diff --git a/.gitmodules b/.gitmodules index 1e5c26deddea8cb725aae8c84513d1dcd18e4cfb..cc3bf1fcd2e1eb8117cbcc7222b04f7041fea520 100644 --- a/.gitmodules +++ b/.gitmodules @@ -22,9 +22,6 @@ [submodule "modules/gui/lib/imgui"] path = modules/gui/lib/imgui url = https://github.com/ocornut/imgui.git -[submodule "lib/VulkanMemoryAllocator"] - path = lib/VulkanMemoryAllocator - url = https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator.git [submodule "lib/VulkanMemoryAllocator-Hpp"] path = lib/VulkanMemoryAllocator-Hpp url = https://github.com/malte-v/VulkanMemoryAllocator-Hpp.git diff --git a/include/vkcv/Logger.hpp b/include/vkcv/Logger.hpp index 1ae0f211e1a3255d624cf78985b0797e9d90c634..bb60561e80baadfcac4956223d9313893547068f 100644 --- a/include/vkcv/Logger.hpp +++ b/include/vkcv/Logger.hpp @@ -53,9 +53,10 @@ namespace vkcv { VKCV_DEBUG_MESSAGE_LEN, \ __VA_ARGS__ \ ); \ + auto output = getLogOutput(level); \ if (level != vkcv::LogLevel::RAW_INFO) { \ fprintf( \ - getLogOutput(level), \ + output, \ "[%s]: %s [%s, line %d: %s]\n", \ vkcv::getLogName(level), \ output_message, \ @@ -65,12 +66,13 @@ namespace vkcv { ); \ } else { \ fprintf( \ - getLogOutput(level), \ + output, \ "[%s]: %s\n", \ vkcv::getLogName(level), \ output_message \ ); \ } \ + fflush(output); \ } #else diff --git a/modules/asset_loader/CMakeLists.txt b/modules/asset_loader/CMakeLists.txt index c5a1fd0eb9620d3a95af1c52a9e7456337047c7b..870c16279b1578224a966a4a123a465413333555 100644 --- a/modules/asset_loader/CMakeLists.txt +++ b/modules/asset_loader/CMakeLists.txt @@ -31,10 +31,10 @@ include(config/FX_GLTF.cmake) include(config/STB.cmake) # link the required libraries to the module -target_link_libraries(vkcv_asset_loader ${vkcv_asset_loader_libraries} vkcv) +target_link_libraries(vkcv_asset_loader ${vkcv_asset_loader_libraries} vkcv ${vkcv_libraries}) # including headers of dependencies and the VkCV framework -target_include_directories(vkcv_asset_loader SYSTEM BEFORE PRIVATE ${vkcv_asset_loader_includes}) +target_include_directories(vkcv_asset_loader SYSTEM BEFORE PRIVATE ${vkcv_asset_loader_includes} ${vkcv_includes}) # add the own include directory for public headers target_include_directories(vkcv_asset_loader BEFORE PUBLIC ${vkcv_asset_loader_include}) diff --git a/modules/asset_loader/include/vkcv/asset/asset_loader.hpp b/modules/asset_loader/include/vkcv/asset/asset_loader.hpp index 471870fb1e5af3d3c448a66611d9754db9597f85..25d7d5b36d00bad8587fbe082f8ebd041d84fde6 100644 --- a/modules/asset_loader/include/vkcv/asset/asset_loader.hpp +++ b/modules/asset_loader/include/vkcv/asset/asset_loader.hpp @@ -11,17 +11,7 @@ #include <cstdint> #include <filesystem> -/** These macros define limits of the following structs. Implementations can - * test against these limits when performing sanity checks. The main constraint - * expressed is that of the data type: Material indices are identified by a - * uint8_t in the VertexGroup struct, so there can't be more than UINT8_MAX - * materials in the mesh. Should these limits be too narrow, the data type has - * to be changed, but the current ones should be generous enough for most use - * cases. */ -#define MAX_MATERIALS_PER_MESH UINT8_MAX -#define MAX_VERTICES_PER_VERTEX_GROUP UINT32_MAX - -/** LOADING MESHES +/* LOADING MESHES * The description of meshes is a hierarchy of structures with the Mesh at the * top. * @@ -46,53 +36,89 @@ namespace vkcv::asset { -/** This enum matches modes in fx-gltf, the library returns a standard mode - * (TRIANGLES) if no mode is given in the file. */ +/** + * These return codes are limited to the asset loader module. If unified return + * codes are defined for the vkcv framework, these will be used instead. + */ +#define ASSET_ERROR 0 +#define ASSET_SUCCESS 1 + +/** + * This enum matches modes in fx-gltf, the library returns a standard mode + * (TRIANGLES) if no mode is given in the file. + */ enum class PrimitiveMode : uint8_t { - POINTS=0, LINES, LINELOOP, LINESTRIP, TRIANGLES, TRIANGLESTRIP, - TRIANGLEFAN + POINTS = 0, + LINES = 1, + LINELOOP = 2, + LINESTRIP = 3, + TRIANGLES = 4, + TRIANGLESTRIP = 5, + TRIANGLEFAN = 6 }; -/** The indices in the index buffer can be of different bit width. */ -enum class IndexType : uint8_t { UNDEFINED=0, UINT8=1, UINT16=2, UINT32=3 }; - -typedef struct { - // TODO define struct for samplers (low priority) - // NOTE: glTF defines samplers based on OpenGL, which can not be - // directly translated to Vulkan. Specifically, OpenGL (and glTF) - // define a different set of Min/Mag-filters than Vulkan. -} Sampler; - -/** struct for defining the loaded texture */ -typedef struct { - int sampler; // index into the sampler array of the Scene - uint8_t channels; // number of channels - uint16_t w, h; // width and height of the texture - std::vector<uint8_t> data; // binary data of the decoded texture -} Texture; +/** + * The indices in the index buffer can be of different bit width. + */ +enum class IndexType : uint8_t { + UNDEFINED=0, + UINT8=1, + UINT16=2, + UINT32=3 +}; -/** The asset loader module only supports the PBR-MetallicRoughness model for - * materials.*/ -typedef struct { - uint16_t textureMask; // bit mask with active texture targets - // Indices into the Array.textures array - int baseColor, metalRough, normal, occlusion, emissive; - // Scaling factors for each texture target - struct { float r, g, b, a; } baseColorFactor; - float metallicFactor, roughnessFactor; - float normalScale; - float occlusionStrength; - struct { float r, g, b; } emissiveFactor; -} Material; +/** + * This struct defines a sampler for a texture object. All values here can + * directly be passed to VkSamplerCreateInfo. + * NOTE that glTF defines samplers based on OpenGL, which can not be directly + * translated to Vulkan. The vkcv::asset::Sampler struct defined here adheres + * to the Vulkan spec, having alerady translated the flags from glTF to Vulkan. + * Since glTF does not specify border sampling for more than two dimensions, + * the addressModeW is hardcoded to a default: VK_SAMPLER_ADDRESS_MODE_REPEAT. + */ +struct Sampler { + int minFilter, magFilter; + int mipmapMode; + float minLOD, maxLOD; + int addressModeU, addressModeV, addressModeW; +}; -/** Flags for the bit-mask in the Material struct. To check if a material has a +/** + * This struct describes a (partially) loaded texture. + * The data member is not populated after calling probeScene() but only when + * calling loadMesh(), loadScene() or loadTexture(). Note that textures are + * currently always loaded with 4 channels as RGBA, even if the image has just + * RGB or is grayscale. In the case where the glTF-file does not provide a URI + * but references a buffer view for the raw data, the path member will be empty + * even though the rest is initialized properly. + * NOTE: Loading textures without URI is untested. + */ +struct Texture { + std::filesystem::path path; // URI to the encoded texture data + int sampler; // index into the sampler array of the Scene + + union { int width; int w; }; + union { int height; int h; }; + int channels; + + std::vector<uint8_t> data; // binary data of the decoded texture +}; + +/** + * Flags for the bit-mask in the Material struct. To check if a material has a * certain texture target, you can use the hasTexture() function below, passing - * the material struct and the enum. */ + * the material struct and the enum. + */ enum class PBRTextureTarget { - baseColor=1, metalRough=2, normal=4, occlusion=8, emissive=16 + baseColor=1, + metalRough=2, + normal=4, + occlusion=8, + emissive=16 }; -/** This macro translates the index of an enum in the defined order to an +/** + * This macro translates the index of an enum in the defined order to an * integer with a single bit set in the corresponding place. It is used for * working with the bitmask of texture targets ("textureMask") in the Material * struct: @@ -103,100 +129,196 @@ enum class PBRTextureTarget { * contact with bit-level operations. */ #define bitflag(ENUM) (0x1u << ((unsigned)(ENUM))) -/** To signal that a certain texture target is active in a Material struct, its - * bit is set in the textureMask. You can use this function to check that: - * Material mat = ...; - * if (materialHasTexture(&mat, baseColor)) {...} */ -bool materialHasTexture(const Material *const m, const PBRTextureTarget t); +/** + * The asset loader module only supports the PBR-MetallicRoughness model for + * materials. + */ +struct Material { + uint16_t textureMask; // bit mask with active texture targets + + // Indices into the Scene.textures vector + int baseColor, metalRough, normal, occlusion, emissive; + + // Scaling factors for each texture target + struct { float r, g, b, a; } baseColorFactor; + float metallicFactor, roughnessFactor; + float normalScale; + float occlusionStrength; + struct { float r, g, b; } emissiveFactor; + + /** + * To signal that a certain texture target is active in this Material + * struct, its bit is set in the textureMask. You can use this function + * to check that: + * if (myMaterial.hasTexture(baseColor)) {...} + * + * @param t The target to query for + * @return Boolean to signal whether the texture target is active in + * the material. + */ + bool hasTexture(PBRTextureTarget target) const; +}; -/** With these enums, 0 is reserved to signal uninitialized or invalid data. */ +/* With these enums, 0 is reserved to signal uninitialized or invalid data. */ enum class PrimitiveType : uint32_t { UNDEFINED = 0, POSITION = 1, NORMAL = 2, TEXCOORD_0 = 3, TEXCOORD_1 = 4, - TANGENT = 5 + TANGENT = 5, + COLOR_0 = 6, + COLOR_1 = 7, + JOINTS_0 = 8, + WEIGHTS_0 = 9 }; -/** These integer values are used the same way in OpenGL, Vulkan and glTF. This +/** + * These integer values are used the same way in OpenGL, Vulkan and glTF. This * enum is not needed for translation, it's only for the programmers * convenience (easier to read in if/switch statements etc). While this enum * exists in (almost) the same definition in the fx-gltf library, we want to - * avoid exposing that dependency, thus it is re-defined here. */ + * avoid exposing that dependency, thus it is re-defined here. + */ enum class ComponentType : uint16_t { - NONE = 0, INT8 = 5120, UINT8 = 5121, INT16 = 5122, UINT16 = 5123, - UINT32 = 5125, FLOAT32 = 5126 + NONE = 0, + INT8 = 5120, + UINT8 = 5121, + INT16 = 5122, + UINT16 = 5123, + UINT32 = 5125, + FLOAT32 = 5126 }; -/** This struct describes one vertex attribute of a vertex buffer. */ -typedef struct { +/** + * This struct describes one vertex attribute of a vertex buffer. + */ +struct VertexAttribute { PrimitiveType type; // POSITION, NORMAL, ... + uint32_t offset; // offset in bytes uint32_t length; // length of ... in bytes uint32_t stride; // stride in bytes - ComponentType componentType; // eg. 5126 for float - uint8_t componentCount; // eg. 3 for vec3 -} VertexAttribute; + + ComponentType componentType; // eg. 5126 for float + uint8_t componentCount; // eg. 3 for vec3 +}; -/** This struct represents one (possibly the only) part of a mesh. There is +/** + * This struct represents one (possibly the only) part of a mesh. There is * always one vertexBuffer and zero or one indexBuffer (indexed rendering is * common but not always used). If there is no index buffer, this is indicated * by indexBuffer.data being empty. Each vertex buffer can have one or more - * vertex attributes. */ -typedef struct { + * vertex attributes. + */ +struct VertexGroup { enum PrimitiveMode mode; // draw as points, lines or triangle? - size_t numIndices, numVertices; + size_t numIndices; + size_t numVertices; + struct { enum IndexType type; // data type of the indices std::vector<uint8_t> data; // binary data of the index buffer } indexBuffer; + struct { std::vector<uint8_t> data; // binary data of the vertex buffer std::vector<VertexAttribute> attributes; // description of one } vertexBuffer; + struct { float x, y, z; } min; // bounding box lower left struct { float x, y, z; } max; // bounding box upper right + int materialIndex; // index to one of the materials -} VertexGroup; +}; -/** This struct represents a single mesh as it was loaded from a glTF file. It +/** + * This struct represents a single mesh as it was loaded from a glTF file. It * consists of at least one VertexGroup, which then references other resources - * such as Materials. */ -typedef struct { + * such as Materials. + */ +struct Mesh { std::string name; std::array<float, 16> modelMatrix; std::vector<int> vertexGroups; -} Mesh; +}; -/** The scene struct is simply a collection of objects in the scene as well as +/** + * The scene struct is simply a collection of objects in the scene as well as * the resources used by those objects. - * For now the only type of object are the meshes and they are represented in a - * flat array. - * Note that parent-child relations are not yet possible. */ -typedef struct { + * Note that parent-child relations are not yet possible. + */ +struct Scene { std::vector<Mesh> meshes; std::vector<VertexGroup> vertexGroups; std::vector<Material> materials; std::vector<Texture> textures; std::vector<Sampler> samplers; -} Scene; + std::vector<std::string> uris; +}; /** - * Load every mesh from the glTF file, as well as materials and textures. + * Parse the given glTF file and create a shallow description of the content. + * Only the meta-data of the objects in the scene is loaded, not the binary + * content. The rationale is to provide a means of probing the content of a + * glTF file without the costly process of loading and decoding large amounts + * of data. The returned Scene struct can be used to search for specific meshes + * in the scene, that can then be loaded on their own using the loadMesh() + * function. Note that the Scene struct received as output argument will be + * overwritten by this function. + * After this function completes, the returned Scene struct is completely + * initialized and all information is final, except for the missing binary + * data. This means that indices to vectors will remain valid even when the + * shallow scene struct is filled with data by loadMesh(). + * Note that for URIs only (local) filesystem paths are supported, no + * URLs using network protocols etc. * - * @param path must be the path to a glTF or glb file. + * @param path must be the path to a glTF- or glb-file. + * @param scene is a reference to a Scene struct that will be filled with the + * meta-data of all objects described in the glTF file. + * @return ASSET_ERROR on failure, otherwise ASSET_SUCCESS + */ +int probeScene(const std::filesystem::path &path, Scene &scene); + +/** + * This function loads a single mesh from the given file and adds it to the + * given scene. The scene must already be initialized (via probeScene()). + * The mesh_index refers to the Scenes meshes array and identifies the mesh to + * load. To find the mesh you want, iterate over the probed scene and check the + * meshes details (eg. name). + * Besides the mesh, this function will also add any associated data to the + * Scene struct such as Materials and Textures required by the Mesh. + * + * @param path must be the path to a glTF- or glb-file. + * @param scene is the scene struct to which the results will be written. + * @return ASSET_ERROR on failure, otherwise ASSET_SUCCESS + */ +int loadMesh(Scene &scene, int mesh_index); + +/** + * Load every mesh from the glTF file, as well as materials, textures and other + * associated objects. + * + * @param path must be the path to a glTF- or glb-file. * @param scene is a reference to a Scene struct that will be filled with the * content of the glTF file being loaded. - * */ -int loadScene(const std::string &path, Scene &scene); - -struct TextureData { - int width; - int height; - int componentCount; - std::vector<char*> data; -}; -TextureData loadTexture(const std::filesystem::path& path); + * @return ASSET_ERROR on failure, otherwise ASSET_SUCCESS + */ +int loadScene(const std::filesystem::path &path, Scene &scene); + +/** + * Simply loads a single image at the given path and returns a Texture + * struct describing it. This is for special use cases only (eg. + * loading a font atlas) and not meant to be used for regular assets. + * The sampler is set to -1, signalling that this Texture was loaded + * outside the context of a glTF-file. + * If there was an error loading or decoding the image, the returned struct + * will be cleared to all 0 with path and data being empty; make sure to always + * check that !data.empty() before using the struct. + * + * @param path must be the path to an image file. + * @return Texture struct describing the loaded image. + */ +Texture loadTexture(const std::filesystem::path& path); -} +} // end namespace vkcv::asset diff --git a/modules/asset_loader/src/vkcv/asset/asset_loader.cpp b/modules/asset_loader/src/vkcv/asset/asset_loader.cpp index e3d3072543bd33e1f5a67ae7dac61d229005947a..571d965a400de7197b6fb46f163c4099a5b353f1 100644 --- a/modules/asset_loader/src/vkcv/asset/asset_loader.cpp +++ b/modules/asset_loader/src/vkcv/asset/asset_loader.cpp @@ -1,387 +1,784 @@ #include "vkcv/asset/asset_loader.hpp" #include <iostream> #include <string.h> // memcpy(3) +#include <set> #include <stdlib.h> // calloc(3) +#include <vulkan/vulkan.hpp> #include <fx/gltf.h> #include <stb_image.h> #include <vkcv/Logger.hpp> #include <algorithm> + namespace vkcv::asset { -/** -* convert the accessor type from the fx-gltf library to an unsigned int -* @param type -* @return unsigned integer representation -*/ -// TODO Return proper error code (we need to define those as macros or enums, -// will discuss during the next core meeting if that should happen on the scope -// of the vkcv framework or just this module) -uint8_t convertTypeToInt(const fx::gltf::Accessor::Type type) { - switch (type) { - case fx::gltf::Accessor::Type::None : - return 0; - case fx::gltf::Accessor::Type::Scalar : - return 1; - case fx::gltf::Accessor::Type::Vec2 : - return 2; - case fx::gltf::Accessor::Type::Vec3 : - return 3; - case fx::gltf::Accessor::Type::Vec4 : - return 4; - default: return 10; // TODO add cases for matrices (or maybe change the type in the struct itself) + /** + * This function unrolls nested exceptions via recursion and prints them + * @param e The exception being thrown + * @param path The path to the file that was responsible for the exception + */ + static void recurseExceptionPrint(const std::exception& e, const std::string &path) { + vkcv_log(LogLevel::ERROR, "Loading file %s: %s", path.c_str(), e.what()); + + try { + std::rethrow_if_nested(e); + } catch (const std::exception& nested) { + recurseExceptionPrint(nested, path); + } } -} -/** - * This function unrolls nested exceptions via recursion and prints them - * @param e error code - * @param path path to file that is responsible for error - */ -void print_what (const std::exception& e, const std::string &path) { - vkcv_log(LogLevel::ERROR, "Loading file %s: %s", - path.c_str(), e.what()); + /** + * Returns the component count for an accessor type of the fx-gltf library. + * @param type The accessor type + * @return An unsigned integer count + */ + static uint32_t getComponentCount(const fx::gltf::Accessor::Type type) { + switch (type) { + case fx::gltf::Accessor::Type::Scalar: + return 1; + case fx::gltf::Accessor::Type::Vec2: + return 2; + case fx::gltf::Accessor::Type::Vec3: + return 3; + case fx::gltf::Accessor::Type::Vec4: + case fx::gltf::Accessor::Type::Mat2: + return 4; + case fx::gltf::Accessor::Type::Mat3: + return 9; + case fx::gltf::Accessor::Type::Mat4: + return 16; + case fx::gltf::Accessor::Type::None: + default: + return 0; + } + } - try { - std::rethrow_if_nested(e); - } catch (const std::exception& nested) { - print_what(nested, path); + static uint32_t getComponentSize(ComponentType type) { + switch (type) { + case ComponentType::INT8: + case ComponentType::UINT8: + return 1; + case ComponentType::INT16: + case ComponentType::UINT16: + return 2; + case ComponentType::UINT32: + case ComponentType::FLOAT32: + return 4; + default: + return 0; + } } -} -/** Translate the component type used in the index accessor of fx-gltf to our - * enum for index type. The reason we have defined an incompatible enum that - * needs translation is that only a subset of component types is valid for - * indices and we want to catch these incompatibilities here. */ -enum IndexType getIndexType(const enum fx::gltf::Accessor::ComponentType &t) -{ - switch (t) { - case fx::gltf::Accessor::ComponentType::UnsignedByte: - return IndexType::UINT8; - case fx::gltf::Accessor::ComponentType::UnsignedShort: - return IndexType::UINT16; - case fx::gltf::Accessor::ComponentType::UnsignedInt: - return IndexType::UINT32; - default: - vkcv_log(LogLevel::ERROR, "Index type not supported: %u", static_cast<uint16_t>(t)); - return IndexType::UNDEFINED; + /** + * Translate the component type used in the index accessor of fx-gltf to our + * enum for index type. The reason we have defined an incompatible enum that + * needs translation is that only a subset of component types is valid for + * indices and we want to catch these incompatibilities here. + * @param t The component type + * @return The vkcv::IndexType enum representation + */ + enum IndexType getIndexType(const enum fx::gltf::Accessor::ComponentType &type) { + switch (type) { + case fx::gltf::Accessor::ComponentType::UnsignedByte: + return IndexType::UINT8; + case fx::gltf::Accessor::ComponentType::UnsignedShort: + return IndexType::UINT16; + case fx::gltf::Accessor::ComponentType::UnsignedInt: + return IndexType::UINT32; + default: + vkcv_log(LogLevel::ERROR, "Index type not supported: %u", static_cast<uint16_t>(type)); + return IndexType::UNDEFINED; + } } -} - -/** - * This function computes the modelMatrix out of the data given in the gltf file. It also checks, whether a modelMatrix was given. - * @param translation possible translation vector (default 0,0,0) - * @param scale possible scale vector (default 1,1,1) - * @param rotation possible rotation, given in quaternion (default 0,0,0,1) - * @param matrix possible modelmatrix (default identity) - * @return model Matrix as an array of floats - */ -std::array<float, 16> computeModelMatrix(std::array<float, 3> translation, std::array<float, 3> scale, std::array<float, 4> rotation, std::array<float, 16> matrix){ - std::array<float, 16> modelMatrix = {1,0,0,0, - 0,1,0,0, - 0,0,1,0, - 0,0,0,1}; - if (matrix != modelMatrix){ - return matrix; - } else { - // translation - modelMatrix[3] = translation[0]; - modelMatrix[7] = translation[1]; - modelMatrix[11] = translation[2]; - // rotation and scale - auto a = rotation[0]; - auto q1 = rotation[1]; - auto q2 = rotation[2]; - auto q3 = rotation[3]; - - modelMatrix[0] = (2 * (a * a + q1 * q1) - 1) * scale[0]; - modelMatrix[1] = (2 * (q1 * q2 - a * q3)) * scale[1]; - modelMatrix[2] = (2 * (q1 * q3 + a * q2)) * scale[2]; - - modelMatrix[4] = (2 * (q1 * q2 + a * q3)) * scale[0]; - modelMatrix[5] = (2 * (a * a + q2 * q2) - 1) * scale[1]; - modelMatrix[6] = (2 * (q2 * q3 - a * q1)) * scale[2]; - - modelMatrix[8] = (2 * (q1 * q3 - a * q2)) * scale[0]; - modelMatrix[9] = (2 * (q2 * q3 + a * q1)) * scale[1]; - modelMatrix[10] = (2 * (a * a + q3 * q3) - 1) * scale[2]; - - // flip y, because GLTF uses y up, but vulkan -y up - modelMatrix[5] *= -1; - - return modelMatrix; - } - -} - -bool materialHasTexture(const Material *const m, const PBRTextureTarget t) -{ - return m->textureMask & bitflag(t); -} - -int loadScene(const std::string &path, Scene &scene){ - fx::gltf::Document sceneObjects; - - try { - if (path.rfind(".glb", (path.length()-4)) != std::string::npos) { - sceneObjects = fx::gltf::LoadFromBinary(path); - } else { - sceneObjects = fx::gltf::LoadFromText(path); - } - } catch (const std::system_error &err) { - print_what(err, path); - return 0; - } catch (const std::exception &e) { - print_what(e, path); - return 0; - } - size_t pos = path.find_last_of("/"); - auto dir = path.substr(0, pos); - - // file has to contain at least one mesh - if (sceneObjects.meshes.size() == 0) return 0; - - fx::gltf::Accessor posAccessor; - std::vector<VertexAttribute> vertexAttributes; - std::vector<Material> materials; - std::vector<Texture> textures; - std::vector<Sampler> samplers; - std::vector<Mesh> meshes; - std::vector<VertexGroup> vertexGroups; - int groupCount = 0; - - Mesh mesh = {}; - - for(int i = 0; i < sceneObjects.meshes.size(); i++){ - std::vector<int> vertexGroupsIndices; - fx::gltf::Mesh const &objectMesh = sceneObjects.meshes[i]; - - for(int j = 0; j < objectMesh.primitives.size(); j++){ - fx::gltf::Primitive const &objectPrimitive = objectMesh.primitives[j]; - vertexAttributes.clear(); - vertexAttributes.reserve(objectPrimitive.attributes.size()); - - for (auto const & attrib : objectPrimitive.attributes) { - - fx::gltf::Accessor accessor = sceneObjects.accessors[attrib.second]; - VertexAttribute attribute; - - if (attrib.first == "POSITION") { - attribute.type = PrimitiveType::POSITION; - posAccessor = accessor; - } else if (attrib.first == "NORMAL") { - attribute.type = PrimitiveType::NORMAL; - } else if (attrib.first == "TEXCOORD_0") { - attribute.type = PrimitiveType::TEXCOORD_0; - } - else if (attrib.first == "TEXCOORD_1") { - attribute.type = PrimitiveType::TEXCOORD_1; - } else if (attrib.first == "TANGENT") { - attribute.type = PrimitiveType::TANGENT; - } else { - return 0; - } - - attribute.offset = sceneObjects.bufferViews[accessor.bufferView].byteOffset; - attribute.length = sceneObjects.bufferViews[accessor.bufferView].byteLength; - attribute.stride = sceneObjects.bufferViews[accessor.bufferView].byteStride; - attribute.componentType = static_cast<ComponentType>(accessor.componentType); - - if (convertTypeToInt(accessor.type) != 10) { - attribute.componentCount = convertTypeToInt(accessor.type); - } else { - return 0; - } - - vertexAttributes.push_back(attribute); - } - - IndexType indexType; - std::vector<uint8_t> indexBufferData = {}; - if (objectPrimitive.indices >= 0){ // if there is no index buffer, -1 is returned from fx-gltf - const fx::gltf::Accessor &indexAccessor = sceneObjects.accessors[objectPrimitive.indices]; - const fx::gltf::BufferView &indexBufferView = sceneObjects.bufferViews[indexAccessor.bufferView]; - const fx::gltf::Buffer &indexBuffer = sceneObjects.buffers[indexBufferView.buffer]; - - indexBufferData.resize(indexBufferView.byteLength); - { - const size_t off = indexBufferView.byteOffset; - const void *const ptr = ((char*)indexBuffer.data.data()) + off; - if (!memcpy(indexBufferData.data(), ptr, indexBufferView.byteLength)) { - vkcv_log(LogLevel::ERROR, "Copying index buffer data"); - return 0; - } - } - - indexType = getIndexType(indexAccessor.componentType); - if (indexType == IndexType::UNDEFINED){ - vkcv_log(LogLevel::ERROR, "Index Type undefined."); - return 0; - } - } - - const fx::gltf::BufferView& vertexBufferView = sceneObjects.bufferViews[posAccessor.bufferView]; - const fx::gltf::Buffer& vertexBuffer = sceneObjects.buffers[vertexBufferView.buffer]; - - // only copy relevant part of vertex data - uint32_t relevantBufferOffset = std::numeric_limits<uint32_t>::max(); - uint32_t relevantBufferEnd = 0; - for (const auto &attribute : vertexAttributes) { - relevantBufferOffset = std::min(attribute.offset, relevantBufferOffset); - const uint32_t attributeEnd = attribute.offset + attribute.length; - relevantBufferEnd = std::max(relevantBufferEnd, attributeEnd); // TODO: need to incorporate stride? - } - const uint32_t relevantBufferSize = relevantBufferEnd - relevantBufferOffset; - - // FIXME: This only works when all vertex attributes are in one buffer - std::vector<uint8_t> vertexBufferData; - vertexBufferData.resize(relevantBufferSize); - { - const void *const ptr = ((char*)vertexBuffer.data.data()) + relevantBufferOffset; - if (!memcpy(vertexBufferData.data(), ptr, relevantBufferSize)) { - vkcv_log(LogLevel::ERROR, "Copying vertex buffer data"); - return 0; - } - } - - // make vertex attributes relative to copied section - for (auto &attribute : vertexAttributes) { - attribute.offset -= relevantBufferOffset; - } - - const size_t numVertexGroups = objectMesh.primitives.size(); - vertexGroups.reserve(numVertexGroups); - - vertexGroups.push_back({ - static_cast<PrimitiveMode>(objectPrimitive.mode), - sceneObjects.accessors[objectPrimitive.indices].count, - posAccessor.count, - {indexType, indexBufferData}, - {vertexBufferData, vertexAttributes}, - {posAccessor.min[0], posAccessor.min[1], posAccessor.min[2]}, - {posAccessor.max[0], posAccessor.max[1], posAccessor.max[2]}, - static_cast<uint8_t>(objectPrimitive.material) - }); - - vertexGroupsIndices.push_back(groupCount); - groupCount++; - } - - mesh.name = sceneObjects.meshes[i].name; - mesh.vertexGroups = vertexGroupsIndices; - meshes.push_back(mesh); - } - - for(int m = 0; m < sceneObjects.nodes.size(); m++) { - meshes[sceneObjects.nodes[m].mesh].modelMatrix = computeModelMatrix(sceneObjects.nodes[m].translation, - sceneObjects.nodes[m].scale, - sceneObjects.nodes[m].rotation, - sceneObjects.nodes[m].matrix); - } - - if (sceneObjects.textures.size() > 0){ - textures.reserve(sceneObjects.textures.size()); - - for(int k = 0; k < sceneObjects.textures.size(); k++){ - const fx::gltf::Texture &tex = sceneObjects.textures[k]; - const fx::gltf::Image &img = sceneObjects.images[tex.source]; - std::string img_uri = dir + "/" + img.uri; - int w, h, c; - uint8_t *data = stbi_load(img_uri.c_str(), &w, &h, &c, 4); - c = 4; // FIXME hardcoded to always have RGBA channel layout - if (!data) { - vkcv_log(LogLevel::ERROR, "Loading texture image data.") - return 0; - } - const size_t byteLen = w * h * c; - - std::vector<uint8_t> imgdata; - imgdata.resize(byteLen); - if (!memcpy(imgdata.data(), data, byteLen)) { - vkcv_log(LogLevel::ERROR, "Copying texture image data") - free(data); - return 0; - } - free(data); + /** + * This function fills the array of vertex attributes of a VertexGroup (usually + * part of a vkcv::asset::Mesh) object based on the description of attributes + * for a fx::gltf::Primitive. + * + * @param src The description of attribute objects from the fx-gltf library + * @param gltf The main glTF document + * @param dst The array of vertex attributes stored in an asset::Mesh object + * @return ASSET_ERROR when at least one VertexAttribute could not be + * constructed properly, otherwise ASSET_SUCCESS + */ + static int loadVertexAttributes(const fx::gltf::Attributes &src, + const std::vector<fx::gltf::Accessor> &accessors, + const std::vector<fx::gltf::BufferView> &bufferViews, + std::vector<VertexAttribute> &dst) { + for (const auto &attrib : src) { + VertexAttribute att; + + if (attrib.first == "POSITION") { + att.type = PrimitiveType::POSITION; + } else if (attrib.first == "NORMAL") { + att.type = PrimitiveType::NORMAL; + } else if (attrib.first == "TANGENT") { + att.type = PrimitiveType::TANGENT; + } else if (attrib.first == "TEXCOORD_0") { + att.type = PrimitiveType::TEXCOORD_0; + } else if (attrib.first == "TEXCOORD_1") { + att.type = PrimitiveType::TEXCOORD_1; + } else if (attrib.first == "COLOR_0") { + att.type = PrimitiveType::COLOR_0; + } else if (attrib.first == "COLOR_1") { + att.type = PrimitiveType::COLOR_1; + } else if (attrib.first == "JOINTS_0") { + att.type = PrimitiveType::JOINTS_0; + } else if (attrib.first == "WEIGHTS_0") { + att.type = PrimitiveType::WEIGHTS_0; + } else { + att.type = PrimitiveType::UNDEFINED; + } + + if (att.type != PrimitiveType::UNDEFINED) { + const fx::gltf::Accessor &accessor = accessors[attrib.second]; + const fx::gltf::BufferView &buf = bufferViews[accessor.bufferView]; + + att.offset = buf.byteOffset; + att.length = buf.byteLength; + att.stride = buf.byteStride; + att.componentType = static_cast<ComponentType>(accessor.componentType); + att.componentCount = getComponentCount(accessor.type); + + /* Assume tightly packed stride as not explicitly provided */ + if (att.stride == 0) { + att.stride = att.componentCount * getComponentSize(att.componentType); + } + } + + if ((att.type == PrimitiveType::UNDEFINED) || + (att.componentCount == 0)) { + return ASSET_ERROR; + } + + dst.push_back(att); + } + + return ASSET_SUCCESS; + } - textures.push_back({ - 0, - static_cast<uint8_t>(c), - static_cast<uint16_t>(w), - static_cast<uint16_t>(h), - imgdata - }); + /** + * This function calculates the modelMatrix out of the data given in the gltf file. + * It also checks, whether a modelMatrix was given. + * + * @param translation possible translation vector (default 0,0,0) + * @param scale possible scale vector (default 1,1,1) + * @param rotation possible rotation, given in quaternion (default 0,0,0,1) + * @param matrix possible modelmatrix (default identity) + * @return model Matrix as an array of floats + */ + static std::array<float, 16> calculateModelMatrix(const std::array<float, 3>& translation, + const std::array<float, 3>& scale, + const std::array<float, 4>& rotation, + const std::array<float, 16>& matrix){ + std::array<float, 16> modelMatrix = { + 1,0,0,0, + 0,1,0,0, + 0,0,1,0, + 0,0,0,1 + }; + + if (matrix != modelMatrix){ + return matrix; + } else { + // translation + modelMatrix[3] = translation[0]; + modelMatrix[7] = translation[1]; + modelMatrix[11] = translation[2]; + + // rotation and scale + auto a = rotation[0]; + auto q1 = rotation[1]; + auto q2 = rotation[2]; + auto q3 = rotation[3]; + + modelMatrix[0] = (2 * (a * a + q1 * q1) - 1) * scale[0]; + modelMatrix[1] = (2 * (q1 * q2 - a * q3)) * scale[1]; + modelMatrix[2] = (2 * (q1 * q3 + a * q2)) * scale[2]; + + modelMatrix[4] = (2 * (q1 * q2 + a * q3)) * scale[0]; + modelMatrix[5] = (2 * (a * a + q2 * q2) - 1) * scale[1]; + modelMatrix[6] = (2 * (q2 * q3 - a * q1)) * scale[2]; + + modelMatrix[8] = (2 * (q1 * q3 - a * q2)) * scale[0]; + modelMatrix[9] = (2 * (q2 * q3 + a * q1)) * scale[1]; + modelMatrix[10] = (2 * (a * a + q3 * q3) - 1) * scale[2]; + + // flip y, because GLTF uses y up, but vulkan -y up + modelMatrix[5] *= -1; + + return modelMatrix; + } + } - } - } + bool Material::hasTexture(const PBRTextureTarget target) const { + return textureMask & bitflag(target); + } - if (sceneObjects.materials.size() > 0){ - materials.reserve(sceneObjects.materials.size()); + /** + * This function translates a given fx-gltf-sampler-wrapping-mode-enum to its vulkan sampler-adress-mode counterpart. + * @param mode: wrapping mode of a sampler given as fx-gltf-enum + * @return int vulkan-enum representing the same wrapping mode + */ + static int translateSamplerMode(const fx::gltf::Sampler::WrappingMode mode) { + switch (mode) { + case fx::gltf::Sampler::WrappingMode::ClampToEdge: + return VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; + case fx::gltf::Sampler::WrappingMode::MirroredRepeat: + return VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT; + case fx::gltf::Sampler::WrappingMode::Repeat: + default: + return VK_SAMPLER_ADDRESS_MODE_REPEAT; + } + } - for (int l = 0; l < sceneObjects.materials.size(); l++){ - fx::gltf::Material material = sceneObjects.materials[l]; - // TODO I think we shouldn't set the index for a texture target if - // it isn't defined. So we need to test first if there is a normal - // texture before assigning material.normalTexture.index. - // About the bitmask: If a normal texture is there, modify the - // materials textureMask like this: - // mat.textureMask |= bitflag(asset::normal); - materials.push_back({ - 0, - material.pbrMetallicRoughness.baseColorTexture.index, - material.pbrMetallicRoughness.metallicRoughnessTexture.index, - material.normalTexture.index, - material.occlusionTexture.index, - material.emissiveTexture.index, - { - material.pbrMetallicRoughness.baseColorFactor[0], - material.pbrMetallicRoughness.baseColorFactor[1], - material.pbrMetallicRoughness.baseColorFactor[2], - material.pbrMetallicRoughness.baseColorFactor[3] - }, - material.pbrMetallicRoughness.metallicFactor, - material.pbrMetallicRoughness.roughnessFactor, - material.normalTexture.scale, - material.occlusionTexture.strength, - { - material.emissiveFactor[0], - material.emissiveFactor[1], - material.emissiveFactor[2] - } + /** + * If the glTF doesn't define samplers, we use the defaults defined by fx-gltf. + * The following are details about the glTF/OpenGL to Vulkan translation. + * magFilter (VkFilter?): + * GL_NEAREST -> VK_FILTER_NEAREST + * GL_LINEAR -> VK_FILTER_LINEAR + * minFilter (VkFilter?): + * mipmapMode (VkSamplerMipmapMode?): + * Vulkans minFilter and mipmapMode combined correspond to OpenGLs + * GL_minFilter_MIPMAP_mipmapMode: + * GL_NEAREST_MIPMAP_NEAREST: + * minFilter=VK_FILTER_NEAREST + * mipmapMode=VK_SAMPLER_MIPMAP_MODE_NEAREST + * GL_LINEAR_MIPMAP_NEAREST: + * minFilter=VK_FILTER_LINEAR + * mipmapMode=VK_SAMPLER_MIPMAP_MODE_NEAREST + * GL_NEAREST_MIPMAP_LINEAR: + * minFilter=VK_FILTER_NEAREST + * mipmapMode=VK_SAMPLER_MIPMAP_MODE_LINEAR + * GL_LINEAR_MIPMAP_LINEAR: + * minFilter=VK_FILTER_LINEAR + * mipmapMode=VK_SAMPLER_MIPMAP_MODE_LINEAR + * The modes of GL_LINEAR and GL_NEAREST have to be emulated using + * mipmapMode=VK_SAMPLER_MIPMAP_MODE_NEAREST with specific minLOD and maxLOD: + * GL_LINEAR: + * minFilter=VK_FILTER_LINEAR + * mipmapMode=VK_SAMPLER_MIPMAP_MODE_NEAREST + * minLOD=0, maxLOD=0.25 + * GL_NEAREST: + * minFilter=VK_FILTER_NEAREST + * mipmapMode=VK_SAMPLER_MIPMAP_MODE_NEAREST + * minLOD=0, maxLOD=0.25 + * Setting maxLOD=0 causes magnification to always be performed (using + * the defined magFilter), this may be valid if the min- and magFilter + * are equal, otherwise it won't be the expected behaviour from OpenGL + * and glTF; instead using maxLod=0.25 allows the minFilter to be + * performed while still always rounding to the base level. + * With other modes, minLOD and maxLOD default to: + * minLOD=0 + * maxLOD=VK_LOD_CLAMP_NONE + * wrapping: + * gltf has wrapS, wrapT with {clampToEdge, MirroredRepeat, Repeat} while + * Vulkan has addressModeU, addressModeV, addressModeW with values + * VK_SAMPLER_ADDRESS_MODE_{REPEAT,MIRRORED_REPEAT,CLAMP_TO_EDGE, + * CAMP_TO_BORDER,MIRROR_CLAMP_TO_EDGE} + * Translation from glTF to Vulkan is straight forward for the 3 existing + * modes, default is repeat, the other modes aren't available. + */ + static vkcv::asset::Sampler loadSampler(const fx::gltf::Sampler &src) { + Sampler dst; + + dst.minLOD = 0; + dst.maxLOD = VK_LOD_CLAMP_NONE; + + switch (src.minFilter) { + case fx::gltf::Sampler::MinFilter::None: + case fx::gltf::Sampler::MinFilter::Nearest: + dst.minFilter = VK_FILTER_NEAREST; + dst.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST; + dst.maxLOD = 0.25; + break; + case fx::gltf::Sampler::MinFilter::Linear: + dst.minFilter = VK_FILTER_LINEAR; + dst.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST; + dst.maxLOD = 0.25; + break; + case fx::gltf::Sampler::MinFilter::NearestMipMapNearest: + dst.minFilter = VK_FILTER_NEAREST; + dst.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST; + break; + case fx::gltf::Sampler::MinFilter::LinearMipMapNearest: + dst.minFilter = VK_FILTER_LINEAR; + dst.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST; + break; + case fx::gltf::Sampler::MinFilter::NearestMipMapLinear: + dst.minFilter = VK_FILTER_NEAREST; + dst.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; + break; + case fx::gltf::Sampler::MinFilter::LinearMipMapLinear: + dst.minFilter = VK_FILTER_LINEAR; + dst.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; + break; + default: + break; + } + + switch (src.magFilter) { + case fx::gltf::Sampler::MagFilter::None: + case fx::gltf::Sampler::MagFilter::Nearest: + dst.magFilter = VK_FILTER_NEAREST; + break; + case fx::gltf::Sampler::MagFilter::Linear: + dst.magFilter = VK_FILTER_LINEAR; + break; + default: + break; + } + + dst.addressModeU = translateSamplerMode(src.wrapS); + dst.addressModeV = translateSamplerMode(src.wrapT); + + // There is no information about wrapping for a third axis in glTF and + // we have to hardcode this value. + dst.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; + + return dst; + } - }); - } - } + /** + * Initializes vertex groups of a Mesh, including copying the data to + * index- and vertex-buffers. + */ + static int loadVertexGroups(const fx::gltf::Mesh &objectMesh, + const fx::gltf::Document &sceneObjects, + Scene &scene, Mesh &mesh) { + mesh.vertexGroups.reserve(objectMesh.primitives.size()); + + for (const auto &objectPrimitive : objectMesh.primitives) { + VertexGroup vertexGroup; + + vertexGroup.vertexBuffer.attributes.reserve( + objectPrimitive.attributes.size() + ); + + if (ASSET_SUCCESS != loadVertexAttributes( + objectPrimitive.attributes, + sceneObjects.accessors, + sceneObjects.bufferViews, + vertexGroup.vertexBuffer.attributes)) { + vkcv_log(LogLevel::ERROR, "Failed to get vertex attributes of '%s'", + mesh.name.c_str()); + return ASSET_ERROR; + } + + // The accessor for the position attribute is used for + // 1) getting the vertex buffer view which is only needed to get + // the vertex buffer + // 2) getting the vertex count for the VertexGroup + // 3) getting the min/max of the bounding box for the VertexGroup + fx::gltf::Accessor posAccessor; + bool noPosition = true; + + for (auto const& attrib : objectPrimitive.attributes) { + if (attrib.first == "POSITION") { + posAccessor = sceneObjects.accessors[attrib.second]; + noPosition = false; + break; + } + } + + if (noPosition) { + vkcv_log(LogLevel::ERROR, "Position attribute not found from '%s'", + mesh.name.c_str()); + return ASSET_ERROR; + } + + const fx::gltf::Accessor& indexAccessor = sceneObjects.accessors[objectPrimitive.indices]; + + int indexBufferURI; + if (objectPrimitive.indices >= 0) { // if there is no index buffer, -1 is returned from fx-gltf + const fx::gltf::BufferView& indexBufferView = sceneObjects.bufferViews[indexAccessor.bufferView]; + const fx::gltf::Buffer& indexBuffer = sceneObjects.buffers[indexBufferView.buffer]; + + // Because the buffers are already preloaded into the memory by the gltf-library, + // it makes no sense to load them later on manually again into memory. + vertexGroup.indexBuffer.data.resize(indexBufferView.byteLength); + memcpy(vertexGroup.indexBuffer.data.data(), + indexBuffer.data.data() + indexBufferView.byteOffset, + indexBufferView.byteLength); + } else { + indexBufferURI = -1; + } + + vertexGroup.indexBuffer.type = getIndexType(indexAccessor.componentType); + + if (IndexType::UNDEFINED == vertexGroup.indexBuffer.type) { + vkcv_log(LogLevel::ERROR, "Index Type undefined or not supported."); + return ASSET_ERROR; + } + + if (posAccessor.bufferView >= sceneObjects.bufferViews.size()) { + vkcv_log(LogLevel::ERROR, "Access to bufferView out of bounds: %lu", + posAccessor.bufferView); + return ASSET_ERROR; + } + const fx::gltf::BufferView& vertexBufferView = sceneObjects.bufferViews[posAccessor.bufferView]; + if (vertexBufferView.buffer >= sceneObjects.buffers.size()) { + vkcv_log(LogLevel::ERROR, "Access to buffer out of bounds: %lu", + vertexBufferView.buffer); + return ASSET_ERROR; + } + const fx::gltf::Buffer& vertexBuffer = sceneObjects.buffers[vertexBufferView.buffer]; + + // only copy relevant part of vertex data + uint32_t relevantBufferOffset = std::numeric_limits<uint32_t>::max(); + uint32_t relevantBufferEnd = 0; + + for (const auto& attribute : vertexGroup.vertexBuffer.attributes) { + relevantBufferOffset = std::min(attribute.offset, relevantBufferOffset); + relevantBufferEnd = std::max(relevantBufferEnd, attribute.offset + attribute.length); + } + + const uint32_t relevantBufferSize = relevantBufferEnd - relevantBufferOffset; + + vertexGroup.vertexBuffer.data.resize(relevantBufferSize); + memcpy(vertexGroup.vertexBuffer.data.data(), + vertexBuffer.data.data() + relevantBufferOffset, + relevantBufferSize); + + // make vertex attributes relative to copied section + for (auto& attribute : vertexGroup.vertexBuffer.attributes) { + attribute.offset -= relevantBufferOffset; + } + + vertexGroup.mode = static_cast<PrimitiveMode>(objectPrimitive.mode); + vertexGroup.numIndices = sceneObjects.accessors[objectPrimitive.indices].count; + vertexGroup.numVertices = posAccessor.count; + + memcpy(&(vertexGroup.min), posAccessor.min.data(), sizeof(vertexGroup.min)); + memcpy(&(vertexGroup.max), posAccessor.max.data(), sizeof(vertexGroup.max)); + + vertexGroup.materialIndex = static_cast<uint8_t>(objectPrimitive.material); + + mesh.vertexGroups.push_back(static_cast<int>(scene.vertexGroups.size())); + scene.vertexGroups.push_back(vertexGroup); + } + + return ASSET_SUCCESS; + } - scene = { - meshes, - vertexGroups, - materials, - textures, - samplers - }; + /** + * Returns an integer with specific bits set corresponding to the + * textures that appear in the given material. This mask is used in the + * vkcv::asset::Material struct and can be tested via the hasTexture + * method. + */ + static uint16_t generateTextureMask(fx::gltf::Material &material) { + uint16_t textureMask = 0; + + if (material.pbrMetallicRoughness.baseColorTexture.index >= 0) { + textureMask |= bitflag(asset::PBRTextureTarget::baseColor); + } + if (material.pbrMetallicRoughness.metallicRoughnessTexture.index >= 0) { + textureMask |= bitflag(asset::PBRTextureTarget::metalRough); + } + if (material.normalTexture.index >= 0) { + textureMask |= bitflag(asset::PBRTextureTarget::normal); + } + if (material.occlusionTexture.index >= 0) { + textureMask |= bitflag(asset::PBRTextureTarget::occlusion); + } + if (material.emissiveTexture.index >= 0) { + textureMask |= bitflag(asset::PBRTextureTarget::emissive); + } + + return textureMask; + } - return 1; -} + int probeScene(const std::filesystem::path& path, Scene& scene) { + fx::gltf::Document sceneObjects; + + try { + if (path.extension() == ".glb") { + sceneObjects = fx::gltf::LoadFromBinary(path.string()); + } else { + sceneObjects = fx::gltf::LoadFromText(path.string()); + } + } catch (const std::system_error& err) { + recurseExceptionPrint(err, path.string()); + return ASSET_ERROR; + } catch (const std::exception& e) { + recurseExceptionPrint(e, path.string()); + return ASSET_ERROR; + } + + const auto directory = path.parent_path(); + + scene.meshes.clear(); + scene.vertexGroups.clear(); + scene.materials.clear(); + scene.textures.clear(); + scene.samplers.clear(); + + // file has to contain at least one mesh + if (sceneObjects.meshes.empty()) { + vkcv_log(LogLevel::ERROR, "No meshes found! (%s)", path.c_str()); + return ASSET_ERROR; + } else { + scene.meshes.reserve(sceneObjects.meshes.size()); + + for (size_t i = 0; i < sceneObjects.meshes.size(); i++) { + Mesh mesh; + mesh.name = sceneObjects.meshes[i].name; + + if (loadVertexGroups(sceneObjects.meshes[i], sceneObjects, scene, mesh) != ASSET_SUCCESS) { + vkcv_log(LogLevel::ERROR, "Failed to load vertex groups of '%s'! (%s)", + mesh.name.c_str(), path.c_str()); + return ASSET_ERROR; + } + + scene.meshes.push_back(mesh); + } + + // This only works if the node has a mesh and it only loads the meshes and ignores cameras and lights + for (const auto& node : sceneObjects.nodes) { + if ((node.mesh >= 0) && (node.mesh < scene.meshes.size())) { + scene.meshes[node.mesh].modelMatrix = calculateModelMatrix( + node.translation, + node.scale, + node.rotation, + node.matrix + ); + } + } + } + + if (sceneObjects.samplers.empty()) { + vkcv_log(LogLevel::WARNING, "No samplers found! (%s)", path.c_str()); + } else { + scene.samplers.reserve(sceneObjects.samplers.size()); + + for (const auto &samplerObject : sceneObjects.samplers) { + scene.samplers.push_back(loadSampler(samplerObject)); + } + } + + if (sceneObjects.textures.empty()) { + vkcv_log(LogLevel::WARNING, "No textures found! (%s)", path.c_str()); + } else { + scene.textures.reserve(sceneObjects.textures.size()); + + for (const auto& textureObject : sceneObjects.textures) { + Texture texture; + + if (textureObject.sampler < 0) { + texture.sampler = -1; + } else + if (static_cast<size_t>(textureObject.sampler) >= scene.samplers.size()) { + vkcv_log(LogLevel::ERROR, "Sampler of texture '%s' missing (%s) %d", + textureObject.name.c_str(), path.c_str()); + return ASSET_ERROR; + } else { + texture.sampler = textureObject.sampler; + } + + if ((textureObject.source < 0) || + (static_cast<size_t>(textureObject.source) >= sceneObjects.images.size())) { + vkcv_log(LogLevel::ERROR, "Failed to load texture '%s' (%s)", + textureObject.name.c_str(), path.c_str()); + return ASSET_ERROR; + } + + const auto& image = sceneObjects.images[textureObject.source]; + + if (image.uri.empty()) { + const fx::gltf::BufferView bufferView = sceneObjects.bufferViews[image.bufferView]; + + texture.path.clear(); + texture.data.resize(bufferView.byteLength); + memcpy(texture.data.data(), + sceneObjects.buffers[bufferView.buffer].data.data() + bufferView.byteOffset, + bufferView.byteLength); + } else { + texture.path = directory / image.uri; + } + + scene.textures.push_back(texture); + } + } + + if (sceneObjects.materials.empty()) { + vkcv_log(LogLevel::WARNING, "No materials found! (%s)", path.c_str()); + } else { + scene.materials.reserve(sceneObjects.materials.size()); + + for (auto material : sceneObjects.materials) { + scene.materials.push_back({ + generateTextureMask(material), + material.pbrMetallicRoughness.baseColorTexture.index, + material.pbrMetallicRoughness.metallicRoughnessTexture.index, + material.normalTexture.index, + material.occlusionTexture.index, + material.emissiveTexture.index, + { + material.pbrMetallicRoughness.baseColorFactor[0], + material.pbrMetallicRoughness.baseColorFactor[1], + material.pbrMetallicRoughness.baseColorFactor[2], + material.pbrMetallicRoughness.baseColorFactor[3] + }, + material.pbrMetallicRoughness.metallicFactor, + material.pbrMetallicRoughness.roughnessFactor, + material.normalTexture.scale, + material.occlusionTexture.strength, + { + material.emissiveFactor[0], + material.emissiveFactor[1], + material.emissiveFactor[2] + } + }); + } + } + + return ASSET_SUCCESS; + } + + /** + * Loads and decodes the textures data based on the textures file path. + * The path member is the only one that has to be initialized before + * calling this function, the others (width, height, channels, data) + * are set by this function and the sampler is of no concern here. + */ + static int loadTextureData(Texture& texture) { + if ((texture.width > 0) && (texture.height > 0) && (texture.channels > 0) && + (!texture.data.empty())) { + return ASSET_SUCCESS; // Texture data was loaded already! + } + + uint8_t* data; + + if (texture.path.empty()) { + data = stbi_load_from_memory( + reinterpret_cast<uint8_t*>(texture.data.data()), + static_cast<int>(texture.data.size()), + &texture.width, + &texture.height, + &texture.channels, 4 + ); + } else { + data = stbi_load( + texture.path.string().c_str(), + &texture.width, + &texture.height, + &texture.channels, 4 + ); + } + + if (!data) { + vkcv_log(LogLevel::ERROR, "Texture could not be loaded from '%s'", + texture.path.c_str()); + + texture.width = 0; + texture.height = 0; + texture.channels = 0; + return ASSET_ERROR; + } + + texture.data.resize(texture.width * texture.height * 4); + memcpy(texture.data.data(), data, texture.data.size()); + stbi_image_free(data); + + return ASSET_SUCCESS; + } -TextureData loadTexture(const std::filesystem::path& path) { - TextureData texture; - - uint8_t* data = stbi_load(path.string().c_str(), &texture.width, &texture.height, &texture.componentCount, 4); - - if (!data) { - vkcv_log(LogLevel::ERROR, "Texture could not be loaded from '%s'", path.c_str()); - - texture.width = 0; - texture.height = 0; - texture.componentCount = 0; - return texture; - } - - texture.data.resize(texture.width * texture.height * 4); - memcpy(texture.data.data(), data, texture.data.size()); - return texture; -} + int loadMesh(Scene &scene, int index) { + if ((index < 0) || (static_cast<size_t>(index) >= scene.meshes.size())) { + vkcv_log(LogLevel::ERROR, "Mesh index out of range: %d", index); + return ASSET_ERROR; + } + + const Mesh &mesh = scene.meshes[index]; + + for (const auto& vg : mesh.vertexGroups) { + const VertexGroup &vertexGroup = scene.vertexGroups[vg]; + const Material& material = scene.materials[vertexGroup.materialIndex]; + + if (material.hasTexture(PBRTextureTarget::baseColor)) { + const int result = loadTextureData(scene.textures[material.baseColor]); + if (ASSET_SUCCESS != result) { + vkcv_log(LogLevel::ERROR, "Failed loading baseColor texture of mesh '%s'", + mesh.name.c_str()) + return result; + } + } + + if (material.hasTexture(PBRTextureTarget::metalRough)) { + const int result = loadTextureData(scene.textures[material.metalRough]); + if (ASSET_SUCCESS != result) { + vkcv_log(LogLevel::ERROR, "Failed loading metalRough texture of mesh '%s'", + mesh.name.c_str()) + return result; + } + } + + if (material.hasTexture(PBRTextureTarget::normal)) { + const int result = loadTextureData(scene.textures[material.normal]); + if (ASSET_SUCCESS != result) { + vkcv_log(LogLevel::ERROR, "Failed loading normal texture of mesh '%s'", + mesh.name.c_str()) + return result; + } + } + + if (material.hasTexture(PBRTextureTarget::occlusion)) { + const int result = loadTextureData(scene.textures[material.occlusion]); + if (ASSET_SUCCESS != result) { + vkcv_log(LogLevel::ERROR, "Failed loading occlusion texture of mesh '%s'", + mesh.name.c_str()) + return result; + } + } + + if (material.hasTexture(PBRTextureTarget::emissive)) { + const int result = loadTextureData(scene.textures[material.emissive]); + if (ASSET_SUCCESS != result) { + vkcv_log(LogLevel::ERROR, "Failed loading emissive texture of mesh '%s'", + mesh.name.c_str()) + return result; + } + } + } + + return ASSET_SUCCESS; + } + + int loadScene(const std::filesystem::path &path, Scene &scene) { + int result = probeScene(path, scene); + + if (result != ASSET_SUCCESS) { + vkcv_log(LogLevel::ERROR, "Loading scene failed '%s'", + path.c_str()); + return result; + } + + for (size_t i = 0; i < scene.meshes.size(); i++) { + result = loadMesh(scene, static_cast<int>(i)); + + if (result != ASSET_SUCCESS) { + vkcv_log(LogLevel::ERROR, "Loading mesh with index %d failed '%s'", + static_cast<int>(i), path.c_str()); + return result; + } + } + + return ASSET_SUCCESS; + } + + Texture loadTexture(const std::filesystem::path& path) { + Texture texture; + texture.path = path; + texture.sampler = -1; + if (loadTextureData(texture) != ASSET_SUCCESS) { + texture.path.clear(); + texture.w = texture.h = texture.channels = 0; + texture.data.clear(); + } + return texture; + } } diff --git a/projects/mesh_shader/.gitignore b/projects/mesh_shader/.gitignore index 7e24fd7b853bfb0a29d8b30879ef1cb95ad141c0..54601c357bf3fb97b914a6e657c042a5c6a985d7 100644 --- a/projects/mesh_shader/.gitignore +++ b/projects/mesh_shader/.gitignore @@ -1 +1 @@ -first_triangle \ No newline at end of file +mesh_shader diff --git a/src/vkcv/BufferManager.cpp b/src/vkcv/BufferManager.cpp index cfa233290b89702f196ed97c706254e002a0551b..1998198513b18d061446201f178ccd96cb7d5b6a 100644 --- a/src/vkcv/BufferManager.cpp +++ b/src/vkcv/BufferManager.cpp @@ -49,7 +49,7 @@ namespace vkcv { usageFlags = vk::BufferUsageFlagBits::eIndexBuffer; break; default: - // TODO: maybe an issue + vkcv_log(LogLevel::WARNING, "Unknown buffer type"); break; } @@ -81,6 +81,10 @@ namespace vkcv { break; } + if (type == BufferType::STAGING) { + memoryUsage = vma::MemoryUsage::eCpuToGpu; + } + auto bufferAllocation = allocator.createBuffer( vk::BufferCreateInfo(createFlags, size, usageFlags), vma::AllocationCreateInfo(