diff --git a/p_1/code/66.py b/p_1/code/66.py
deleted file mode 100644
index a3cd51f2ea3be5bbad91787ef63105c0a5dc3e6f..0000000000000000000000000000000000000000
--- a/p_1/code/66.py
+++ /dev/null
@@ -1,243 +0,0 @@
-###******************************HALLO*******************************
-import pandas as pd
-data_encoded =pd.read_excel("data_encoded.xlsx")
-ml= ['EntertainmentVenuesPartial','RestaurantsCafesPartial','EntertainmentVenues','MassGatherAll','ClosSec','GymsSportsCentresPartial','ClosPrim',
-         'NonEssentialShopsPartial','ClosPubAnyPartial','RestaurantsCafes','GymsSportsCentres','MassGather50','PrivateGatheringRestrictions',
-         'MassGatherAllPartial',
-         'ClosHigh','NonEssentialShops','ClosSecPartial','OutdoorOver500','ClosDaycare','BanOnAllEvents','IndoorOver500','QuarantineForInternationalTravellers',
-         'ClosHighPartial','IndoorOver100','Teleworking','ClosPubAny','PlaceOfWorshipPartial','MasksMandatoryClosedSpacesPartial','MassGather50Partial',
-         'StayHomeOrderPartial','OutdoorOver100','IndoorOver50','ClosPrimPartial','PrivateGatheringRestrictionsPartial','MasksMandatoryClosedSpaces',
-         'OutdoorOver1000','TeleworkingPartial','MasksMandatoryAllSpaces','OutdoorOver50','StayHomeOrder','QuarantineForInternationalTravellersPartial',
-         'MasksMandatoryAllSpacesPartial','StayHomeGen','PlaceOfWorship','ClosDaycarePartial','IndoorOver1000','BanOnAllEventsPartial',
-         'HotelsOtherAccommodationPartial',
-         'StayHomeRiskG','ClosureOfPublicTransportPartial','AdaptationOfWorkplace','HotelsOtherAccommodation','MasksVoluntaryClosedSpacesPartial',
-         'RegionalStayHomeOrderPartial','AdaptationOfWorkplacePartial','MasksVoluntaryAllSpaces','MasksVoluntaryAllSpacesPartial','MasksVoluntaryClosedSpaces',
-         'SocialCircle','WorkplaceClosures','RegionalStayHomeOrder','ClosureOfPublicTransport','StayHomeGenPartial','WorkplaceClosuresPartial',
-         'StayHomeRiskGPartial','SocialCirclePartial']
-cs=['Netherlands','Czechia','Lithuania','Austria','Poland','Slovenia','Estonia','Italy','Slovakia','Ireland','Denmark',
-        'Iceland','Cyprus','Greece','Belgium','Bulgaria','France','Germany','Latvia','Spain','Norway','Romania','Liechtenstein',
-         'Portugal','Luxembourg','Hungary','Malta','Croatia','Finland','Sweden']
-###***************************BAYESIAN GOVERMENT COVID APPLICATION**************************************************WRITEN BY:
-###********************************************************************************************************HAMED KHALILI***********
-###***************************INPUTS OF THE PROGRAM********************************************************************************************
-ml.sort()
-import pandas as pd
-import base64
-
-
-azResults=[]
-Results=[]
-for cns in cs:
-    country=[cns]#
-    for tage in [7]:
-        for massnahme in ml:
-            incidence_days_number=tage
-            print(incidence_days_number)
-            X=[massnahme]
-            print(X)
-
-
-    #X=['MasksMandatoryAllSpaces','MasksMandatoryClosedSpaces']
-
-
-            method="hierarchical"#or#pooled#or#unpooled
-            ###********************************************************************************************************************************************
-            #['ClosDaycare','ClosDaycarePartial','ClosPrimPartial','ClosSecPartial','ClosPrim','ClosSec','ClosHighPartial','ClosHigh']
-            #['RestaurantsCafes','RestaurantsCafesPartial']
-            #['GymsSportsCentres','GymsSportsCentresPartial']
-            #['Teleworking','TeleworkingPartial','WorkplaceClosuresPartial','AdaptationOfWorkplace','AdaptationOfWorkplacePartial','WorkplaceClosures']
-            #['MasksMandatoryClosedSpacesPartial','MasksMandatoryAllSpaces','MasksMandatoryClosedSpaces','MasksMandatoryAllSpacesPartial']
-            #y_pred =this is almost identical to y_est except we do not specify the observed data. PyMC considers this to be a stochastic node 
-            #(as opposed to an observed node) and as the MCMC sampler runs - it also samples data from y_est.
-
-            """
-            ['Netherlands','Czechia','Lithuania','Austria','Poland','Slovenia','Estonia','Italy','Slovakia','Ireland','Denmark',
-            'Iceland','Cyprus','Greece','Belgium','Bulgaria','France','Germany','Latvia','Spain','Norway','Romania','Liechtenstein',
-             'Portugal','Luxembourg','Hungary','Malta','Croatia','Finland','Sweden']
-
-            ['EntertainmentVenuesPartial','RestaurantsCafesPartial','EntertainmentVenues','MassGatherAll','ClosSec','GymsSportsCentresPartial','ClosPrim',
-             'NonEssentialShopsPartial','ClosPubAnyPartial','RestaurantsCafes','GymsSportsCentres','MassGather50','PrivateGatheringRestrictions',
-             'MassGatherAllPartial',
-             'ClosHigh','NonEssentialShops','ClosSecPartial','OutdoorOver500','ClosDaycare','BanOnAllEvents','IndoorOver500','QuarantineForInternationalTravellers',
-             'ClosHighPartial','IndoorOver100','Teleworking','ClosPubAny','PlaceOfWorshipPartial','MasksMandatoryClosedSpacesPartial','MassGather50Partial',
-             'StayHomeOrderPartial','OutdoorOver100','IndoorOver50','ClosPrimPartial','PrivateGatheringRestrictionsPartial','MasksMandatoryClosedSpaces',
-             'OutdoorOver1000','TeleworkingPartial','MasksMandatoryAllSpaces','OutdoorOver50','StayHomeOrder','QuarantineForInternationalTravellersPartial',
-             'MasksMandatoryAllSpacesPartial','StayHomeGen','PlaceOfWorship','ClosDaycarePartial','IndoorOver1000','BanOnAllEventsPartial',
-             'HotelsOtherAccommodationPartial',
-             'StayHomeRiskG','ClosureOfPublicTransportPartial','AdaptationOfWorkplace','HotelsOtherAccommodation','MasksVoluntaryClosedSpacesPartial',
-             'RegionalStayHomeOrderPartial','AdaptationOfWorkplacePartial','MasksVoluntaryAllSpaces','MasksVoluntaryAllSpacesPartial','MasksVoluntaryClosedSpaces',
-             'SocialCircle','WorkplaceClosures','RegionalStayHomeOrder','ClosureOfPublicTransport','StayHomeGenPartial','WorkplaceClosuresPartial',
-             'StayHomeRiskGPartial','SocialCirclePartial']
-
-
-             """
-            ###************MAIN BODY OF THE PROGRAM****************************************************************************************************
-
-            def add_elemant(element,lis,j):
-                    for i in lis:
-                        if element in i:
-                            return i[j]
-
-
-            colors = ['#348ABD', '#A60628', '#7A68A6', '#467821', '#D55E00', '#CC79A7', '#56B4E9', '#009E73', '#F0E442', '#0072B2']
-            import pandas as pd
-            import datetime
-            from datetime import timedelta
-            import warnings
-            warnings.filterwarnings("ignore", category=FutureWarning)
-            import seaborn as sns
-            import arviz as az
-            import itertools
-            import matplotlib.pyplot as plt
-            import numpy as np
-            import pymc3 as pm
-            import scipy
-            import scipy.stats as stats
-            from IPython.display import Image
-            from sklearn import preprocessing
-            import pandas as pd
-            import datetime
-            from IPython.display import display
-
-            def f(r,tr):
-                        for i in tr:
-
-                            if i in eval(r):
-                                return "+"#+str(tr).replace(",", " or")
-                            
-                            else:
-                                return "-"#+str(tr).replace(",", " or")
-                  #if method=="hierarchical":
-               #liss=[]
-            responses_plus=[]
-            responses_minus=[]
-            #liss_plus = pd.DataFrame({'country':[],'mean':[],'std':[],'count+':[],'count-':[],'mean+':[],'mean-':[],'std+':[],'std-':[]})
-            #for idx, name in (enumerate(cb['countriesAndTerritories'].value_counts().index.tolist())):
-            for name in country:
-                land=name
-
-                CBook=data_encoded.loc[(data_encoded['countriesAndTerritories'] == land)]
-                CBook=CBook.reset_index()
-                CBook['rpn_minus_one'+str(incidence_days_number)] = pd.Series(dtype='float')
-                CBook = CBook.replace(np.nan, 0)
-                for i in range (0,len(CBook)):
-                    #caesdayNplusone=CBook.loc[i+incidence_days_number, ['cases']].to_list()[0]
-                    #averagecasesdayoneafter=sum(CBook.iloc[i:i+incidence_days_number]['cases'].values)/incidence_days_number
-                    #averagecasesdayonebefore=sum(CBook.iloc[i-incidence_days_number:i]['cases'].values)/incidence_days_number
-                    #if averagecasesdayonetoNminusone ==0:
-                        #print("00000000")
-                    CBook.loc[i, ['rpn_minus_one'+str(incidence_days_number)]]=CBook.iloc[i]['7days_after_mean']/CBook.iloc[i]['7days_before_mean']-1
-                
-            mass='rpn_minus_one'+str(incidence_days_number)
-            CBook[str(X[0]).replace(",", " or")+''+ 'Rescd'] = CBook.apply(lambda row: land+f(row['Rescd'],X), axis=1)
-            #CBook[str(X[0]).replace(",", " or")+''+ 'Rescd'].value_counts()
-            m=CBook.iloc[:]['rpn_minus_one7'].mean()
-            s=CBook.iloc[:]['rpn_minus_one7'].std()
-            
-            CBook_plus=CBook[(CBook.iloc[:][str(X[0]).replace(",", " or")+''+ 'Rescd'] == land+"+")]
-            CBook_minus=CBook[(CBook.iloc[:][str(X[0]).replace(",", " or")+''+ 'Rescd'] == land+"-")]
-            #print(len(CBook_minus))
-            df=CBook_minus
-            if 'Partial' not in massnahme:
-                mp=massnahme + 'Partial'
-                CBook_minus=df[df['Rescd'].apply(lambda x: mp not in eval(x)  )]
-                #df_2
-                #df=df_2
-                #CBook_plus=df[df['Rescd'].apply(lambda x: massnahme in x)]
-                #CBook_minus=df[df['Rescd'].apply(lambda x: massnahme not in x )]
-            if 'Partial'  in massnahme:
-                mp=massnahme[0:-7]
-                CBook_minus=df[df['Rescd'].apply(lambda x: mp not in eval(x)  )]
-            le_plus = preprocessing.LabelEncoder()
-            le_minus = preprocessing.LabelEncoder()
-            rc=str(X[0]).replace(",", " or")+''+ 'Rescd'
-            clm_plus=CBook_plus[rc]
-            clm_minus=CBook_minus[rc]
-            response_idx_plus = le_plus.fit_transform(clm_plus)
-            response_idx_minus = le_minus.fit_transform(clm_minus)
-            response_plus = le_plus.classes_
-            response_minus = le_minus.classes_
-            #number_of_response_plus=len(response_plus)
-            #number_of_response_minus=len(response_minus)
-            #for i in range(0, number_of_response_codes):
-            if len(response_plus)==0:
-                response_plus=[land+"+",[]]
-                responses_plus.append(response_plus)
-            else:    
-                response_plus[0]=[response_plus[0],CBook_plus[clm_plus==response_plus[0]][mass].values.tolist()]
-                responses_plus.append(response_plus[0])
-            if len(response_minus)==0:
-                response_minus=[land+"-",[]]
-                responses_minus.append(response_minus)
-            else:
-                response_minus[0]=[response_minus[0],CBook_minus[clm_minus==response_minus[0]][mass].values.tolist()]
-                responses_minus.append(response_minus[0])
-            responses=responses_minus+responses_plus
-            #s_plus=0
-            #s_minus=0
-            m_plus=CBook_plus.iloc[:]['rpn_minus_one7'].mean()
-            #if responses[1][1]!=[]:
-            s_plus=CBook_plus.iloc[:]['rpn_minus_one7'].std()
-            m_minus=CBook_minus.iloc[:]['rpn_minus_one7'].mean()
-            #if responses[0][1]!=[]:
-            s_minus=CBook_minus.iloc[:]['rpn_minus_one7'].std()
-            #responses=responses_minus+responses_plus
-            with pm.Model() as model:
-                hyper_mu_parameter=pm.Normal('hyper_mu_parameter', mu=m,sd=s)#
-                if responses[1][1]==[] or responses[0][1]==[]:
-                    hyper_sd_parameter=s
-                    #pm.Exponential("hyper_sd_parameter", lam=1/std_mean_positive)#
-                #hyper_sd_error_parameter=pm.Uniform('hyper_sd_error_parameter', lower=std_min_positive,upper=std_max_positive)
-                else:
-                    hyper_sd_parameter=pm.Uniform('hyper_sd_parameter', lower=min(s_minus,s_plus),upper=max(s_minus,s_plus))
-
-                hyper_nu_parameter=pm.Uniform('hyper_nu_parameter', lower=0,upper=30)
-
-                #phi_mean=pm.Uniform('phi_mean', lower=0,upper=1)
-                #phi_std=pm.Uniform('phi_std', lower=0,upper=1)
-                mu = dict()
-                sd=dict()
-                incidence = dict()
-                incidence_pred=dict()
-                #name_plus=responses_plus[0][0]
-                #observed_plus=responses_plus[0][1]
-
-                #name_minus=responses_minus[0][0]
-                #observed_minus=responses_minus[0][1]
-                    #nu[name] = pm.Uniform('nu_'+name, lower=0,upper=30)
-                for name,observed in responses:
-                    #std_land=s
-                    mu[name] = pm.Normal('mu_'+name, mu=hyper_mu_parameter,sd=hyper_sd_parameter)
-                    sd[name] = pm.Exponential('sd_'+name, lam=1/hyper_sd_parameter)
-                    #if len(observed_plus)==0:
-                        #incidence[name_plus] = pm.StudentT(name_plus,nu=hyper_nu_parameter_plus, mu=mu[name_plus], sigma=sd[name_plus]  )
-                    if len(observed)!=0:
-                        incidence[name] = pm.StudentT(name,nu=hyper_nu_parameter, mu=mu[name], sigma=sd[name]  ,observed=observed)
-                    incidence_pred[name] = pm.StudentT('incidence_pred'+name,nu=hyper_nu_parameter, mu=mu[name], sigma=sd[name]  )
-
-                sample_number=1000  
-
-                model_trace = pm.sample(sample_number,target_accept = 0.99)
-                azsum=az.summary(model_trace)
-                azResults.append([incidence_days_number,X,list(azsum.index),list(azsum.columns),azsum.values.tolist()])
-                def prob_responsea_efficient_over_responseb(responsea, responseb):
-                    l=[]
-                    for i in range(1000):
-                        a=model_trace.get_values('incidence_pred'+responsea)
-                        np.random.shuffle(a)
-                        b=model_trace.get_values('incidence_pred'+responseb)
-                        np.random.shuffle(b)
-                        l.append(np.float(sum(a < b))/len(a))
-                    return l
-                resu=[]
-                from statistics import mean
-                effdis=prob_responsea_efficient_over_responseb(land+"+", land+"-")
-                resu.append([land,[min (effdis),mean(effdis),max(effdis)]])
-                Results.append([incidence_days_number,X,resu])
-                score=Results
-                azscore=azResults
-                with open('Resultsfile7.py', 'w') as f:
-                    f.write('score = %s' % score)
-                with open('azResultsfile7.py', 'w') as azf:
-                    azf.write('azscore = %s' % azscore)
-