgRHB0dWUcUWU1NDdzc3BAeHg4+n49WrVqhtrYWLi4uCAsLg7S0NOuIYnnXJIHc3Fz07t2bk9vQ33j16hWqqqqgoKDAOorI8vPzRX6vpqbmZ0zyacXFxWH06NHQ1tbGzZs3YWRkhHv37oHP56Nv376Ij49nHVFkX331FRYvXgxnZ2fk5eXBwMAATk5OuHTpEhwcHJrdLHjycah4JoR8kLKycoPFcUVFBVq3bi304bKkpKQpoxFCGFBWVkZFRQVevXqFVq1eb2J78/V/5wpz5XdCXl4erl69irq6OpiamqJHjx6sIzWKkZERXFxc8MMPPwhd9/f3R0REBK5du8YomehOnjyJ4uJioTPaq1atws8//4xXr17BxsYGERERtEuIof79+8Pe3h4rV64UHHdQU1PDpEmTYG9vj5kzZ7KOKLJ27drh6tWr6N69O9auXYv4+HjExMQgKSkJ//vf/1BYWMg6IpEgtG2bEPJB9NSVEPK25vI74dmzZ1BQUICUlBR0dHSgo6MDAKirq8OzZ8+EGlJxhZ+fHyZMmIBz587B0tISPB4PiYmJiIuLw8GDB1nHE0lAQACcnZ0Fry9cuIDly5dj5cqV6NWrF3788Uf8/PPPnNkafOXKFXz//fc4evRove+pf//9F46OjggKCoKJiQmjhOLLzs4WdKJu1aoVKisroaCggJUrV2LMmDGcKp75fD7q6uoAAKdPnxaMrdLQ0MDTp09ZRiMSiIpnQsgHTZ06FcDrlaXff/8ddnZ26NSpE+NUhBBW3vxO4LKoqCgsWrQI6enpkJeXF7pXVVWFr776CgEBARg1ahSjhI3j7OyM1NRUbNy4EUeOHBGMQ7p48WK9Bm+S6vr169iwYYPg9aFDhzBs2DD8+OOPAF5vTff29uZM8bxhwwbY2Ng0+DCmXbt2GDZsGNavX4/9+/czSNc4bdu2RXV1NQCgc+fOuHPnDgwNDQGAcwVnv3794O/vj6FDhyIhIQHbtm0D8PrMPU3cIP9FxTMhRGStWrXCzJkzkZ2dzToKIYSBuro61NXVCbZqA6/Hvm3fvh3l5eUYPXq0oJmgpNu2bRsWLlxYr3AGAHl5eSxatAjBwcGcK54B4Msvv+RUIfZfz58/h6qqquB1YmIivvnmG8FrQ0NDPHz4kEW0RklNTcXixYvfeX/UqFHYtWtXEyb6eObm5khKSoKBgQEcHBzg6+uLa9euITIyEubm5qzjiWXjxo1wdXXFkSNH8OOPPwr6BRw6dAgWFhaM0xFJQ8UzIUQsZmZmSEtL41RjE0LIp+Hh4QEZGRns3LkTwOsi56uvvkJVVRXU1dWxceNGHD16FCNGjGCc9MOuX7+OrVu3vvP+oEGDsHTp0iZM9GlIS0ujqKgIampqQteLi4uhpqbGiY7OnTt3RnZ2Nrp164YXL14gIyMDGzduFNwvLi5u8KGHpHrw4AEUFRXfeV9BQQFFRUVNmOjjBQYG4sWLFwCAFStW4MWLF4iIiICurq7QvxUXmJiYNNgLYP369UIPCgkBqHgmhIhp1qxZ8PX1xf379/Hll1/Waw5EcyoJab6SkpIQHBwseL137168evUKubm5aNeuHRYtWoT169dzonguLS3Fq1ev3nm/pqYGpaWlTZjo03hXH9jq6mrOjNz55ptvMG/ePPzwww84efIkOnXqJLSaefnyZejr6zNMKJ4OHTrg5s2b75xbnZOTg/bt2zdxqo/zpj8A8HqnxvseREk6HR0dXLp0SWi3A/D6+Ebfvn0ldoY4YYOKZ0KIWCZMmAAA8PLyElx7M8OSi3MqCSGie/DggVAX6ri4ODg7O6Ndu3YAXp+FDg0NZRVPLFpaWrh8+TJ69uzZ4P3Lly9zaofN5s2bAbz+fbxr1y6hcU61tbU4d+7cO/+ukuann37Cw4cP4eXlhU6dOmH//v1CUx0OHDjAqe30Q4cOxapVq2Bvb1/vHp/Px+rVqzF06FAGyRrvXQVnWVkZ5wrOe/fuNfjZpbq6Gvfv32eQiEgyKp4JIWK5e/cu6wiEEEbk5ORQWVkpeJ2SkoL169cL3X+zlVPSOTk54ccff8SwYcPqNQV69OgRli5dCldXV0bpxPdmqyyfz8f27duFik1ZWVloaWlh+/btrOKJRV5eHvv27Xvn/TNnzjRhmo+3dOlSfPnllzAzM4Ovry/09fXB4/GQnZ2NDRs24NatW5x56PTG+wrOBw8eMEgkvmPHjgm+jomJETwEBF4/cIqLi3vnbgHSctGcZ0IIIYSIxMbGBmZmZvjll19w/vx5WFlZ4f79+1BXVwcAxMbGYubMmbh9+zbjpB/2/PlzDBgwAAUFBXB1dRUqaH7//XdoaGggJSXlvWdVJZG1tTUiIyNpBrKEuXz5Mtzc3JCVlQUejwcAgk7ooaGh+OqrrxgnFM2bgtPR0RF79uxpsOCMjY3FzZs3WUUUmZSUFID/2z33NhkZGWhpaWHDhg2C0VWEAFQ8E0Ia4c6dOwgKCkJ2djZ4PB569eoFb29vdO/enXU0QshndObMGYwYMQKdO3dGUVERJk6ciN27dwvuz5o1C+Xl5dizZw/DlKL7999/sWTJEkRERAjONysrK2PChAlYvXo1lJSU2AZsgUxNTQXF5YdcvXr1M6f59NLS0nD79m3w+Xzo6emhT58+rCOJpTkWnNra2rh06RLnzp0TNqh4JoSIJSYmBqNHj0afPn1gaWkJPp+PCxcuICMjA3/99ReGDRvGOiIh5DPKyspCbGwsOnXqhHHjxgk+TAPAzp070b9/f84VBHw+H0+fPgWfz0eHDh1ELt4k1f3793Hs2DEUFBTg5cuXQvckfTayn5+fyO/96aefPmOST+/s2bOwsrJiHeOToIKTtFRUPBNCxGJqago7OzusWbNG6PrixYtx6tQpTq4EEEJarsrKSvD5fMHoo/z8fERFRaFXr16ws7NjnE58cXFxGD16NLS1tXHz5k0YGRnh3r174PP56Nu3L+Lj41lHbLHk5OTQpUsXTJs2DW5ubujatSvrSJ9UWVkZZ3drxMXFIS4uDk+ePEFdXZ3QvZCQEEapiCSS+vBbCCHk/2RnZ8PDw6PedXd3d2RlZTFIRAhpanv27MGJEycErxcuXAglJSVYWFggPz+fYTLxjRkzBnv37gXw+sN///79sWHDBjg6OmLbtm2M04lvyZIl8PX1xfXr1yEnJ4fDhw+jsLAQgwcPxrhx41jHa9EePnwIb29vREZGQktLC3Z2djh48GC93QFcsHbtWkRERAhejxs3DioqKujSpQsyMjIYJhOfn58fbG1tERcXh6dPn6K0tFToDyFvo5VnQohYNDQ0EBgYWO9D2MGDB/H999+joKCAUTJCSFPR19fHtm3bYGNjg+TkZAwZMgRBQUE4fvw4WrVqhcjISNYRRda+fXskJCTA0NAQu3btwq+//oq0tDQcPnwYy5cvR3Z2NuuIYlFUVER6ejq6d+8OZWVlJCYmwtDQEBkZGRgzZgzu3bvHOuJ7KSsri7xtvqSk5DOn+XzS09MREhKCAwcOoK6uDpMmTYKHhwdMTExYRxOJjo4O9u/fDwsLC8TGxmL8+PGIiIjAwYMHUVBQgFOnTrGOKDJ1dXWsW7cOkydPZh2FcACNqiKEiOXbb7/F9OnTkZeXBwsLC/B4PCQmJmLt2rXw9fVlHY8Q0gQKCwuhq6sLADhy5Ai++eYbTJ8+HZaWlpw701lRUSHoqH3q1Ck4OTlBSkoK5ubmnFtFB4C2bduiuroaANC5c2fcuXMHhoaGAICnT5+yjCaSoKAg1hGaRJ8+fbB48WKoqKhgzZo1CAkJwdatWzFgwABs375d8G8mqYqKiqChoQEAOH78OMaPHw9bW1toaWnBzMyMcTrxvHz5EhYWFqxjEI6g4pkQIpZly5ZBUVERGzZswJIlSwC8/oC2YsUKeHl5MU5HCGkKCgoKKC4uRrdu3XDq1Cn4+PgAqD8Hmgt0dXVx5MgRjB07FjExMYK/y5MnT/DFF18wTic+c3NzJCUlwcDAAA4ODvD19cW1a9cQGRkJc3Nz1vE+aOrUqSK9759//vnMST6PmpoaHD16FCEhIYiNjUW/fv0QHByMiRMnoqSkBIsWLcK4ceMk/hiUsrIyCgsLoaGhgejoaPj7+wN43XyvofnPkszT0xN//PEHli1bxjoK4QAqngkhItm1axdsbGygo6MDHx8f+Pj44Pnz5wDAuTmohJCPM2zYMHh6esLU1BS3bt2Cg4MDAODGjRvQ0tJiG05My5cvh4uLC3x8fDBkyBAMGDAAwOtVaFNTU8bpxBcYGIgXL14AAFasWIEXL14gIiICurq62LhxI+N0H4fP5+Pvv//Grl27cOLECcEKO1fMnTsXBw4cAAC4urpi3bp1MDIyEtxv27Yt1qxZw4mfIScnJ7i4uKBHjx4oLi7G8OHDAbzejv5mVwpXVFVVYefOnTh9+jSMjY0hIyMjdF/SO9STpkVnngkhImnbti2qqqrQpUsXWFtbw8bGBjY2NoJtW4SQlqOsrAxLly5FYWEhZs6cCXt7ewCvRwfJysrixx9/ZJxQPI8ePUJRURFMTEwEo7cuXryIdu3aQV9fn3E6kpeXh5CQEOzZswcvXryAg4MDnJ2dMXbsWNbRxDJkyBB4enrC2dkZsrKyDb7n1atXSEpKwuDBg5s4nXhqamqwadMmFBYWws3NTfCgKSgoCAoKCvD09GScUHTW1tbvvMfj8ahDPRFCxTMhRCQ1NTVISUlBQkICzpw5g5SUFFRVVUFTUxM2NjawtraGtbU1OnfuzDoqIYSIzN3dHZs2baq3g6a8vBxz586lMTWMVFVV4dChQ9i1axdSUlIwbNgw/P3330hPTxdareWKmpoaTJ8+HcuWLYOOjg7rOISQRqLimRDSKG+K6TNnzuDs2bNITU1FdXU1Xr16xToaIaQJVFVVITMzs95cVB6Ph1GjRjFMJh5paWkUFRVBTU1N6PrTp0/RqVMnTvxOa24dqmfNmoXw8HDo6+vD1dUV//vf/6CqqgoZGRlkZGTAwMCAdcRGUVJSwtWrV5tN8bxv3z7s2LEDeXl5SE5OhqamJoKCgqCtrY0xY8awjkfIZ0FnngkhjVJbW4uXL1+iurpaUDRra2uzjkUIaQLR0dGYPHkyiouL693j8XicaBj07Nkz8Pl88Pl8PH/+HHJycoJ7tbW1OHnyZL2CWlK93aG6uLgY/v7+sLOzE5zfTk5ORkxMDGcaIu3cuROLFi3C4sWLm1VPjbFjx+LIkSOYP38+6ygfbdu2bVi+fDnmzZuHVatWCX7mlZSUEBQUxLni+dKlS/jzzz9RUFBQb+42l0bvkc+PVp4JISKpqqrChQsXcPbsWcTHx+Py5cvQ0dHBoEGDMHjwYAwePJi2bBPSQujq6sLOzg7Lly9Hx44dWcdpFCkpqfeu1vJ4PPj5+XHu/LazszOsra0xZ84coevBwcE4ffo0jhw5wiaYGP744w+EhoYiOTkZDg4OmDx5Muzt7dGmTRtOrzyvWrUKAQEBGDJkCL788ku0bdtW6D6XJlYYGBhg9erVcHR0hKKiIjIyMqCjo4Pr16/DysqKE2PR3ggPD8eUKVNga2uL2NhY2NraIjc3F48ePcLYsWMRGhrKOiKRIFQ8E0JEIicnh44dO2L06NGCgpkrqzKEkE/riy++QFpaGrp37846SqMlJCSAz+fDxsYGhw8fhoqKiuCerKwsNDU1OflAUEFBocGOx7m5uTA1NRV04uaCe/fuITQ0FGFhYaioqEBJSQkiIiLwzTffsI7WKO/bncXj8ZCXl9eEaT5OmzZtkJOTA01NTaHiOTc3F8bGxpwaWWdsbIzvvvsOs2fPFvxdtLW18d1330FdXR1+fn6sIxIJQtu2CSEiMTExQXp6OhISEsDj8SAlJQUrKyuoqqqyjkYIaWLffPMNzp49y+niefDgwXj16hWmTJmCfv36NZvJAaqqqoiKisKCBQuErh85coRzv6+1tLTg5+eHFStWICYmBiEhIXB1dcW8efPg5OSEzZs3s44olrt377KO8Mloa2sjPT0dmpqaQtf//vtv9OrVi1Gqxrlz545g3F7r1q1RXl4OHo8HHx8f2NjYUPFMhFDxTAgRSWpqKsrLy3H+/HmcOXMG69atw8SJE6GnpwcrKyvB1m1ajSak+QsODsa4ceNw/vx59O7du95cVK5sP23VqhUOHz6MFStWsI7yyfj5+cHDwwNnz54VnHlOSUlBdHQ0du3axThd4/B4PNjb28Pe3h4lJSXYu3cv57fSvtn4KWqjN0mzYMECzJ49G1VVVeDz+bh48SIOHDiA1atXY/fu3azjiUVFRQXPnz8HAHTp0gXXr19H7969UVZWhoqKCsbpiKShbduEkEZ7/vw5zp8/j9jYWISGhuLFixec6ExLCPk4u3btwowZM9CmTRuoqqoKFQBc237q6OgIR0dHuLm5sY7yyaSmpmLz5s3Izs4Gn8+HgYEBvLy8YGZmxjqaWM6ePQsrKyvWMT6pvXv3Yv369cjNzQUA6OnpYcGCBZg8eTLjZOL77bff4O/vj8LCQgCvC08/Pz/Y2dmhS5cujNOJzsXFBf369cP8+fOxatUqbNq0CWPGjEFsbCz69u1LDcOIECqeCSFiq6urw6VLl3D27FmcOXMGSUlJKC8vh6amZrPalkYIaVinTp3g5eWFxYsXQ0pKinWcj7Jjxw6sWLECkyZNarCJ0+jRoxklI3JycujSpQumTZuGqVOncn5rfWBgIJYtW4Y5c+bA0tISfD4fSUlJ2LJlC/z9/eHj48M6YqM8ffoUdXV1qK2txerVq7Fr1y5OnXkuKSlBVVUVOnfujLq6OgQEBCAxMRG6urpYtmwZlJWVWUckEoSKZ0KISC5duiSY6ZyYmIgXL16ga9eusLKygrW1NaytraGlpcU6JiGkCaioqODSpUucPvP8xvuKf66M3fqvuro63L59u94MbgAYNGgQo1TiKykpwf79+xEWFobMzEwMGTIEHh4ecHR0hKysLOt4YtPW1oafnx+mTJkidH3Pnj1YsWIFJx4+l5WVYfbs2Th16hRkZGSwePFizJkzB35+fggICICBgQHmz5+PiRMnso4qklevXuH333+HnZ0dOnXqxDoO4QAqngkhIpGSkoK6urqgWLaysqrXzZUQ0jL4+PigQ4cO+OGHH1hHIf+RkpICFxcX5Ofn478f8bj6MAAA0tPTERISggMHDqCurg6TJk2Ch4cHTExMWEcTmZycHK5fv95gJ/TevXujqqqKUTLRzZo1C3/99RcmTJiA6OhoZGdnw87ODlVVVfjpp58wePBg1hHFJi8vj+zs7HrNzwhpCDUMI4R80ObNm3Hjxg306tULBQUF0NDQ4GyTE0LIx6utrcW6desQExMDY2Pjeg3DAgMDGSUjM2bMQL9+/XDixAmoq6s3m9/Vffr0weLFi6GiooI1a9YgJCQEW7duxYABA7B9+3YYGhqyjvhBurq6OHjwYL2HThEREejRowejVOI5ceIEQkNDMXToUMyaNQu6urrQ09NDUFAQ62iNZmZmhrS0NCqeiUho5ZkQ8kGtWrXCw4cPoaamBmlpaRQVFVFXbUJaMGtr63fe4/F4iI+Pb8I0Hy8hIQEBAQHIzs4Gj8dDr169sGDBAgwcOJB1NLG1bdsWGRkZzWZnUE1NDY4ePYqQkBDExsaiX79+8PDwwMSJE1FSUoJFixYhPT0dWVlZrKN+0OHDhzFhwgQMHToUlpaW4PF4SExMRFxcHA4ePIixY8eyjvhBMjIyyM/PF8xAl5eXx8WLF2FkZMQ4WeP9+eefWLx4MXx8fBrse2BsbMwoGZFEVDwTQj6oW7duWLJkCUaMGAFtbW1cvnwZ7du3f+d7CSGEK/bv349p06bByclJ0MTpwoULiIqKQlhYGFxcXFhHFIuNjQ0WLlwIe3t71lE+2ty5c3HgwAEAgKurKzw9PesVaQUFBdDS0qp3tltSXblyBRs3bhTqhO7r6wtTU1PW0UQiLS2NR48eoUOHDgAARUVFZGZmQltbm3Gyxmuo7wGPxwOfz+f0UQfyeVDxTAj5oJ07d2Lu3LnvHUNF/8kQ0nKEhYVhwoQJaNOmDesoH61Xr16YPn16vU7HgYGB+O2335Cdnc0oWeNERUVh6dKlWLBgQYMzuLm0ijZkyBB4enrC2dn5nQ3CXr16haSkJE6eteUiKSkpDB8+HK1btwYA/PXXX7Cxsam3Wsul8U75+fnvvU/bucnbqHgmhIjk+fPnyM/Ph7GxMU6fPg1VVdUG38el5i2EkMZRV1dHeXk5xo0bBw8PD1hYWLCO1GitW7fGjRs36m1zvn37NoyMjDjRxOltzWUVraamBtOnT8eyZcugo6PDOs4n8a5jT8XFxVBTU+PEv820adNEel9oaOhnTkIIG9QwjBAiEkVFRRgZGSE0NBSWlpaCp86EkJbn/v37OHHiBMLCwmBtbQ1tbW3BLF6ujXvR0NBAXFxcveI5Li6Ok3OFuTDuSBQyMjKIiorCsmXLWEf5ZN61XlVdXc2Z0VvNsSjeu3fve+//d7QYadlo5ZkQIpbKykrExsbi1q1b4PF46NGjB4YNG9Ystm8SQsT35MkTwSzenJwc2Nvbw8PDA6NGjXrvDGVJsW3bNsybNw/u7u6wsLAQNHEKCwvDpk2b8N1337GO2GJNmzYNvXv3xvz581lH+SibN28G8HrE288//wwFBQXBvdraWpw7dw737t1DWloaq4gtmrKystDrmpoaVFRUQFZWFvLy8igpKWGUjEgiWnkmhIjs2LFj8PT0xNOnT4Wut2/fHrt378aoUaMYJSOEsKKmpgZLS0vcvHkTt27dwrVr1+Dm5gYlJSWEhobCysqKdcT3mjlzJjp16oQNGzbg4MGDAF6fg46IiMCYMWMYp2u8rKwsFBQU4OXLl0LXR48ezSiR+HR1dfHzzz/jwoULDXZB9vLyYpRMPBs3bgTweuV5+/btkJaWFtyTlZWFlpYWtm/fzipei1daWlrvWm5uLmbOnIkFCxYwSEQkGa08E0JEcuHCBVhZWWH06NHw9fVFr169ALz+gLZhwwYcP34cZ8+exYABAxgnJYQ0hcePH2Pfvn0IDQ1FXl4eHB0d4eHhgaFDh6KyshJLly7FoUOHPtiMh3xaeXl5GDt2LK5duyY46wxAMO+ZC+dq33hfB2cej4e8vLwmTPPxrK2tERkZWW+lk0imy5cvw9XVFTk5OayjEAlCxTMhRCQjRoyAhoYGduzY0eD97777DoWFhTh58mQTJyOENLVRo0YhJiYGenp68PT0xJQpU6CioiL0nocPH6Jr166cGSF0+fJloTnPX375JetIjTJq1ChIS0vjt99+g46ODi5evIji4mL4+voiICCAk7OrCWEhLS0NgwcPxrNnz1hHIRKEtm0TQkSSnJyMtWvXvvP+7NmzaVQIIS2EmpoaEhIS3rvTRF1dnRPNq+7fv4+JEyciKSkJSkpKAICysjJYWFjgwIEDnGsalpycjPj4eHTo0AFSUlKQkpLC119/jV9++QVeXl6cPVf73xV0rrp//z6OHTvW4Jb6wMBARqlatmPHjgm95vP5KCoqQnBwMCwtLRmlIpKKimdCiEiqqqrwxRdfvPN+u3btUF1d3YSJCCFNrbKyEnFxcdi9ezcAYMmSJUI/99LS0vj5558hJycHHo/Hifmo7u7uqKmpQXZ2NvT19QEAN2/ehLu7Ozw8PHDq1CnGCcVTW1sraEjVvn17PHz4EPr6+tDU1MTNmzcZpxPf3r17sX79euTm5gIA9PT0sGDBAkyePJlxMvHFxcVh9OjR0NbWxs2bN2FkZIR79+6Bz+ejb9++rOO1WI6OjkKveTweOnToABsbG2zYsIFNKCKxqHgmhIhET08P8fHx75zx2NCoF0JI87J3714cP34cI0eOBAAEBwfD0NBQ0G0/JycHnTt3ho+PD8uYYjl//jwuXLggKJwBQF9fH7/++isnV52MjIyQmZkJHR0dmJmZYd26dZCVlcXOnTs5Ny85MDAQy5Ytw5w5c2BpaQk+n4+kpCTMmDEDT58+5dT3GfD6YZOvry9WrlwJRUVFHD58GGpqapg0aRLs7e1Zx2uxuHK0hEgIPiGEiCAwMJCvoqLCP3HiRL17x48f56uqqvIDAwMZJCOENJWBAwfyIyMjBa8VFBT4d+7cEbzet28f39zcnEW0RtPT0+OnpqbWu56amsrv3r07g0QfJzo6mn/48GE+n8/n37lzh9+rVy8+j8fjt2/fnh8XF8c4nXi0tLT4e/bsqXc9LCyMr6WlxSDRx1FQUODfvn2bz+fz+UpKSvzr16/z+Xw+Pz09na+pqckwGSFEVLTyTAgRibe3Ny5cuICRI0dCX19fqNt2bm4uHB0d4e3tzTglIeRzunXrFvT09ASv5eTkhGY59+/fH7Nnz2YRrdHWrVuHuXPnYsuWLfjyyy/B4/Fw+fJleHt7IyAggHU8sdnZ2Qm+1tHRQVZWFkpKSqCsrMy588JFRUWwsLCod93CwgJFRUUMEn2ctm3bCo45dO7cGXfu3IGhoSEA1BsBSZoWnUUnoqLimRAiEikpKfz555+IiIjAgQMHBKMbevbsiRUrVuB///sf44SEkM/t33//RatW//fR4Z9//hG6X1dXx7neB25ubqioqICZmZng7/bq1Su0atUK7u7ucHd3F7y3pKSEVcyP8t9O6Fyhq6uLgwcP4ocffhC6HhERgR49ejBK1Xjm5uZISkqCgYEBHBwc4Ovri2vXriEyMhLm5uas47VYdBadiIOKZ0KIWCZMmIAJEyawjkEIYaBr1664fv260Pngt2VmZqJr165NnOrjBAUFsY7wSbxd5L9PSEjIZ07y6fj5+WHChAk4d+4cLC0twePxkJiYiLi4OBw8eJB1PLEFBgbixYsXAIAVK1bgxYsXiIiIgK6uLjZu3Mg4XctFZ9GJOGjOMyFEbHV1dbh9+zaePHlSr9HGoEGDGKUihHxu3t7eOH36NK5cuQI5OTmhe5WVlejXrx+GDh2KTZs2MUrYcklJSUFTUxOmpqZ430e7qKioJkz18a5cuYKNGzciOzsbfD4fBgYG8PX1hampKetopJlQVFREeno6unfvDmVlZSQmJsLQ0BAZGRkYM2YM7t27xzoikSBUPBNCxJKSkgIXFxfk5+fX+4DG4/FQW1vLKBkh5HN7/Pgx+vTpA1lZWcyZMwd6enrg8XjIyclBcHAwXr16hbS0NHTs2JF11A+qq6tDXV2d0Db0x48fY/v27SgvL8fo0aPx9ddfM0wonlmzZiE8PBzdunWDu7s7XF1dObtdm5Cm1KlTJ8THx8PAwACGhob45ZdfMHr0aGRkZMDS0lKwW4AQgIpnQoiY+vTpAz09Pfj5+UFdXb1eA5p27doxSkYIaQp3797FzJkzERsbK3iAxuPxMGzYMGzdupUz45CmTZsGGRkZ7Ny5EwDw/PlzGBoaoqqqCurq6sjKysLRo0cxYsQIxklFV11djcjISISEhODChQtwcHCAh4cHbG1tOdcsDHg9N7yoqAhqampC14uLi6GmpsaJh7XiNGrj6pl6rnN0dISDgwO+/fZbLFy4EFFRUXBzc0NkZCSUlZVx+vRp1hGJBKHimRAilrZt2yIjI4NmOhPSwpWUlOD27dsAXjd24toqp56eHoKDg2FrawsA2LJlC1atWoXs7Gy0a9cOixYtwsWLF3HmzBnGSRsnPz8fYWFh2Lt3L2pqapCVlQUFBQXWscQiJSWFR48e1SueHz58iO7du6OyspJRMtHt2bNH8HVxcTH8/f1hZ2eHAQMGAACSk5MRExODZcuWcW5udXORl5eHFy9ewNjYGBUVFfj++++RmJgoOIuuqanJOiKRINQwjBAiFjMzM9y+fZuKZ0JaOBUVFfTv3591jEZ78OCBUMfmuLg4ODs7C3bPTJ06FaGhoazifTQejwcejwc+n1+vN4Wk27x5M4DXf4ddu3YJFf21tbU4d+4cevbsySqeWKZOnSr42tnZGStXrsScOXME17y8vBAcHIzTp09T8czI27tl5OXlsXXrVoZpiKSj4pkQIpa5c+fC19cXjx49Qu/evSEjIyN039jYmFEyQggRnZycnNDKZUpKCtavXy90n2tnHd/etp2YmIiRI0ciODgY9vb2QvO4Jd2bztN8Ph/bt2+HtLS04J6srCy0tLSwfft2VvEaLSYmBmvXrq133c7ODosXL2aQiACvi+dLly5BVVVV6HpZWRn69u2LvLw8RsmIJKLimRAiFmdnZwDCY1HerG5QwzBCCFeYmJhg3759+OWXX3D+/Hk8fvwYNjY2gvt37txB586dGSYUz9sNw6ZNm4bw8PB6xQBX3L17FwBgbW0tOHfaHKiqqiIqKgoLFiwQun7kyBHO/ls1B/fu3Wvws0t1dTUePHjAIBGRZFQ8E0LE8uZDDSGEcNmyZcswYsQIHDx4EEVFRXBzc4O6urrgflRUFCwtLRkmFM/27dvRrVs3aGtrIyEhAQkJCQ2+LzIysomTNR5Xz5u/i5+fHzw8PHD27FnBmeeUlBRER0dj165djNO1PMeOHRN8HRMTI9TwtLa2FnFxcdDS0mKQjEgyahhGCCGEkBYpKysLsbGx6NSpE8aNGye0tXnnzp3o378/+vTpwy6gGNzc3ETq6sy1c9z379/HsWPHUFBQgJcvXwrdCwwMZJSq8VJTU7F582ahudVeXl4wMzNjHa3FefPz/mb33NtkZGSgpaWFDRs2YOTIkSziEQlFxTMhRGx37txBUFAQsrOzwePx0KtXL3h7e6N79+6soxFCCGkm4uLiMHr0aGhra+PmzZswMjLCvXv3wOfz0bdvX8THx7OOSJoBbW1tXLp0Ce3bt2cdhXAAd7pHEEIkQkxMDAwMDHDx4kUYGxvDyMgIqampMDQ0RGxsLOt4hBAilj179uDEiROC1wsXLoSSkhIsLCyQn5/PMNmn8ezZMxw5cgQ5OTmso4htyZIl8PX1xfXr1yEnJ4fDhw+jsLAQgwcPxrhx41jHa5S6ujrcunULiYmJOHfunNAfwsbdu3frFc5lZWVswhCJRyvPhBCxmJqaws7ODmvWrBG6vnjxYpw6dQpXr15llIwQQsSnr6+Pbdu2wcbGBsnJyRgyZAiCgoJw/PhxtGrVilNnhAFg/PjxGDRoEObMmYPKykqYmJgIVmvDw8MFTR+5QFFREenp6ejevTuUlZWRmJgIQ0NDZGRkYMyYMbh37x7riGJJSUmBi4sL8vPz620Tpoab7KxduxZaWlqYMGECAGDcuHE4fPgw1NXVcfLkSZiYmDBOSCQJrTwTQsSSnZ0NDw+Petfd3d2RlZXFIBEhhDReYWGhYG79kSNH8M0332D69OmCLtxcc+7cOQwcOBDA66ZnfD4fZWVl2Lx5M/z9/RmnE0/btm1RXV0NAOjcuTPu3LkjuPf06VNWsRptxowZ6NevH65fv46SkhKUlpYK/pSUlLCO12Lt2LEDGhoaAIDY2FicPn0a0dHRGD58eL3O6IRQt21CiFg6dOiA9PR09OjRQ+h6eno61NTUGKUihJDGUVBQQHFxMbp164ZTp07Bx8cHQP050Fzx77//QkVFBQAQHR0NZ2dnyMvLw8HBgXOFgLm5OZKSkmBgYAAHBwf4+vri2rVriIyMhLm5Oet4YsvNzcWhQ4cED2uIZCgqKhIUz8ePH8f48eNha2sLLS0tauRG6qHimRAilm+//RbTp09HXl4eLCwswOPxkJiYiLVr18LX15d1PEIIEcuwYcPg6ekJU1NT3Lp1Cw4ODgCAGzducHJMjYaGBpKTk6GiooLo6GiEh4cDAEpLSyEnJ8c4nXgCAwPx4sULAMCKFSvw4sULREREQFdXFxs3bmScTnxmZma4ffs2Fc8SRllZGYWFhdDQ0EB0dLRghwafz6et9KQeKp4JIWJZtmwZFBUVsWHDBixZsgTA6+10K1asgJeXF+N0hBAini1btmDp0qUoLCzE4cOHoaqqCgC4cuUKJk6cyDid+ObNm4dJkyZBQUEBmpqasLKyAvB6O3fv3r3ZhhOTjo6O4Gt5eXls3bqVYZqPN3fuXPj6+uLRo0fo3bs3ZGRkhO4bGxszStayOTk5wcXFBT169EBxcTGGDx8O4PWOOnrQQf6LGoYRQhrt+fPnAF43dSGEECIZrly5goKCAgwbNgwKCgoAgBMnTkBJSQmWlpaM07Vcb88Rf+PNjGFqGMZOTU0NNm3ahMLCQri5ucHU1BQAEBQUBAUFBXh6ejJOSCQJFc+EEEIIadGqqqqQmZmJJ0+eoK6uTnCdx+Nh1KhRDJOJLzMz850rmEeOHIGjo2PTBhKTsrIyeDyeSO/lWpOtD40+09TUbKIkhJDGom3bhJAP6tu3L+Li4qCsrAxTU9P3frChUVWEEC6Jjo7G5MmTUVxcXO8eF1cD7ezskJSUJLTlGQAOHz6MKVOmoLy8nFEy0QQFBQm+Li4uhr+/P+zs7DBgwAAAQHJyMmJiYrBs2TJGCRuPimPJtW/fPuzYsQN5eXlITk6GpqYmgoKCoK2tjTFjxrCORyQIFc+EkA8aM2YMWrduLfha1FUBQgiRdHPmzMH48eOxfPlydOzYkXWcjzZz5kwMGTIEFy5cgLq6OgAgIiIC7u7uCAsLYxtOBFOnThV87ezsjJUrV2LOnDmCa15eXggODsbp06cFndG5JisrCwUFBXj58qXQ9dGjRzNK1LJt27YNy5cvx7x587Bq1SrBAzMlJSUEBQVR8UyE0LZtQgghhLRYX3zxBdLS0tC9e3fWUT4Zb29vnD59GufPn0d0dDQ8PT2xb98+ODs7s44mFgUFhQabNuXm5sLU1FTQiZsr8vLyMHbsWFy7dk1w1hmA4IE013Y5NBcGBgZYvXo1HB0doaioiIyMDOjo6OD69euwsrLi5Exx8vnU71xACCHvoaOj0+D2xrKysnrbBAkhRNJ98803OHv2LOsYn9SmTZvQt29fmJub49tvv8WBAwc4VzgDgKqqKqKioupdP3LkiKArOpd4e3tDW1sbjx8/hry8PG7cuIFz586hX79+ze57kEvu3r0raBL2ttatW0v8MQfS9GjbNiFELPfu3Wvw6Xh1dTXu37/PIBEhhDRecHAwxo0bh/Pnzzc4PogLI/iOHTtW75qjoyMSEhIwceJE8Hg8wXu4tDXYz88PHh4eOHv2rODMc0pKCqKjo7Fr1y7G6cSXnJyM+Ph4dOjQAVJSUpCSksLXX3+NX375BV5eXkhLS2MdsUXS1tZGenp6vTPpf//9N3r16sUoFZFUVDwTQkTy9oezmJgYtGvXTvC6trYWcXFx0NbWZhGNEEIa7Y8//kBMTAzatGmDs2fPCvV04PF4nCie39dBOyQkBCEhIQC41wDNzc0NvXr1wubNmxEZGQk+nw8DAwMkJSXBzMyMdTyx1dbWCkaHtW/fHg8fPoS+vj40NTVx8+ZNxulargULFmD27NmoqqoCn8/HxYsXceDAAaxevRq7d+9mHY9IGDrzTAgRyZv5lG+f03pDRkYGWlpa2LBhA0aOHMkiHiGENEqnTp3g5eWFxYsXNziHl5BPZeDAgfD19YWjoyNcXFxQWlqKpUuXYufOnbhy5QquX7/OOmKL9dtvv8Hf3x+FhYUAgC5dusDPzw92dnbo0qUL43REklDxTAgRi7a2Ni5duoT27duzjkIIIR9NRUUFly5dalYNw/6rrKwMSkpKrGM0Sl1dHW7fvl1vBjcADBo0iFGqxomJiUF5eTmcnJyQl5eHkSNHIicnB6qqqoiIiICNjQ3riC3e06dPUVdXh9raWqxevRq7du1CZWUl61hEglDxTAghhJAWy8fHBx06dMAPP/zAOsonsXbtWmhpaWHChAkAgHHjxuHw4cNQV1fHyZMnYWJiwjih6FJSUuDi4oL8/Px6O564tgX9XUpKSqCsrEwjIBkoKyvD7NmzcerUKcjIyGDx4sWYM2cO/Pz8EBAQAAMDA8yfPx8TJ05kHZVIECqeCSFiKy8vR0JCQoNzKrlwPpAQQt7w8vLC3r17YWJiAmNj43oNwwIDAxklaxwdHR3s378fFhYWiI2Nxfjx4xEREYGDBw+ioKAAp06dYh1RZH369IGenh78/Pygrq5er8B8u/cGIeKaNWsW/vrrL0yYMAHR0dHIzs6GnZ0dqqqq8NNPP2Hw4MGsIxIJRMUzIUQsaWlpGDFiBCoqKlBeXg4VFRU8ffoU8vLyUFNTQ15eHuuIhBAiMmtr63fe4/F4iI+Pb8I0H69Nmza4desWNDQ04O3tjaqqKuzYsQO3bt2CmZkZSktLWUcUWdu2bZGRkVFvzjPXuLu7i/S+N43dSNPQ1NTE7t27MXToUOTl5UFXVxdeXl4ICgpiHY1IMOq2TQgRi4+PD0aNGoVt27ZBSUkJKSkpkJGRgaurK7y9vVnHI4QQsZw5c4Z1hE9KWVkZhYWF0NDQQHR0NPz9/QEAfD6fc9uczczMcPv2bc4Xz2FhYdDU1ISpqWm97eeEnYcPH8LAwADA6x0bcnJy8PT0ZJyKSDoqngkhYklPT8eOHTsgLS0NaWlpVFdXQ0dHB+vWrcPUqVPh5OTEOiIhhIgsLCwMEyZMQJs2bVhH+SScnJzg4uKCHj16oLi4GMOHDwfw+nc314rQuXPnwtfXF48ePWpwBrexsTGjZOKZMWMGwsPDkZeXB3d3d7i6ukJFRYV1rBavrq5O6HtKWloabdu2ZZiIcAFt2yaEiKVDhw5ISkqCnp4e9PX1sXnzZtjZ2SEnJwd9+/ZFRUUF64iEECIydXV1lJeXY9y4cfDw8ICFhQXrSB+lpqYGmzZtQmFhIdzc3GBqagoACAoKgoKCAqdW1hoaHfZmXCLXGoZVV1cjMjISISEhuHDhAhwcHODh4QFbW1tqFsaIlJQUhg8fjtatWwMA/vrrL9jY2NQroCMjI1nEIxKKimdCiFhsbW3h5uYGFxcXzJgxA2lpafDy8sK+fftQWlqK1NRU1hEJIURktbW1OHHiBMLCwnDixAloa2tj2rRpmDp1Kjp16sQ6XouWn5//3vuamppNlOTTys/PR1hYGPbu3YuamhpkZWVBQUGBdawWZ9q0aSK9LzQ09DMnIVxCxTMhRCyXL1/G8+fPYW1tjX/++QdTp05FYmIidHV1ERISgj59+rCOSAghjfLkyRPs378fYWFhyMnJgb29PTw8PDBq1KgGV0ElWVZWVoMTEUaPHs0oEXmjoKAAYWFhCAsLw8uXL5GTk0PFMyEcQcUzIYQQQsj/l5qaipCQEOzZswfq6uooKyuDkpISQkNDYWVlxTreB+Xl5WHs2LG4du2aYIszAMHWYC5tdX6jOTwIeHvbdmJiIkaOHIlp06bB3t6ecw9mCGnJ6KeVECIWGxsblJWV1bv+7Nkz2NjYNH0gQgj5SI8fP0ZAQAAMDQ1hZWWFZ8+e4fjx47h79y4ePnwIJycnTJ06lXVMkXh7e0NbWxuPHz+GvLw8bty4gXPnzqFfv344e/Ys63hiycvLg4mJCYyMjODg4ABHR0c4Ojpi7NixGDt2LOt4Ips1axbU1dWxdu1ajBw5Evfv38eff/6JESNGUOFMCMfQyjMhRCxSUlJ49OgR1NTUhK4/efIEXbp0QU1NDaNkhBAivlGjRiEmJgZ6enrw9PTElClT6nVCfvjwIbp27Yq6ujpGKUXXvn17xMfHw9jYGO3atcPFixehr6+P+Ph4+Pr6Ii0tjXVEkY0aNQrS0tL47bffoKOjg4sXL6K4uBi+vr4ICAjAwIEDWUcUiZSUFLp16wZTU9P3NgejxlSESD4aVUUIEUlmZqbg66ysLDx69Ejwura2FtHR0ejSpQuLaIQQ0mhqampISEjAgAED3vkedXV13L17twlTNV5tba3g/Gz79u3x8OFD6OvrQ1NTEzdv3mScTjzJycmIj49Hhw4dICUlBSkpKXz99df45Zdf4OXlxZkHAVOmTKGO2oQ0E1Q8E0JE0qdPH/B4PPB4vAa3Z7dp0wa//vorg2SEECK+yspKxMXFYffu3QCAJUuWoLq6WnBfWloaP//8M+Tk5MDj8TjT2dnIyAiZmZnQ0dGBmZkZ1q1bB1lZWezcuRM6Ojqs44mluTwICAsLYx2BEPKJUPFMCBHJ3bt3wefzBVvnOnToILgnKysLNTU1SEtLM0xICCGi27t3L44fP46RI0cCAIKDg2FoaIg2bdoAAHJyctC5c2f4+PiwjCm2pUuXory8HADg7++PkSNHYuDAgVBVVUV4eDjjdOJpTg8CGvLs2TPEx8ejZ8+e6NmzJ+s4hBAR0JlnQgghhLQ4gwYNgo+Pj6DxlKKiIjIyMgRF2f79+7FlyxYkJyezjPlJlJSUQFlZmXNbh2NiYlBeXg4nJyfk5eVh5MiRyMnJgaqqKiIiIjjXpHL8+PEYNGgQ5syZg8rKSpiYmODevXvg8/kIDw+Hs7Mz64iEkA+glWdCiNhu3ryJX3/9FdnZ2eDxeOjZsyfmzJlDT84JIZxx69Yt6OnpCV7LyckJdT7u378/Zs+ezSJao7i7u4v0vpCQkM+c5NOxs7MTfK2jo4OsrCzOPggAgHPnzuHHH38EAERFRYHP56OsrAx79uyBv78/Fc+EcAD1xyeEiOXQoUMwMjLClStXYGJiAmNjY1y9ehW9e/fGn3/+yToeIYSI5N9//0WrVv+3hvDPP/9AS0tL8Lqurk7oDLSkCwsLw5kzZ1BWVobS0tJ3/uE6FRUVThbOwOvvuTed3KOjo+Hs7Ax5eXk4ODggNzeXcTpCiCho5ZkQIpaFCxdiyZIlWLlypdD1n376CYsWLcK4ceMYJSOEENF17doV169fh76+foP3MzMz0bVr1yZO1XgzZsxAeHg48vLy4O7uDldX13ojt7iiOa6iA4CGhgaSk5OhoqKC6OhowRn00tJSyMnJMU5HCBEFnXkmhIhFXl4emZmZ0NXVFbqem5sLExMTVFRUMEpGCCGi8/b2xunTp3HlypV6hUtlZSX69euHoUOHYtOmTYwSiq+6uhqRkZEICQnBhQsX4ODgAA8PD9ja2nJqtVZKSgqampowNTXF+z6mRkVFNWGqj7d161Z4e3tDQUEBmpqauHr1KqSkpPDrr78iMjISZ86cYR2REPIBVDwTQsQyYsQIjBs3DtOmTRO6HhoaivDwcMTExDBKRgghonv8+DH69OkDWVlZzJkzB3p6euDxeMjJyUFwcDBevXqFtLQ0dOzYkXXURsnPz0dYWBj27t2LmpoaZGVlCcY+SbpZs2YhPDwc3bp14/wq+n9duXIFBQUFGDZsmODf48SJE1BSUoKlpSXjdISQD6HimRAilu3bt2P58uUYP348zM3NAQApKSn4888/4efnh86dOwveO3r0aFYxCSHkg+7evYuZM2ciNjZWsMLJ4/EwbNgwbN26ldPjkAoKChAWFoawsDC8fPkSOTk5nCmegeaziv62zMxMGBsbN3jvyJEjcHR0bNpAhBCxUfFMCBHL291o34fH46G2tvYzpyGEkI9XUlKC27dvAwB0dXU5u8r5dsGZmJiIkSNHYtq0abC3txf5d7ck4vIq+tvU1dWRlJRU76HM4cOHMWXKFMF8bkKI5KKGYYQQsdTV1bGOQAghn5SKigr69+/POsZHeXur87Rp0xAeHg5VVVXWsT4JHo8HHo8HPp/P6f+DZs6ciSFDhuDChQtQV1cHAERERMDd3R1hYWFswxFCREIrz4QQQgghHCclJYVu3brB1NT0vduaIyMjmzBV4zXXVfQ3jerOnz+P6OhoeHp6Yt++fTTjmRCOoOKZECK28vJyJCQkoKCgAC9fvhS65+XlxSgVIYS0XG5ubiKdBQ4NDW2CNB/nv6vorq6uzWYVHQAmT56M1NRUPHjwAH/88QfGjBnDOhIhRERUPBNCxJKWloYRI0agoqIC5eXlUFFRwdOnTyEvLw81NTXk5eWxjkgIIYTDmtMq+rFjx+pdq6mpgY+PD2xtbYUaa1KTTUIkHxXPhBCxWFlZQU9PD9u2bYOSkhIyMjIgIyMDV1dXeHt7w8nJiXVEQgghHNacVtGpySYhzQsVz4QQsSgpKSE1NRX6+vpQUlJCcnIyevXqhdTUVEydOhU5OTmsIxJCCCGEEPLJcbfjAiGECRkZGcGKQMeOHVFQUAAAaNeuneBrQggh5FN79uwZjhw50qwe0paVlbGOQAgRAxXPhBCxmJqa4vLlywAAa2trLF++HL///jvmzZuH3r17M05HCCGkuRg/fjyCg4MBAJWVlejXrx/Gjx+P3r174/Dhw4zTiW/t2rWIiIgQvB43bhxUVFTQpUsXZGRkMExGCBEVFc+EELGsXr1aMJ/y559/hqqqKmbOnIknT55g586djNMRQghpLs6dO4eBAwcCAKKiosDn81FWVobNmzfD39+fcTrx7dixAxoaGgCA2NhYnD59GtHR0Rg+fDgWLFjAOB0hRBR05pkQQgghhEicNm3a4NatW9DQ0MCUKVPQuXNnrFmzBgUFBTAwMMCLFy9YRxTL238fb29vVFVVYceOHbh16xbMzMxQWlrKOiIh5ANo5ZkQQgghhEgcDQ0NJCcno7y8HNHR0bC1tQUAlJaWQk5OjnE68SkrK6OwsBAAEB0djaFDhwIA+Hw+ddomhCNasQ5ACJF8H5q1+barV69+5jSEEEJagnnz5mHSpElQUFCApqYmrKysALzezs3FHhtOTk5wcXFBjx49UFxcjOHDhwMA0tPToauryzgdIUQUVDwTQj7I0dFR8HVVVRW2bt0KAwMDDBgwAACQkpKCGzduYNasWYwSEkIIaW5mzZoFMzMzFBQUYNiwYYKZyTo6Opw887xx40ZoaWmhsLAQ69atg4KCAgCgqKiI/v8khCPozDMhRCyenp5QV1fHzz//LHT9p59+QmFhIUJCQhglI4QQ0pxkZmbC2Ni4wXtHjhwRerBLCCFNgYpnQohY2rVrh8uXL6NHjx5C13Nzc9GvXz/8+++/jJIRQghpTtTV1ZGUlAQdHR2h64cPH8aUKVNQXl7OKNnHycrKQkFBAV6+fCl0ffTo0YwSEUJERdu2CSFiadOmDRITE+sVz4mJiZxs4EIIIUQyzZw5E0OGDMGFCxcEIxIjIiLg7u6OsLAwtuEaIS8vD2PHjsW1a9fA4/HwZv3qTU8RahpGiOSj4pkQIpZ58+Zh5syZuHLlCszNzQG8PvO8e/du/PTTT4zTEUIIaS6WL1+O4uJiDB06FOfPn0d0dDQ8PT2xb98+ODs7s44nNm9vb2hra+P06dPQ0dHBxYsXUVxcDF9fXwQEBLCORwgRAW3bJoSI7eDBg9i0aROys7MBAAYGBvD29kaPHj3Qp08ftuEIIYQ0K5MnT0ZqaioePHiAP/74A2PGjGEdqVHat2+P+Ph4GBsbo127drh48SL09fURHx8PX19fpKWlsY5ICPkAKp4JIR+lrKwMv//+O3bv3o2MjAzadkYIIaTRjh07Vu9aTU0NfHx8YGtrK3QumGtnhJWVlXHlyhXo6Oige/fu2LVrF6ytrXHnzh307t0bFRUVrCMSQj6Atm0TQholPj4eISEhiIyMhKamJpydnbF7927WsQghhHDY+zpoh4SECCY68Hg8zj2sNTIyQmZmJnR0dGBmZoZ169ZBVlYWO3furNcUjRAimah4JoSI7P79+wgLC0NISAjKy8sxfvx41NTU4PDhwzAwMGAdjxBCCMfV1dWxjvDZLF26VNAh3N/fHyNHjsTAgQOhqqqK8PBwxukIIaKgbduEEJGMGDECiYmJGDlyJCZNmgR7e3tIS0tDRkYGGRkZVDwTQgj57MrKyqCkpMQ6xidTUlICZWVlQcdtQohko5VnQohITp06BS8vL8ycObPemCpCCCHkU1u7di20tLQwYcIEAMC4ceNw+PBhqKur4+TJkzAxMWGcUDTu7u4ive/NlnRCiOSSYh2AEMIN58+fx/Pnz9GvXz+YmZkhODgY//zzD+tYhBBCmqkdO3ZAQ0MDABAbG4vTp08jOjoaw4cPx4IFCxinE11YWBjOnDmDsrIylJaWvvMPIUTy0bZtQohYKioqEB4ejpCQEFy8eBG1tbUIDAyEu7s7FBUVWccjhBDSTLRp0wa3bt2ChoYGvL29UVVVhR07duDWrVswMzPjTME5a9YshIeHo1u3bnB3d4erqytUVFRYxyKENAKtPBNCxCIvLw93d3ckJibi2rVr8PX1xZo1a6Cmpsa5sSGEEEIkl7KyMgoLCwEA0dHRGDp0KACAz+dzqtP21q1bUVRUhEWLFuGvv/6ChoYGxo8fj5iYGNAaFiHcQsUzIaTR9PX1sW7dOty/fx8HDhxgHYcQQkgz4uTkBBcXFwwbNgzFxcUYPnw4ACA9PR26urqM04mndevWmDhxImJjY5GVlQVDQ0PMmjULmpqaePHiBet4hBARUcMwQshHk5aWhqOj43vncxJCCCHi2LhxI7S0tFBYWIh169ZBQUEBAFBUVIRZs2YxTtd4PB4PPB4PfD6/WY/mIqQ5ojPPhBBCCCGEfEbV1dWIjIxESEiIYOzjtGnTYG9vDykp2ghKCFfQyjMhhBBCCJFYWVlZKCgowMuXL4Wuc6XPxtsNw6ZNm4bw8HCoqqqyjkUIaQRaeSaEEEIIIRInLy8PY8eOxbVr1wTbnIHX254BcKZpmJSUFLp16wZTU1NB9oZERkY2YSpCSGPQyjMhhBBCCJE43t7e0NbWxunTp6Gjo4OLFy+iuLgYvr6+CAgIYB1PZFOmTHlv0UwI4Q5aeSaEEEIIIRKnffv2iI+Ph7GxMdq1a4eLFy9CX18f8fHx8PX1RVpaGuuIhJAWhjoUEEIIIYQQiVNbWyvosN2+fXs8fPgQAKCpqYmbN2+yjEYIaaFo2zYhhBBCCJE4RkZGyMzMhI6ODszMzLBu3TrIyspi586d0NHRYR2PENIC0bZtQgghhBAicWJiYlBeXg4nJyfk5eVh5MiRyMnJgaqqKsLDwzFkyBDWEQkhLQwVz4QQQgghhBNKSkqgrKxMDbgIIUzQtm1CCCGEECIx3N3dRXpfSEjIZ05CCCHCaOWZEEIIIYRIDCkpKWhqasLU1BTv+5gaFRXVhKkIIYSKZ0IIIYQQIkFmzZqF8PBwdOvWDe7u7nB1dYWKigrrWIQQQsUzIYQQQgiRLNXV1YiMjERISAguXLgABwcHeHh4wNbWls47E0KYoeKZEEIIIYRIrPz8fISFhWHv3r2oqalBVlaWYP4zIYQ0JSnWAQghhBBCCHkXHo8HHo8HPp+Puro61nEIIS0YFc+EEEIIIUSiVFdX48CBAxg2bBj09fVx7do1BAcHo6CggFadCSHM0KgqQgghhBAiMd5uGDZt2jSEh4dDVVWVdSxCCKEzz4QQQgghRHJISUmhW7duMDU1fW9zsMjIyCZMRQghtPJMCCGEEEIkyJQpU6ijNiFEItHKMyGEEEIIIYQQ8gHUMIwQQgghhBBCCPkAKp4JIYQQQgghhJAPoOKZEEIIIYQQQgj5ACqeCSGEEEIIIYSQD6DimRBCCCGEEEII+QAqngkhhBBCCCGEkA+g4pkQQgghhBBCCPmA/wcpSNiB++X4gAAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 1000x800 with 2 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "###******************************HALLO*******************************\n",
+    "\n",
+    "\n",
+    "###***************************BAYESIAN GOVERMENT COVID APPLICATION**************************************************WRITEN BY:\n",
+    "###********************************************************************************************************HAMED KHALILI***********\n",
+    "###***************************INPUTS OF THE PROGRAM********************************************************************************************\n",
+    "\n",
+    "countries=['Germany','France','Italy','Spain']#\n",
+    "X=['MasksMandatoryAllSpaces','MasksMandatoryClosedSpaces']\n",
+    "#incidence_days_number=14\n",
+    "#method=\"hierarchical\"#or#pooled#or#unpooled\n",
+    "data_collecting_time_span='default'\n",
+    "data_collecting_start_date='2020-05-02'\n",
+    "data_collecting_end_date='2021-03-02'\n",
+    "incidence_days_number=14\n",
+    "\n",
+    "method=\"hierarchical\"#or#pooled#or#unpooled\n",
+    "number_of_samples=1000 #number_of_samples#target_acceptance_percent\n",
+    "target_acceptance_percent=0.95\n",
+    "###********************************************************************************************************************************************\n",
+    "XX=['MasksMandatoryAllSpaces','MasksMandatoryClosedSpaces',\n",
+    "   'ClosDaycare','ClosDaycarePartial','ClosPrimPartial','ClosSecPartial','ClosPrim','ClosSec','ClosHighPartial','ClosHigh',\n",
+    "   'RestaurantsCafes','RestaurantsCafesPartial','GymsSportsCentres','GymsSportsCentresPartial',\n",
+    "   'Teleworking','TeleworkingPartial','WorkplaceClosuresPartial','AdaptationOfWorkplace','AdaptationOfWorkplacePartial','WorkplaceClosures',\n",
+    "  'MasksMandatoryClosedSpacesPartial','MasksMandatoryAllSpaces','MasksMandatoryClosedSpaces','MasksMandatoryAllSpacesPartial' ]\n",
+    "#['ClosDaycare','ClosDaycarePartial','ClosPrimPartial','ClosSecPartial','ClosPrim','ClosSec','ClosHighPartial','ClosHigh']\n",
+    "#['RestaurantsCafes','RestaurantsCafesPartial']\n",
+    "#['GymsSportsCentres','GymsSportsCentresPartial']\n",
+    "#['Teleworking','TeleworkingPartial','WorkplaceClosuresPartial','AdaptationOfWorkplace','AdaptationOfWorkplacePartial','WorkplaceClosures']\n",
+    "#['MasksMandatoryClosedSpacesPartial','MasksMandatoryAllSpaces','MasksMandatoryClosedSpaces','MasksMandatoryAllSpacesPartial']\n",
+    "#y_pred =this is almost identical to y_est except we do not specify the observed data. PyMC considers this to be a stochastic node \n",
+    "#(as opposed to an observed node) and as the MCMC sampler runs - it also samples data from y_est.\n",
+    "\n",
+    "\"\"\"\n",
+    "['Netherlands','Czechia','Lithuania','Austria','Poland','Slovenia','Estonia','Italy','Slovakia','Ireland','Denmark',\n",
+    "'Iceland','Cyprus','Greece','Belgium','Bulgaria','France','Germany','Latvia','Spain','Norway','Romania','Liechtenstein',\n",
+    " 'Portugal','Luxembourg','Hungary','Malta','Croatia','Finland','Sweden']\n",
+    " \n",
+    "['EntertainmentVenuesPartial','RestaurantsCafesPartial','EntertainmentVenues','MassGatherAll','ClosSec','GymsSportsCentresPartial','ClosPrim',\n",
+    " 'NonEssentialShopsPartial','ClosPubAnyPartial','RestaurantsCafes','GymsSportsCentres','MassGather50','PrivateGatheringRestrictions',\n",
+    " 'MassGatherAllPartial',\n",
+    " 'ClosHigh','NonEssentialShops','ClosSecPartial','OutdoorOver500','ClosDaycare','BanOnAllEvents','IndoorOver500','QuarantineForInternationalTravellers',\n",
+    " 'ClosHighPartial','IndoorOver100','Teleworking','ClosPubAny','PlaceOfWorshipPartial','MasksMandatoryClosedSpacesPartial','MassGather50Partial',\n",
+    " 'StayHomeOrderPartial','OutdoorOver100','IndoorOver50','ClosPrimPartial','PrivateGatheringRestrictionsPartial','MasksMandatoryClosedSpaces',\n",
+    " 'OutdoorOver1000','TeleworkingPartial','MasksMandatoryAllSpaces','OutdoorOver50','StayHomeOrder','QuarantineForInternationalTravellersPartial',\n",
+    " 'MasksMandatoryAllSpacesPartial','StayHomeGen','PlaceOfWorship','ClosDaycarePartial','IndoorOver1000','BanOnAllEventsPartial',\n",
+    " 'HotelsOtherAccommodationPartial',\n",
+    " 'StayHomeRiskG','ClosureOfPublicTransportPartial','AdaptationOfWorkplace','HotelsOtherAccommodation','MasksVoluntaryClosedSpacesPartial',\n",
+    " 'RegionalStayHomeOrderPartial','AdaptationOfWorkplacePartial','MasksVoluntaryAllSpaces','MasksVoluntaryAllSpacesPartial','MasksVoluntaryClosedSpaces',\n",
+    " 'SocialCircle','WorkplaceClosures','RegionalStayHomeOrder','ClosureOfPublicTransport','StayHomeGenPartial','WorkplaceClosuresPartial',\n",
+    " 'StayHomeRiskGPartial','SocialCirclePartial']\n",
+    " \n",
+    " \n",
+    " \"\"\"\n",
+    "###************MAIN BODY OF THE PROGRAM****************************************************************************************************\n",
+    "\n",
+    "def add_elemant(element,lis,j):\n",
+    "        for i in lis:\n",
+    "            if element in i:\n",
+    "                return i[j]\n",
+    "\n",
+    "\n",
+    "colors = ['#348ABD', '#A60628', '#7A68A6', '#467821', '#D55E00', '#CC79A7', '#56B4E9', '#009E73', '#F0E442', '#0072B2']\n",
+    "import pandas as pd\n",
+    "import datetime\n",
+    "from datetime import timedelta\n",
+    "import warnings\n",
+    "warnings.filterwarnings(\"ignore\", category=FutureWarning)\n",
+    "import seaborn as sns\n",
+    "import arviz as az\n",
+    "import itertools\n",
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import pymc3 as pm\n",
+    "import scipy\n",
+    "import scipy.stats as stats\n",
+    "from IPython.display import Image\n",
+    "from sklearn import preprocessing\n",
+    "import pandas as pd\n",
+    "import datetime\n",
+    "from IPython.display import display\n",
+    "\n",
+    "def f(r,tr):\n",
+    "            for i in tr:\n",
+    "\n",
+    "                if i in r:\n",
+    "                    return \"+\"#+str(tr).replace(\",\", \" or\")\n",
+    "\n",
+    "            return \"-\"#+str(tr).replace(\",\", \" or\")\n",
+    "def std():\n",
+    "    l=[]\n",
+    "    for idx, name in (enumerate(CBook.iloc[:,5].value_counts().index.tolist())):\n",
+    "            l.append( [name,CBook.iloc[:,5].value_counts().tolist()[idx],CBook.loc[CBook.iloc[:,5] == name, mass].std()])\n",
+    "    return l#CBook[str(evaluation_object)+' '+str(evaluation_criteria)+' '+'std'] = CBook.apply(lambda row: add_second_elemant(row[evaluation_object],l), axis=1)\n",
+    "\n",
+    "def mean():\n",
+    "    l=[]\n",
+    "    for idx, name in (enumerate(CBook.iloc[:,5].value_counts().index.tolist())):\n",
+    "            l.append( [name,CBook.iloc[:,5].value_counts().tolist()[idx],CBook.loc[CBook.iloc[:,5] == name, mass].mean()])\n",
+    "    return l\n",
+    "cb =pd.read_excel(r\"C:\\Users\\Hamed\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\Programs\\Anaconda3 (64-bit)\\datac.xlsx\")\n",
+    "measures =pd.read_excel(r\"C:\\Users\\Hamed\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\Programs\\Anaconda3 (64-bit)\\response_graphs.xlsx\")\n",
+    "\n",
+    "\n",
+    "\n",
+    "\n",
+    "\n",
+    "if method==\"hierarchical\":\n",
+    "\n",
+    "    \n",
+    "    \n",
+    "    #liss=[]\n",
+    "\n",
+    "\n",
+    "    responses_plus=[]\n",
+    "    responses_minus=[]\n",
+    "    liss_plus = pd.DataFrame({'country':[],'mean':[],'std':[],'count+':[],'count-':[],'mean+':[],'mean-':[],'std+':[],'std-':[]})\n",
+    "    for idx, name in (enumerate(cb['countriesAndTerritories'].value_counts().index.tolist())):\n",
+    "    #for name in['Germany']:\n",
+    "        land=name\n",
+    "        cb_2=cb.loc[(cb['countriesAndTerritories'] == land)]\n",
+    "        cb_2=cb_2[['dateRep','cases']].iloc[::-1]\n",
+    "        #cb=cb[(cb['dateRep']>=datetime.date(2020,2,3))] # df[(df['date']>datetime.date(2016,1,1))\n",
+    "        cb_2['dateRep'] = pd.to_datetime(cb_2['dateRep'], format='%d/%m/%Y')\n",
+    "        cb_2=cb_2.loc[cb_2['dateRep']>='2020-03-02']\n",
+    "        cb_2['cases'].values[cb_2['cases']<0] = cb_2['cases'].values[cb_2['cases']<0]*(-1)\n",
+    "        cb_2['cases'].values[cb_2['cases']==0]=1\n",
+    "        if cb_2.isnull().values.any():\n",
+    "            cb_2['cases']=cb_2['cases'].interpolate()\n",
+    "        \n",
+    "        cb_2=cb_2.reset_index()\n",
+    "        measures_2=measures.loc[(measures['Country'] == land)]\n",
+    "        if measures_2.isnull().values.any():\n",
+    "            #print(measures_2[measures_2['E'].isna()])\n",
+    "            measures_2=measures_2.dropna()\n",
+    "        measures_2=measures_2.reset_index()\n",
+    "        cooBook=cb_2\n",
+    "        lst=[]\n",
+    "        cooBook[\"Rescd\"] = [list() for x in range(len(cooBook.index))]\n",
+    "        measures_2['A'] = pd.to_datetime(measures_2['A'], format='%d/%m/%Y')\n",
+    "        measures_2['E'] = pd.to_datetime(measures_2['E'], format='%d/%m/%Y')\n",
+    "        for i in range (0,len(measures_2)):\n",
+    "            #col=\"rc\"#(measures['Measure'][i])\n",
+    "            A=(measures_2['A'][i])\n",
+    "            E=(measures_2['E'][i]++ timedelta(days=1))\n",
+    "            #if col not in coBook.columns:\n",
+    "                #coBook[col] = pd.Series(dtype='int')\n",
+    "\n",
+    "            for j in range (0,len(cooBook)): \n",
+    "                date=cooBook['dateRep'][j]\n",
+    "                #date_E=coBook['time_iso8601'][j-1]\n",
+    "                #if coBook[col][j] != 1:\n",
+    "                if date>=A and date<=E:\n",
+    "                    cooBook[\"Rescd\"][j].append(measures_2['Measure'][i])\n",
+    "        CBook=cooBook\n",
+    "        \n",
+    "    #CBook['daily_cases']=CBook['daily_cases'].diff()\n",
+    "    #CBook=CBook[1::]\n",
+    "    #CBook=CBook.reset_index()\n",
+    "\n",
+    "        CBook['rpn_minus_one'+str(incidence_days_number)] = pd.Series(dtype='float')\n",
+    "        CBook = CBook.replace(np.nan, 0)\n",
+    "        for i in range (0,len(CBook)-incidence_days_number):\n",
+    "            caesdayNplusone=CBook.loc[i+incidence_days_number, ['cases']].to_list()[0]\n",
+    "            averagecasesdayonetoNminusone=sum(CBook.iloc[i:i+incidence_days_number]['cases'].values)/incidence_days_number\n",
+    "            #if averagecasesdayonetoNminusone ==0:\n",
+    "                #print(\"00000000\")\n",
+    "            CBook.loc[i, ['rpn_minus_one'+str(incidence_days_number)]]=caesdayNplusone/averagecasesdayonetoNminusone-1\n",
+    "\n",
+    "\n",
+    "        #operator=\"or\"\n",
+    "        mass='rpn_minus_one'+str(incidence_days_number)\n",
+    "        #CBook[mass]=CBook[mass].pct_change()\n",
+    "        #CBook=CBook.iloc[1: , :]\n",
+    "        #CBook[[mass]] = CBook[[mass]].apply(lambda x: 100*x) \n",
+    "        if data_collecting_time_span=='default':\n",
+    "            data_collecting_start_date=min(measures_2['A'])\n",
+    "            data_collecting_end_date=max(measures_2['E'])\n",
+    "            \n",
+    "        \n",
+    "        CBook=CBook.loc[ (CBook['dateRep']>=data_collecting_start_date)  ]\n",
+    "        CBook=CBook.loc[ (CBook['dateRep']<=data_collecting_end_date)  ]\n",
+    "\n",
+    "\n",
+    "        CBook[str(X[0][:10]).replace(\",\", \" or\")+''+ 'Rescd'] = CBook.apply(lambda row: land+f(row['Rescd'],X), axis=1)\n",
+    "        #liss.append([land,mean(),std()])\n",
+    "\n",
+    "        info ={'country':land,'mean':CBook.iloc[:,4].mean(),'std':CBook.iloc[:,4].std(),'count+':add_elemant(land+'+',mean(),1),'count-':add_elemant(land+'-',mean(),1),'mean+':add_elemant(land+'+',mean(),2),'mean-':add_elemant(land+'-',mean(),2),'std+':add_elemant(land+'+',std(),2),'std-':add_elemant(land+'-',std(),2)}\n",
+    "        liss_plus = liss_plus.append(info, ignore_index = True)\n",
+    "        liss_plus=liss_plus.fillna(0)\n",
+    "        if land in countries:\n",
+    "            \n",
+    "            print(land + \" data collection span:\")\n",
+    "            print(data_collecting_start_date,data_collecting_end_date)\n",
+    "            CBook_plus=CBook[(CBook.iloc[:,5] == land+\"+\")]\n",
+    "            CBook_minus=CBook[(CBook.iloc[:,5] == land+\"-\")]\n",
+    "            le_plus = preprocessing.LabelEncoder()\n",
+    "            le_minus = preprocessing.LabelEncoder()\n",
+    "            rc=str(X[0][:10]).replace(\",\", \" or\")+''+ 'Rescd'\n",
+    "            clm_plus=CBook_plus[rc]\n",
+    "            clm_minus=CBook_minus[rc]\n",
+    "            response_idx_plus = le_plus.fit_transform(clm_plus)\n",
+    "            response_idx_minus = le_minus.fit_transform(clm_minus)\n",
+    "            response_plus = le_plus.classes_\n",
+    "            response_minus = le_minus.classes_\n",
+    "            #number_of_response_plus=len(response_plus)\n",
+    "            #number_of_response_minus=len(response_minus)\n",
+    "            #for i in range(0, number_of_response_codes):\n",
+    "            if len(response_plus)==0:\n",
+    "                response_plus=[land+\"+\",[]]\n",
+    "                responses_plus.append(response_plus)\n",
+    "            else:    \n",
+    "                response_plus[0]=[response_plus[0],CBook_plus[clm_plus==response_plus[0]][mass].values.tolist()]\n",
+    "                responses_plus.append(response_plus[0])\n",
+    "            if len(response_minus)==0:\n",
+    "                response_minus=[land+\"-\",[]]\n",
+    "                responses_minus.append(response_minus)\n",
+    "            else:\n",
+    "                response_minus[0]=[response_minus[0],CBook_minus[clm_minus==response_minus[0]][mass].values.tolist()]\n",
+    "                responses_minus.append(response_minus[0])\n",
+    "    #liss\n",
+    "    \n",
+    "    \n",
+    "    \n",
+    "    #export_excel = liss_plus.to_excel (r\"C:\\Users\\Hamed\\Desktop\\liss_plus.xlsx\")\n",
+    "    data_mean_positive = np.repeat(liss_plus['mean+'].values.tolist(),liss_plus['count+'].values.tolist())\n",
+    "    mean_mean_positive=data_mean_positive.mean()\n",
+    "    mean_std_positive=data_mean_positive.std()\n",
+    "    data_std_positive = np.repeat(liss_plus['std+'].values.tolist(),liss_plus['count+'].values.tolist())\n",
+    "    #std_mean_positive=data_std_positive.mean()\n",
+    "    #std_std_positive=data_std_positive.std()\n",
+    "    std_min_positive=data_std_positive.min()\n",
+    "    std_max_positive=data_std_positive.max()\n",
+    "    data_mean_negative = np.repeat(liss_plus['mean-'].values.tolist(),liss_plus['count-'].values.tolist())\n",
+    "    mean_mean_negative=data_mean_negative.mean()\n",
+    "    mean_std_negative=data_mean_negative.std()\n",
+    "    data_std_negative = np.repeat(liss_plus['std-'].values.tolist(),liss_plus['count-'].values.tolist())\n",
+    "    #std_mean_negative=data_std_negative.mean()\n",
+    "    #std_std_negative=data_std_negative.std()\n",
+    "    std_min_negative=data_std_negative.min()\n",
+    "    std_max_negative=data_std_negative.max()\n",
+    "\n",
+    "    #cb =pd.read_excel(r\"C:\\Users\\Hamed\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\Programs\\Anaconda3 (64-bit)\\datac.xlsx\")\n",
+    "    #measures =pd.read_excel(r\"C:\\Users\\Hamed\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\Programs\\Anaconda3 (64-bit)\\response_graphs.xlsx\")\n",
+    "    \n",
+    "    \n",
+    "    \n",
+    "    #CBook\n",
+    "\n",
+    "    \n",
+    "\n",
+    "    #mean_mean_positive   mean_std_positive   std_mean_positive   std_std_positive  country_mean_positive country_std_positive\n",
+    "    #uncertainty=0.1\n",
+    "    #import math\n",
+    "    with pm.Model() as model:\n",
+    "        hyper_mu_parameter_positive=pm.Normal('hyper_mu_parameter_positive', mu=mean_mean_positive,sd=mean_std_positive)#\n",
+    "        hyper_sd_parameter_positive=pm.Uniform('hyper_sd_parameter_positive', lower=std_min_positive,upper=std_max_positive)#pm.Exponential(\"hyper_sd_parameter\", lam=1/std_mean_positive)#\n",
+    "        #hyper_sd_error_parameter=pm.Uniform('hyper_sd_error_parameter', lower=std_min_positive,upper=std_max_positive)\n",
+    "        hyper_mu_parameter_negative=pm.Normal('hyper_mu_parameter_negative', mu=mean_mean_negative,sd=mean_std_negative)#\n",
+    "        hyper_sd_parameter_negative=pm.Uniform('hyper_sd_parameter_negative', lower=std_min_negative,upper=std_max_negative)\n",
+    "\n",
+    "        hyper_nu_parameter_plus=pm.Uniform('hyper_nu_parameter_plus', lower=0,upper=30)\n",
+    "        hyper_nu_parameter_minus=pm.Uniform('hyper_nu_parameter_minus', lower=0,upper=30)\n",
+    "        #phi_mean=pm.Uniform('phi_mean', lower=0,upper=1)\n",
+    "        #phi_std=pm.Uniform('phi_std', lower=0,upper=1)\n",
+    "        mu = dict()\n",
+    "        sd=dict()\n",
+    "        incidence = dict()\n",
+    "        incidence_pred=dict()\n",
+    "        #name_plus=responses_plus[0][0]\n",
+    "        #observed_plus=responses_plus[0][1]\n",
+    "\n",
+    "        #name_minus=responses_minus[0][0]\n",
+    "        #observed_minus=responses_minus[0][1]\n",
+    "            #nu[name] = pm.Uniform('nu_'+name, lower=0,upper=30)\n",
+    "        for name_plus,observed_plus in responses_plus:\n",
+    "            std_land=liss_plus.loc[(liss_plus['country'] == name_plus[:-1])].iloc[:,2].to_list()[0]\n",
+    "            mu[name_plus] = pm.Normal('mu_'+name_plus, mu=hyper_mu_parameter_positive,sd=hyper_sd_parameter_positive)\n",
+    "            sd[name_plus] = pm.Exponential('sd_'+name_plus, lam=1/std_land)\n",
+    "            #if len(observed_plus)==0:\n",
+    "                #incidence[name_plus] = pm.StudentT(name_plus,nu=hyper_nu_parameter_plus, mu=mu[name_plus], sigma=sd[name_plus]  )\n",
+    "            if len(observed_plus)!=0:\n",
+    "                incidence[name_plus] = pm.StudentT(name_plus,nu=hyper_nu_parameter_plus, mu=mu[name_plus], sigma=sd[name_plus]  ,observed=observed_plus)\n",
+    "            incidence_pred[name_plus] = pm.StudentT('incidence_pred'+name_plus,nu=hyper_nu_parameter_plus, mu=mu[name_plus], sigma=sd[name_plus]  )\n",
+    "        for name_minus,observed_minus in responses_minus:\n",
+    "            mu[name_minus] = pm.Normal('mu_'+name_minus, mu=hyper_mu_parameter_negative,sd=hyper_sd_parameter_negative)\n",
+    "            sd[name_minus] = pm.Exponential('sd_'+name_minus, lam=1/std_land)\n",
+    "            #if len(observed_minus)==0:\n",
+    "                #incidence[name_minus] = pm.StudentT(name_minus,nu=hyper_nu_parameter_minus, mu=mu[name_minus], sigma=sd[name_minus] )\n",
+    "            if len(observed_minus)!=0:\n",
+    "                incidence[name_minus] = pm.StudentT(name_minus,nu=hyper_nu_parameter_minus, mu=mu[name_minus], sigma=sd[name_minus]  ,observed=observed_minus)\n",
+    "            incidence_pred[name_minus] = pm.StudentT('incidence_pred'+name_minus,nu=hyper_nu_parameter_minus, mu=mu[name_minus], sigma=sd[name_minus]  )\n",
+    "        sample_number=number_of_samples  #number_of_samples#target_acceptance_percent\n",
+    "        with model:\n",
+    "            model_trace = pm.sample(sample_number,target_accept = target_acceptance_percent)#,tune=2000,target_accept = 0.90\n",
+    "    \n",
+    "    \n",
+    "\n",
+    "    \n",
+    "    \n",
+    "    \n",
+    "if method==\"pooled\":    \n",
+    "    \n",
+    "    \n",
+    "    \n",
+    "    #liss=[]\n",
+    "\n",
+    "\n",
+    "    responses_plus=[]\n",
+    "    responses_minus=[]\n",
+    "    liss_plus = pd.DataFrame({'country':[],'mean':[],'std':[],'count+':[],'count-':[],'mean+':[],'mean-':[],'std+':[],'std-':[]})\n",
+    "    for idx, name in (enumerate(cb['countriesAndTerritories'].value_counts().index.tolist())):\n",
+    "    #for name in['Germany']:\n",
+    "        land=name\n",
+    "        cb_2=cb.loc[(cb['countriesAndTerritories'] == land)]\n",
+    "        cb_2=cb_2[['dateRep','cases']].iloc[::-1]\n",
+    "        #cb=cb[(cb['dateRep']>=datetime.date(2020,2,3))] # df[(df['date']>datetime.date(2016,1,1))\n",
+    "        cb_2['dateRep'] = pd.to_datetime(cb_2['dateRep'], format='%d/%m/%Y')\n",
+    "        cb_2=cb_2.loc[cb_2['dateRep']>='2020-03-02']\n",
+    "        cb_2['cases'].values[cb_2['cases']<0] = cb_2['cases'].values[cb_2['cases']<0]*(-1)\n",
+    "        cb_2['cases'].values[cb_2['cases']==0]=1\n",
+    "        if cb_2.isnull().values.any():\n",
+    "            cb_2['cases']=cb_2['cases'].interpolate()\n",
+    "        #cb_2['cases'].values[cb_2['cases']<=0] = 1\n",
+    "        cb_2=cb_2.reset_index()\n",
+    "        measures_2=measures.loc[(measures['Country'] == land)]\n",
+    "        if measures_2.isnull().values.any():\n",
+    "            #print(measures_2[measures_2['E'].isna()])\n",
+    "            measures_2=measures_2.dropna()\n",
+    "        measures_2=measures_2.reset_index()\n",
+    "        cooBook=cb_2\n",
+    "        lst=[]\n",
+    "        cooBook[\"Rescd\"] = [list() for x in range(len(cooBook.index))]\n",
+    "        measures_2['A'] = pd.to_datetime(measures_2['A'], format='%d/%m/%Y')\n",
+    "        measures_2['E'] = pd.to_datetime(measures_2['E'], format='%d/%m/%Y')\n",
+    "        for i in range (0,len(measures_2)):\n",
+    "            #col=\"rc\"#(measures['Measure'][i])\n",
+    "            A=(measures_2['A'][i])\n",
+    "            E=(measures_2['E'][i]++ timedelta(days=1))\n",
+    "            #if col not in coBook.columns:\n",
+    "                #coBook[col] = pd.Series(dtype='int')\n",
+    "\n",
+    "            for j in range (0,len(cooBook)): \n",
+    "                date=cooBook['dateRep'][j]\n",
+    "                #date_E=coBook['time_iso8601'][j-1]\n",
+    "                #if coBook[col][j] != 1:\n",
+    "                if date>=A and date<=E:\n",
+    "                    cooBook[\"Rescd\"][j].append(measures_2['Measure'][i])\n",
+    "        CBook=cooBook\n",
+    "        \n",
+    "    #CBook['daily_cases']=CBook['daily_cases'].diff()\n",
+    "    #CBook=CBook[1::]\n",
+    "    #CBook=CBook.reset_index()\n",
+    "\n",
+    "        CBook['rpn_minus_one'+str(incidence_days_number)] = pd.Series(dtype='float')\n",
+    "        CBook = CBook.replace(np.nan, 0)\n",
+    "        for i in range (0,len(CBook)-incidence_days_number):\n",
+    "            caesdayNplusone=CBook.loc[i+incidence_days_number, ['cases']].to_list()[0]\n",
+    "            averagecasesdayonetoNminusone=sum(CBook.iloc[i:i+incidence_days_number]['cases'].values)/incidence_days_number\n",
+    "            if averagecasesdayonetoNminusone ==0:\n",
+    "                print(\"00000000\")\n",
+    "            CBook.loc[i, ['rpn_minus_one'+str(incidence_days_number)]]=caesdayNplusone/averagecasesdayonetoNminusone-1\n",
+    "\n",
+    "        #operator=\"or\"\n",
+    "        mass='rpn_minus_one'+str(incidence_days_number)\n",
+    "        #CBook[mass]=CBook[mass].pct_change()\n",
+    "        #CBook=CBook.iloc[1: , :]\n",
+    "        #CBook[[mass]] = CBook[[mass]].apply(lambda x: 100*x) \n",
+    "        if data_collecting_time_span=='default':\n",
+    "            data_collecting_start_date=min(measures_2['A'])\n",
+    "            data_collecting_end_date=max(measures_2['E'])\n",
+    "        \n",
+    "        CBook=CBook.loc[ (CBook['dateRep']>=data_collecting_start_date)  ]\n",
+    "        CBook=CBook.loc[ (CBook['dateRep']<=data_collecting_end_date)  ]\n",
+    "\n",
+    "\n",
+    "        CBook[str(X[0][:10]).replace(\",\", \" or\")+''+ 'Rescd'] = CBook.apply(lambda row: land+f(row['Rescd'],X), axis=1)\n",
+    "        #liss.append([land,mean(),std()])\n",
+    "\n",
+    "        info ={'country':land,'mean':CBook.iloc[:,4].mean(),'std':CBook.iloc[:,4].std(),'count+':add_elemant(land+'+',mean(),1),'count-':add_elemant(land+'-',mean(),1),'mean+':add_elemant(land+'+',mean(),2),'mean-':add_elemant(land+'-',mean(),2),'std+':add_elemant(land+'+',std(),2),'std-':add_elemant(land+'-',std(),2)}\n",
+    "        liss_plus = liss_plus.append(info, ignore_index = True)\n",
+    "        liss_plus=liss_plus.fillna(0)\n",
+    "        if land in countries:\n",
+    "            print(land + \" data collection span:\")\n",
+    "            print(data_collecting_start_date,data_collecting_end_date)\n",
+    "            CBook_plus=CBook[(CBook.iloc[:,5] == land+\"+\")]\n",
+    "            CBook_minus=CBook[(CBook.iloc[:,5] == land+\"-\")]\n",
+    "            le_plus = preprocessing.LabelEncoder()\n",
+    "            le_minus = preprocessing.LabelEncoder()\n",
+    "            rc=str(X[0][:10]).replace(\",\", \" or\")+''+ 'Rescd'\n",
+    "            clm_plus=CBook_plus[rc]\n",
+    "            clm_minus=CBook_minus[rc]\n",
+    "            response_idx_plus = le_plus.fit_transform(clm_plus)\n",
+    "            response_idx_minus = le_minus.fit_transform(clm_minus)\n",
+    "            response_plus = le_plus.classes_\n",
+    "            response_minus = le_minus.classes_\n",
+    "            #number_of_response_plus=len(response_plus)\n",
+    "            #number_of_response_minus=len(response_minus)\n",
+    "            #for i in range(0, number_of_response_codes):\n",
+    "            if len(response_plus)==0:\n",
+    "                response_plus=[land+\"+\",[]]\n",
+    "                responses_plus.append(response_plus)\n",
+    "            else:    \n",
+    "                response_plus[0]=[response_plus[0],CBook_plus[clm_plus==response_plus[0]][mass].values.tolist()]\n",
+    "                responses_plus.append(response_plus[0])\n",
+    "            if len(response_minus)==0:\n",
+    "                response_minus=[land+\"-\",[]]\n",
+    "                responses_minus.append(response_minus)\n",
+    "            else:\n",
+    "                response_minus[0]=[response_minus[0],CBook_minus[clm_minus==response_minus[0]][mass].values.tolist()]\n",
+    "                responses_minus.append(response_minus[0])\n",
+    "    #liss\n",
+    "    #from IPython.display import display\n",
+    "    \n",
+    "    #writer = pd.ExcelWriter('pandas_multiple.xlsx', engine='xlsxwriter')\n",
+    "\n",
+    "    #liss_plus.to_excel('liss_plus.xlsx', sheet_name=X[0], index=False)\n",
+    "    #export_excel = liss_plus.to_excel (r\"C:\\Users\\Hamed\\Desktop\\liss_plus.xlsx\")\n",
+    "    data_mean_positive = np.repeat(liss_plus['mean+'].values.tolist(),liss_plus['count+'].values.tolist())\n",
+    "    mean_mean_positive=data_mean_positive.mean()\n",
+    "    mean_std_positive=data_mean_positive.std()\n",
+    "    data_std_positive = np.repeat(liss_plus['std+'].values.tolist(),liss_plus['count+'].values.tolist())\n",
+    "    #std_mean_positive=data_std_positive.mean()\n",
+    "    #std_std_positive=data_std_positive.std()\n",
+    "    std_min_positive=data_std_positive.min()\n",
+    "    std_max_positive=data_std_positive.max()\n",
+    "    data_mean_negative = np.repeat(liss_plus['mean-'].values.tolist(),liss_plus['count-'].values.tolist())\n",
+    "    mean_mean_negative=data_mean_negative.mean()\n",
+    "    mean_std_negative=data_mean_negative.std()\n",
+    "    data_std_negative = np.repeat(liss_plus['std-'].values.tolist(),liss_plus['count-'].values.tolist())\n",
+    "    #std_mean_negative=data_std_negative.mean()\n",
+    "    #std_std_negative=data_std_negative.std()\n",
+    "    std_min_negative=data_std_negative.min()\n",
+    "    std_max_negative=data_std_negative.max()\n",
+    "\n",
+    "    #cb =pd.read_excel(r\"C:\\Users\\Hamed\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\Programs\\Anaconda3 (64-bit)\\datac.xlsx\")\n",
+    "    #measures =pd.read_excel(r\"C:\\Users\\Hamed\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\Programs\\Anaconda3 (64-bit)\\response_graphs.xlsx\")\n",
+    "    \n",
+    "    \n",
+    "\n",
+    "    with pm.Model() as model:\n",
+    "        hyper_mu_parameter_positive=pm.Normal('hyper_mu_parameter_positive', mu=mean_mean_positive,sd=mean_std_positive)#\n",
+    "        hyper_sd_parameter_positive=pm.Uniform('hyper_sd_parameter_positive', lower=std_min_positive,upper=std_max_positive)\n",
+    "        #pm.Exponential(\"hyper_sd_parameter\", lam=1/std_mean_positive)#\n",
+    "        hyper_mu_parameter_negative=pm.Normal('hyper_mu_parameter_negative', mu=mean_mean_negative,sd=mean_std_negative)#\n",
+    "        hyper_sd_parameter_negative=pm.Uniform('hyper_sd_parameter_negative', lower=std_min_negative,upper=std_max_negative)\n",
+    "\n",
+    "        hyper_nu_parameter_plus=pm.Uniform('hyper_nu_parameter_plus', lower=0,upper=30)\n",
+    "        hyper_nu_parameter_minus=pm.Uniform('hyper_nu_parameter_minus', lower=0,upper=30)\n",
+    "        incidence = dict()\n",
+    "        incidence_pred=dict()\n",
+    "        #name_plus=responses_plus[0][0]\n",
+    "        #observed_plus=responses_plus[0][1]\n",
+    "\n",
+    "        #name_minus=responses_minus[0][0]\n",
+    "        #observed_minus=responses_minus[0][1]\n",
+    "\n",
+    "        for name_plus,observed_plus in responses_plus:\n",
+    "            #if len(observed_plus)==0:\n",
+    "                #incidence[name_plus] = pm.StudentT(name_plus,nu=hyper_nu_parameter_plus, mu=hyper_mu_parameter_positive, sigma=hyper_sd_parameter_positive)\n",
+    "            if len(observed_plus)!=0:\n",
+    "                incidence[name_plus] = pm.StudentT(name_plus,nu=hyper_nu_parameter_plus, mu=hyper_mu_parameter_positive, sigma=hyper_sd_parameter_positive   ,observed=observed_plus)\n",
+    "            incidence_pred[name_plus] = pm.StudentT('incidence_pred'+name_plus,nu=hyper_nu_parameter_plus, mu=hyper_mu_parameter_positive, sigma=hyper_sd_parameter_positive   )\n",
+    "        for name_minus,observed_minus in responses_minus:\n",
+    "            #if len(observed_minus)==0:\n",
+    "                #incidence[name_minus] = pm.StudentT(name_minus,nu=hyper_nu_parameter_minus, mu=hyper_mu_parameter_negative, sigma=hyper_sd_parameter_negative  )\n",
+    "            if len(observed_minus)!=0:\n",
+    "                incidence[name_minus] = pm.StudentT(name_minus,nu=hyper_nu_parameter_minus, mu=hyper_mu_parameter_negative, sigma=hyper_sd_parameter_negative   ,observed=observed_minus)\n",
+    "\n",
+    "            incidence_pred[name_minus] = pm.StudentT('incidence_pred'+name_minus,nu=hyper_nu_parameter_minus, mu=hyper_mu_parameter_negative, sigma=hyper_sd_parameter_negative   )\n",
+    "\n",
+    "        sample_number=number_of_samples  #number_of_samples#target_acceptance_percent\n",
+    "        with model:\n",
+    "            model_trace = pm.sample(sample_number,target_accept = target_acceptance_percent)\n",
+    "        \n",
+    "\n",
+    "    \n",
+    "    \n",
+    "if method==\"unpooled\":    \n",
+    "    \n",
+    "    \n",
+    "    \n",
+    "    #liss=[]\n",
+    "\n",
+    "\n",
+    "    responses_plus=[]\n",
+    "    responses_minus=[]\n",
+    "    #liss_plus = pd.DataFrame({'country':[],'+count':[],'-count':[],'+mean':[],'-mean':[],'+std':[],'-std':[]})\n",
+    "    for  name in countries:\n",
+    "    #for name in['Germany']:\n",
+    "        land=name\n",
+    "        cb_2=cb.loc[(cb['countriesAndTerritories'] == land)]\n",
+    "        cb_2=cb_2[['dateRep','cases']].iloc[::-1]\n",
+    "        #cb=cb[(cb['dateRep']>=datetime.date(2020,2,3))] # df[(df['date']>datetime.date(2016,1,1))\n",
+    "        cb_2['dateRep'] = pd.to_datetime(cb_2['dateRep'], format='%d/%m/%Y')\n",
+    "        cb_2=cb_2.loc[cb_2['dateRep']>='2020-03-02']\n",
+    "        cb_2['cases'].values[cb_2['cases']<0] = cb_2['cases'].values[cb_2['cases']<0]*(-1)\n",
+    "        cb_2['cases'].values[cb_2['cases']==0]=1\n",
+    "        if cb_2.isnull().values.any():\n",
+    "            cb_2['cases']=cb_2['cases'].interpolate()\n",
+    "        #cb_2['cases'].values[cb_2['cases']<=0] = 1\n",
+    "        cb_2=cb_2.reset_index()\n",
+    "        #cb_2=cb_2.reset_index()\n",
+    "        measures_2=measures.loc[(measures['Country'] == land)]\n",
+    "        if measures_2.isnull().values.any():\n",
+    "            #print(measures_2[measures_2['E'].isna()])\n",
+    "            measures_2=measures_2.dropna()\n",
+    "        measures_2=measures_2.reset_index()\n",
+    "        cooBook=cb_2\n",
+    "        lst=[]\n",
+    "        cooBook[\"Rescd\"] = [list() for x in range(len(cooBook.index))]\n",
+    "        measures_2['A'] = pd.to_datetime(measures_2['A'], format='%d/%m/%Y')\n",
+    "        measures_2['E'] = pd.to_datetime(measures_2['E'], format='%d/%m/%Y')\n",
+    "        for i in range (0,len(measures_2)):\n",
+    "            #col=\"rc\"#(measures['Measure'][i])\n",
+    "            A=(measures_2['A'][i])\n",
+    "            E=(measures_2['E'][i]++ timedelta(days=1))\n",
+    "            for j in range (0,len(cooBook)): \n",
+    "                date=cooBook['dateRep'][j]\n",
+    "                #date_E=coBook['time_iso8601'][j-1]\n",
+    "                #if coBook[col][j] != 1:\n",
+    "                if date>=A and date<=E:\n",
+    "                    cooBook[\"Rescd\"][j].append(measures_2['Measure'][i])\n",
+    "        CBook=cooBook\n",
+    "        \n",
+    "    #CBook['daily_cases']=CBook['daily_cases'].diff()\n",
+    "    #CBook=CBook[1::]\n",
+    "    #CBook=CBook.reset_index()\n",
+    "\n",
+    "        CBook['rpn_minus_one'+str(incidence_days_number)] = pd.Series(dtype='float')\n",
+    "        CBook = CBook.replace(np.nan, 0)\n",
+    "        for i in range (0,len(CBook)-incidence_days_number):\n",
+    "            caesdayNplusone=CBook.loc[i+incidence_days_number, ['cases']].to_list()[0]\n",
+    "            averagecasesdayonetoNminusone=sum(CBook.iloc[i:i+incidence_days_number]['cases'].values)/incidence_days_number\n",
+    "            if averagecasesdayonetoNminusone ==0:\n",
+    "                print(\"00000000\")\n",
+    "            CBook.loc[i, ['rpn_minus_one'+str(incidence_days_number)]]=caesdayNplusone/averagecasesdayonetoNminusone-1\n",
+    "\n",
+    "        #operator=\"or\"\n",
+    "        mass='rpn_minus_one'+str(incidence_days_number)\n",
+    "        #CBook[mass]=CBook[mass].pct_change()\n",
+    "        #CBook=CBook.iloc[1: , :]\n",
+    "        #CBook[[mass]] = CBook[[mass]].apply(lambda x: 100*x) \n",
+    "        if data_collecting_time_span=='default':\n",
+    "            data_collecting_start_date=min(measures_2['A'])\n",
+    "            data_collecting_end_date=max(measures_2['E'])\n",
+    "        print(land + \" data collection span:\")\n",
+    "        print(data_collecting_start_date,data_collecting_end_date)\n",
+    "        CBook=CBook.loc[ (CBook['dateRep']>=data_collecting_start_date)  ]\n",
+    "        CBook=CBook.loc[ (CBook['dateRep']<=data_collecting_end_date)  ]\n",
+    "\n",
+    "\n",
+    "        CBook[str(X[0][:10]).replace(\",\", \" or\")+''+ 'Rescd'] = CBook.apply(lambda row: land+f(row['Rescd'],X), axis=1)\n",
+    "        #liss.append([land,mean(),std()])\n",
+    "\n",
+    "        #info ={'country':land,'+count':add_elemant(land+'+',mean(),1),'-count':add_elemant(land+'-',mean(),1),'+mean':add_elemant(land+'+',mean(),2),'-mean':add_elemant(land+'-',mean(),2),'+std':add_elemant(land+'+',std(),2),'-std':add_elemant(land+'-',std(),2)}\n",
+    "        #liss_plus = liss_plus.append(info, ignore_index = True)\n",
+    "        #if land in countries:\n",
+    "        CBook_plus=CBook[(CBook.iloc[:,5] == land+\"+\")]\n",
+    "        CBook_minus=CBook[(CBook.iloc[:,5] == land+\"-\")]\n",
+    "        le_plus = preprocessing.LabelEncoder()\n",
+    "        le_minus = preprocessing.LabelEncoder()\n",
+    "        rc=str(X[0][:10]).replace(\",\", \" or\")+''+ 'Rescd'\n",
+    "        clm_plus=CBook_plus[rc]\n",
+    "        clm_minus=CBook_minus[rc]\n",
+    "        response_idx_plus = le_plus.fit_transform(clm_plus)\n",
+    "        response_idx_minus = le_minus.fit_transform(clm_minus)\n",
+    "        response_plus = le_plus.classes_\n",
+    "        response_minus = le_minus.classes_\n",
+    "        #number_of_response_plus=len(response_plus)\n",
+    "        #number_of_response_minus=len(response_minus)\n",
+    "        #for i in range(0, number_of_response_codes):\n",
+    "        if len(response_plus)==0:\n",
+    "                response_plus=[land+\"+\",[]]\n",
+    "                responses_plus.append(response_plus)\n",
+    "        else:    \n",
+    "            response_plus[0]=[response_plus[0],CBook_plus[clm_plus==response_plus[0]][mass].values.tolist()]\n",
+    "            responses_plus.append(response_plus[0])\n",
+    "        if len(response_minus)==0:\n",
+    "            response_minus=[land+\"-\",[]]\n",
+    "            responses_minus.append(response_minus)\n",
+    "        else:\n",
+    "            response_minus[0]=[response_minus[0],CBook_minus[clm_minus==response_minus[0]][mass].values.tolist()]\n",
+    "            responses_minus.append(response_minus[0])\n",
+    "\n",
+    "    with pm.Model() as model:\n",
+    "        #hyper_mu_parameter=pm.StudentT('hyper_mu_parameter', nu=0.7591982064319771, mu=0.22982149600039953, sigma=1.55181588757814)\n",
+    "        #hyper_sd_parameter=pm.Uniform(\"hyper_sd_parameter\",lower=0.05485202425504565,upper=36.65091915385242)\n",
+    "        mu = dict()#-5.920108 #42.393650  0.007400  35.607325\n",
+    "        sd=dict()\n",
+    "        nu=dict()\n",
+    "        incidence = dict()\n",
+    "        incidence_pred=dict()\n",
+    "        for name, observed in responses_plus:\n",
+    "\n",
+    "            mu[name] = pm.Uniform('mu_'+name, lower=-1, upper=10)\n",
+    "            sd[name] = pm.Uniform('sd_'+name, lower=0, upper=10)\n",
+    "            nu[name]=pm.Uniform('nu_'+name,lower=0,upper=30)\n",
+    "            #if len(observed)==0:\n",
+    "                #incidence[name] = pm.StudentT(name,nu=nu[name], mu=mu[name], sigma=sd[name])\n",
+    "            if len(observed)!=0:\n",
+    "                incidence[name] = pm.StudentT(name,nu=nu[name], mu=mu[name], sigma=sd[name],observed=observed)\n",
+    "            incidence_pred[name] = pm.StudentT('incidence_pred'+name,nu=nu[name], mu=mu[name], sigma=sd[name])\n",
+    "        for name, observed in responses_minus:\n",
+    "\n",
+    "            mu[name] = pm.Uniform('mu_'+name, lower=-1, upper=10)\n",
+    "            sd[name] = pm.Uniform('sd_'+name, lower=0, upper=10)\n",
+    "            nu[name]=pm.Uniform('nu_'+name,lower=0,upper=30)\n",
+    "            #if len(observed)==0:\n",
+    "                #incidence[name] = pm.StudentT(name,nu=nu[name], mu=mu[name], sigma=sd[name])\n",
+    "            if len(observed)!=0:\n",
+    "                incidence[name] = pm.StudentT(name,nu=nu[name], mu=mu[name], sigma=sd[name],observed=observed)\n",
+    "            incidence_pred[name] = pm.StudentT('incidence_pred'+name,nu=nu[name], mu=mu[name], sigma=sd[name])\n",
+    "        sample_number=number_of_samples  #number_of_samples#target_acceptance_percent\n",
+    "        with model:\n",
+    "            model_trace = pm.sample(sample_number,target_accept = target_acceptance_percent)\n",
+    "            \n",
+    "            \n",
+    "            \n",
+    "\n",
+    "####****************************************DISPLAYING AND SAVING THE RESULTS OF THE PROGRAM******************************************************************************    \n",
+    "\n",
+    "    \n",
+    "if method != \"unpooled\":\n",
+    "    writer = pd.ExcelWriter('pandas_multiple.xlsx', engine='xlsxwriter')\n",
+    "\n",
+    "    liss_plus.to_excel('liss_plus.xlsx', sheet_name=X[0][:10], index=False)\n",
+    "    display(liss_plus)    \n",
+    "plottrace=False\n",
+    "if plottrace:\n",
+    "    with model:\n",
+    "            az.plot_trace(model_trace)    \n",
+    "    plt.savefig(X[0]+'trace')    \n",
+    "azs=az.summary(model_trace)\n",
+    "from IPython.display import display\n",
+    "display(azs)\n",
+    "writer = pd.ExcelWriter('pandas_multiple.xlsx', engine='xlsxwriter')\n",
+    "\n",
+    "azs.to_excel('azs.xlsx', sheet_name=X[0][:10], index=False)\n",
+    "#export_excel = azs.to_excel (r\"C:\\Users\\Hamed\\Desktop\\azs.xlsx\")\n",
+    "def prob_responsea_efficient_over_responseb(responsea, responseb):\n",
+    "    l=[]\n",
+    "    for i in range(1000):\n",
+    "        a=model_trace.get_values('incidence_pred'+responsea)\n",
+    "        np.random.shuffle(a)\n",
+    "        b=model_trace.get_values('incidence_pred'+responseb)\n",
+    "        np.random.shuffle(b)\n",
+    "        l.append(np.float(sum(a < b))/len(a))\n",
+    "    return l\n",
+    "\n",
+    "b=50\n",
+    "\n",
+    "#r=[responses_plus,responses_minus]\n",
+    "#for i in range(0, len(responses_plus)):\n",
+    "fig, axs = plt.subplots(len(responses_plus),3, figsize=(15, 3*len(responses_plus)))\n",
+    "axs = axs.ravel()\n",
+    "#fig = plt.figure(figsize=(14,8))\n",
+    "#fig.add_subplot(211)\n",
+    "for i in range(0,len(responses_plus)):\n",
+    "    axs[i*3].hist(responses_plus[i][1],bins=b,edgecolor = 'white', range=[-1, 2], label=str(responses_plus[i][0]))\n",
+    "    axs[i*3].hist(responses_minus[i][1],bins=b,edgecolor = 'white', range=[-1, 2], label=str(responses_minus[i][0]))\n",
+    "    axs[i*3].legend(loc='best')\n",
+    "    axs[i*3].set_ylabel('frequency')\n",
+    "    axs[i*3].set_title('observed data')\n",
+    "\n",
+    "\n",
+    "\n",
+    "    axs[i*3+1].hist(model_trace.get_values('incidence_pred'+(responses_plus[i][0])),bins=b,edgecolor = 'white', range=[-1, 2], label=str((responses_plus[i][0])))\n",
+    "    axs[i*3+1].hist(model_trace.get_values('incidence_pred'+(responses_minus[i][0])),bins=b,edgecolor = 'white', range=[-1, 2], label=str((responses_minus[i][0])))\n",
+    "\n",
+    "\n",
+    "    axs[i*3+1].legend(loc='best')\n",
+    "    axs[i*3+1].set_ylabel('frequency')\n",
+    "    axs[i*3+1].set_title('posterior predictive histogram')\n",
+    "    \n",
+    "    sns.kdeplot(model_trace.get_values('incidence_pred'+responses_plus[i][0]), label=(responses_plus[i][0]),alpha=1,clip=(-500, 500),ax=axs[i*3+2])#, clip=(0.0, 100)\n",
+    "    sns.kdeplot(model_trace.get_values('incidence_pred'+responses_minus[i][0]), label=(responses_minus[i][0]),alpha=1,clip=(-500, 500),ax=axs[i*3+2])\n",
+    "    axs[i*3+2].legend(loc='best')\n",
+    "    axs[i*3+2].set_ylabel('density')\n",
+    "    axs[i*3+2].set_title('posterior predictive distribution')\n",
+    "    axs[i*3+2].set_xlim([-1, 2])\n",
+    "plt.savefig(X[0]+'post')    \n",
+    "if len(responses_plus)==1:\n",
+    "    fig, ax = plt.subplots(1,1, figsize=(5, 5))\n",
+    "    ax.hist(prob_responsea_efficient_over_responseb(responses_plus[0][0],responses_minus[0][0]), label=\"p(+<-)\"+responses_plus[0][0][:-1])\n",
+    "    ax.legend(loc='best')\n",
+    "    ax.set_ylabel('frequency')\n",
+    "    ax.set_title('efficiency of + compared to -') \n",
+    "else:\n",
+    "    fig, axs = plt.subplots(1,len(responses_plus), figsize=(7.5*len(responses_plus), 5))\n",
+    "    axs = axs.ravel()\n",
+    "    #fig = plt.figure(figsize=(14,8))\n",
+    "    #fig.add_subplot(211)\n",
+    "    for i in range(0,len(responses_plus)):\n",
+    "        effdis=prob_responsea_efficient_over_responseb(responses_plus[i][0],responses_minus[i][0])\n",
+    "        axs[i].hist(effdis, label=\"p(+<-)\"+responses_plus[i][0][:-1])\n",
+    "        axs[i].legend(loc='best')\n",
+    "        axs[i].set_ylabel('frequency')\n",
+    "        from statistics import mean\n",
+    "        print(responses_plus[i][0][:-1]+\"=\",([min (effdis),mean(effdis),max(effdis)]))\n",
+    "        axs[i].set_title('efficiency of + compared to -')   \n",
+    "#score=effdis\n",
+    "#with open('file.py', 'w') as f:\n",
+    "    #f.write('score = %s' % score)\n",
+    "plt.savefig(X[0][:10]+'hist') \n",
+    "#pm.save_trace(trace=response_code_diff_Nonhierarchical_model_trace,directory= r\"C:\\Users\\Hamed\\Desktop\\response_code_diff_Nonhierarchical_model.pymc_3.trace\")\n",
+    "\n",
+    "#with pm.Model() as response_code_diff_Nonhierarchical_model:\n",
+    "   #response_code_diff_Nonhierarchical_model_trace = pm.load_trace(r\"C:\\Users\\Hamed\\Desktop\\1\\Results\\response_code_diff_Nonhierarchical_model.pymc_3.trace\") \n",
+    "draw_model=False\n",
+    "if draw_model:\n",
+    "    with pm.Model() as figure_model:\n",
+    "            hyper_mu_parameter_positive=pm.Normal(\"hyper_mu_parameter_positive\",mu=0,sigma=1)\n",
+    "            hyper_sd_parameter_positive=pm.Uniform(\"hyper_sd_parameter_positive\",lower=0,upper=1)\n",
+    "            mu = pm.Normal('mu_+', mu= hyper_mu_parameter_positive,sigma=hyper_sd_parameter_positive)\n",
+    "            sd = pm.Exponential('sd_+',lam=1)\n",
+    "            hyper_nu_parameter_positive=pm.Uniform(\"hyper_nu_parameter_positive\",lower=0,upper=1)\n",
+    "            posterior = pm.StudentT('+', nu=hyper_nu_parameter_positive, mu=mu, sigma=sd)\n",
+    "            #posterior_pred = pm.Gamma('posterior_pred', alpha=mu, beta=alpha)\n",
+    "    fm=pm.model_to_graphviz(figure_model)\n",
+    "    fm.render(filename='figure_model')\n",
+    "fit_model=False\n",
+    "if fit_model:\n",
+    "    from fitter import Fitter, get_common_distributions, get_distributions\n",
+    "    dataset=CBook\n",
+    "    cccc = dataset[\"rpn_minus_one14\"].values\n",
+    "    f = Fitter(cccc,distributions=['gamma','cauchy','t','halfnorm','expon', \"norm\",\"uniform\"])\n",
+    "    f.fit()\n",
+    "    f.summary()\n",
+    "sim_imp_coree=True\n",
+    "if sim_imp_coree:\n",
+    "    writer=pd.ExcelWriter('SimultaniousImplemant.xlsx', engine='xlsxwriter')\n",
+    "    for i in countries:\n",
+    "    \n",
+    "        land=i\n",
+    "        cb_2=cb.loc[(cb['countriesAndTerritories'] == land)]\n",
+    "        cb_2=cb_2[['dateRep','cases']].iloc[::-1]\n",
+    "        #cb=cb[(cb['dateRep']>=datetime.date(2020,2,3))] # df[(df['date']>datetime.date(2016,1,1))\n",
+    "        cb_2['dateRep'] = pd.to_datetime(cb_2['dateRep'], format='%d/%m/%Y')\n",
+    "        cb_2=cb_2.loc[cb_2['dateRep']>='2020-03-02']\n",
+    "        cb_2['cases'].values[cb_2['cases']<0] = cb_2['cases'].values[cb_2['cases']<0]*(-1)\n",
+    "        cb_2['cases'].values[cb_2['cases']==0]=1\n",
+    "        if cb_2.isnull().values.any():\n",
+    "            cb_2['cases']=cb_2['cases'].interpolate()\n",
+    "\n",
+    "        cb_2=cb_2.reset_index()\n",
+    "        measures_2=measures.loc[(measures['Country'] == land)]\n",
+    "        if measures_2.isnull().values.any():\n",
+    "            #print(measures_2[measures_2['E'].isna()])\n",
+    "            measures_2=measures_2.dropna()\n",
+    "        measures_2=measures_2.reset_index()\n",
+    "        cooBook=cb_2\n",
+    "        lst=[]\n",
+    "        cooBook[\"Rescd\"] = [list() for x in range(len(cooBook.index))]\n",
+    "        measures_2['A'] = pd.to_datetime(measures_2['A'], format='%d/%m/%Y')\n",
+    "        measures_2['E'] = pd.to_datetime(measures_2['E'], format='%d/%m/%Y')\n",
+    "        for i in range (0,len(measures_2)):\n",
+    "            #col=\"rc\"#(measures['Measure'][i])\n",
+    "            A=(measures_2['A'][i])\n",
+    "            E=(measures_2['E'][i]++ timedelta(days=1))\n",
+    "            #if col not in coBook.columns:\n",
+    "                #coBook[col] = pd.Series(dtype='int')\n",
+    "\n",
+    "            for j in range (0,len(cooBook)): \n",
+    "                date=cooBook['dateRep'][j]\n",
+    "                #date_E=coBook['time_iso8601'][j-1]\n",
+    "                #if coBook[col][j] != 1:\n",
+    "                if date>=A and date<=E:\n",
+    "                    cooBook[\"Rescd\"][j].append(measures_2['Measure'][i])\n",
+    "        CBook=cooBook\n",
+    "        CBook=CBook.loc[ (CBook['dateRep']>=min(measures_2['A']))  ]\n",
+    "        CBook=CBook.loc[ (CBook['dateRep']<=max(measures_2['E']))  ]\n",
+    "\n",
+    "\n",
+    "\n",
+    "        l=[]\n",
+    "        for idx,name in (enumerate(measures_2['Measure'].value_counts().index.tolist())):\n",
+    "            if name in XX:\n",
+    "                l.append(name)\n",
+    "        #l\n",
+    "        l=sorted(l)\n",
+    "        dataframe = pd.DataFrame(index=l, columns=l, dtype=np.float)\n",
+    "\n",
+    "\n",
+    "\n",
+    "        def cor(a,b):\n",
+    "            ca=0\n",
+    "            cb=0\n",
+    "            #lc=len (CBook['Rescd'].values)\n",
+    "            for i in CBook['Rescd'].values:\n",
+    "                if a in i:\n",
+    "                    ca=ca+1\n",
+    "                    if b in i:\n",
+    "                        cb=cb+1\n",
+    "\n",
+    "            return cb/ca\n",
+    "\n",
+    "\n",
+    "        for a, b in itertools.permutations(l, 2):\n",
+    "            dataframe.loc[a, b] = cor(a,b)\n",
+    "        for a in dataframe:\n",
+    "            dataframe.loc[a, a] = cor(a,a)\n",
+    "        import seaborn as sns\n",
+    "        f, ax = plt.subplots(figsize=(10, 8))\n",
+    "        cmap = plt.get_cmap(\"Spectral\")\n",
+    "        _ = sns.heatmap(dataframe, square=True, cmap=cmap)\n",
+    "        _ = plt.title('simultanious implementation correlation of responses '+land)\n",
+    "        plt.savefig(land+'simultanious implementation')\n",
+    "        pd.set_option('display.max_columns', 100)\n",
+    "        x=[]\n",
+    "\n",
+    "        for i in X:\n",
+    "\n",
+    "\n",
+    "            if (dataframe.index == i).any():\n",
+    "                x.append(i)\n",
+    "        print(land)\n",
+    "        dataframe.loc[x].to_excel(writer, sheet_name=land)\n",
+    "        display(dataframe.loc[x])\n",
+    "    writer.close()  \n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "e85e232d-68a0-49b6-9bd7-f0e4a95c4c2c",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.9.7"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}