Skip to content
Snippets Groups Projects
Commit 1b6d9511 authored by Dr. Hamed Khalili's avatar Dr. Hamed Khalili
Browse files

Upload New File

parent 85a39073
No related branches found
No related tags found
No related merge requests found
import pandas as pd
pd.set_option('display.max_columns', 500)
v = pd.read_excel(r"data(7).xlsx")
v_list=[]
for index,name in (enumerate(v['variant'].value_counts().index.tolist())):
v_list.append(name)
v_list.append('not_sequenced')
month_data_encoded=pd.read_excel(r"month_data_encoded.xlsx")
data_encoded=pd.read_excel(r"data_encoded.xlsx")
import tensorflow as tf
import tensorflow_probability as tfp
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import time
from sklearn.model_selection import train_test_split
model = tf.keras.models.load_model(r"convmodel")
def accuracy_score(preds, labels):
#return np.mean(np.argmax(preds, axis=1) == np.argmax(labels, axis=1))
#predictednumbers=np.argmax(preds, axis=1)
#realnumbers=np.argmax(labels, axis=1)
diff=np.subtract(preds, labels)
return np.sqrt(sum(np.power(diff, 2))/len(diff))
month_codes=[]
for index,name in (enumerate(data_encoded['month'].value_counts().index.tolist())):
#for name in['Germany']:
month=name
data_encoded_2=data_encoded.loc[(data_encoded['month'] == month)]
month_codes.append([month,[data_encoded_2.iloc[0]['month_0'],data_encoded_2.iloc[0]['month_1'] ,data_encoded_2.iloc[0]['month_2'] ,data_encoded_2.iloc[0]['month_3'] ] ])
from statistics import mean
from Big_list import Big_list
filtered = []
for i in Big_list:
if mean(i[1]) >= 6.3:
filtered.append(i)
vv=[[i[0],mean(i[1])] for i in list(filtered)]
def Sort(sub_li):
l = len(sub_li)
for i in range(0, l):
for j in range(0, l-i-1):
if (sub_li[j][1] > sub_li[j + 1][1]):
tempo = sub_li[j]
sub_li[j] = sub_li[j + 1]
sub_li[j + 1] = tempo
return sub_li
ff=Sort(vv)
ff=[ff[i][0] for i in range(0,(len(ff)-2))]
feature_list=ff
xxx_list=[]
cat_nr=100
def valuation_formula(step):
return step
for index,name in (enumerate(month_data_encoded['countriesAndTerritories'].value_counts().index.tolist())):
#for name in['Germany']:
land=name
print(land)
month_data_encoded_land=month_data_encoded.loc[(month_data_encoded['countriesAndTerritories'] == land)]
mde=month_data_encoded_land
mde=mde.drop(['dateRep', 'cases' , 'Rescd' , '7days_before_mean','7days_after_mean', 'week' ,'year' , 'index', 'month', 'countriesAndTerritories', 'va' , 'vaccin'], axis=1)
mde = mde.reindex(sorted(mde.columns), axis=1)
percent_list=[]
number_list=[-10000]
test_origin=mde
xx_list=[]
test=test_origin.copy(deep=True)
for step in [i[1] for i in month_codes]:
test['month_0'] = test.apply(lambda row: step[0], axis=1)
test['month_1'] = test.apply(lambda row: step[1], axis=1)
test['month_2'] = test.apply(lambda row: step[2], axis=1)
test['month_3'] = test.apply(lambda row: step[3], axis=1)
X_test = test.drop(labels = ["rp_zeitraum"],axis = 1)
X_test = X_test.values.reshape(-1,1,111,1)
n_mc_run = 100
#med_prob_thres = 0.35
y_pred_logits_list = [model(X_test) for _ in range(n_mc_run)] # a list of predicted logits
y_pred_prob_all = np.concatenate([tf.nn.softmax(y, axis=-1)[:, :, np.newaxis] for y in y_pred_logits_list], axis=-1)
y_predicted_list=[np.argmax([np.mean(y_pred_prob_all[idx][i]) for i in range (0,len(y_pred_prob_all[idx]))],axis=-1) for idx in range (0,len(X_test)) ]
mean_predicted=np.mean(y_predicted_list)
xx_list.append(mean_predicted)
xxx_list.append([land,'month',[[i[0] for i in month_codes],xx_list]])
print([land,'month',[[i[0] for i in month_codes],xx_list]])
print(xx_list)
for xx in feature_list:
print(xx)
xx_list=[]
test=test_origin.copy(deep=True)
for step in [0,1.0]:
test[xx] = test.apply(lambda row: valuation_formula(step), axis=1)
if xx in v_list:
vv_list=v_list.copy()
vv_list.remove(xx)
for i in vv_list:
test[i] = test[i].multiply(1-step)
X_test = test.drop(labels = ["rp_zeitraum"],axis = 1)
X_test = X_test.values.reshape(-1,1,111,1)
n_mc_run = 100
#med_prob_thres = 0.35
y_pred_logits_list = [model(X_test) for _ in range(n_mc_run)] # a list of predicted logits
y_pred_prob_all = np.concatenate([tf.nn.softmax(y, axis=-1)[:, :, np.newaxis] for y in y_pred_logits_list], axis=-1)
y_predicted_list=[np.argmax([np.mean(y_pred_prob_all[idx][i]) for i in range (0,len(y_pred_prob_all[idx]))],axis=-1) for idx in range (0,len(X_test)) ]
mean_predicted=np.mean(y_predicted_list)
xx_list.append(mean_predicted)
xxx_list.append([land,xx,xx_list])
print([land,xx,xx_list])
with open('xxx_list_r.py', 'w') as w:
w.write('xxx_list_r = %s' % xxx_list)
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment