Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
covid_ai_project
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Dr. Hamed Khalili
covid_ai_project
Commits
548dfe8f
Commit
548dfe8f
authored
1 year ago
by
Dr. Hamed Khalili
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
e0858398
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
p_1/code/similar_tmux_file_to_computing_the_virus_efficiency.txt
+222
-0
222 additions, 0 deletions
...e/similar_tmux_file_to_computing_the_virus_efficiency.txt
with
222 additions
and
0 deletions
p_1/code/similar_tmux_file_to_computing_the_virus_efficiency.txt
0 → 100644
+
222
−
0
View file @
548dfe8f
###******************************HALLO*******************************
import pandas as pd
data_encoded =pd.read_excel("data_encoded.xlsx")
ml= ['B.1.617.2','B.1.1.7','BA.2']
cs=['Netherlands','Czechia','Lithuania','Austria','Poland','Slovenia','Estonia','Italy','Slovakia','Ireland','Denmark',
'Iceland','Cyprus','Greece','Belgium','Bulgaria','France','Germany','Latvia','Spain','Norway','Romania','Liechtenstein',
'Portugal','Luxembourg','Hungary','Malta','Croatia','Finland','Sweden']
###***************************BAYESIAN GOVERMENT COVID APPLICATION**************************************************WRITEN BY:
###********************************************************************************************************HAMED KHALILI***********
###***************************INPUTS OF THE PROGRAM********************************************************************************************
ml.sort()
import pandas as pd
import base64
azResults=[]
Results=[]
for cns in cs:
country=[cns]#
for tage in [7]:
for massnahme in ml:
incidence_days_number=tage
print(incidence_days_number)
X=[massnahme]
print(X)
#X=['MasksMandatoryAllSpaces','MasksMandatoryClosedSpaces']
method="hierarchical"#or#pooled#or#unpooled
###********************************************************************************************************************************************
#['ClosDaycare','ClosDaycarePartial','ClosPrimPartial','ClosSecPartial','ClosPrim','ClosSec','ClosHighPartial','ClosHigh']
#['RestaurantsCafes','RestaurantsCafesPartial']
#['GymsSportsCentres','GymsSportsCentresPartial']
#['Teleworking','TeleworkingPartial','WorkplaceClosuresPartial','AdaptationOfWorkplace','AdaptationOfWorkplacePartial','WorkplaceClosures']
#['MasksMandatoryClosedSpacesPartial','MasksMandatoryAllSpaces','MasksMandatoryClosedSpaces','MasksMandatoryAllSpacesPartial']
#y_pred =this is almost identical to y_est except we do not specify the observed data. PyMC considers this to be a stochastic node
#(as opposed to an observed node) and as the MCMC sampler runs - it also samples data from y_est.
"""
['Netherlands','Czechia','Lithuania','Austria','Poland','Slovenia','Estonia','Italy','Slovakia','Ireland','Denmark',
'Iceland','Cyprus','Greece','Belgium','Bulgaria','France','Germany','Latvia','Spain','Norway','Romania','Liechtenstein',
'Portugal','Luxembourg','Hungary','Malta','Croatia','Finland','Sweden']
['EntertainmentVenuesPartial','RestaurantsCafesPartial','EntertainmentVenues','MassGatherAll','ClosSec','GymsSportsCentresPartial','ClosPrim',
'NonEssentialShopsPartial','ClosPubAnyPartial','RestaurantsCafes','GymsSportsCentres','MassGather50','PrivateGatheringRestrictions',
'MassGatherAllPartial',
'ClosHigh','NonEssentialShops','ClosSecPartial','OutdoorOver500','ClosDaycare','BanOnAllEvents','IndoorOver500','QuarantineForInternationalTravellers',
'ClosHighPartial','IndoorOver100','Teleworking','ClosPubAny','PlaceOfWorshipPartial','MasksMandatoryClosedSpacesPartial','MassGather50Partial',
'StayHomeOrderPartial','OutdoorOver100','IndoorOver50','ClosPrimPartial','PrivateGatheringRestrictionsPartial','MasksMandatoryClosedSpaces',
'OutdoorOver1000','TeleworkingPartial','MasksMandatoryAllSpaces','OutdoorOver50','StayHomeOrder','QuarantineForInternationalTravellersPartial',
'MasksMandatoryAllSpacesPartial','StayHomeGen','PlaceOfWorship','ClosDaycarePartial','IndoorOver1000','BanOnAllEventsPartial',
'HotelsOtherAccommodationPartial',
'StayHomeRiskG','ClosureOfPublicTransportPartial','AdaptationOfWorkplace','HotelsOtherAccommodation','MasksVoluntaryClosedSpacesPartial',
'RegionalStayHomeOrderPartial','AdaptationOfWorkplacePartial','MasksVoluntaryAllSpaces','MasksVoluntaryAllSpacesPartial','MasksVoluntaryClosedSpaces',
'SocialCircle','WorkplaceClosures','RegionalStayHomeOrder','ClosureOfPublicTransport','StayHomeGenPartial','WorkplaceClosuresPartial',
'StayHomeRiskGPartial','SocialCirclePartial']
"""
###************MAIN BODY OF THE PROGRAM****************************************************************************************************
def add_elemant(element,lis,j):
for i in lis:
if element in i:
return i[j]
colors = ['#348ABD', '#A60628', '#7A68A6', '#467821', '#D55E00', '#CC79A7', '#56B4E9', '#009E73', '#F0E442', '#0072B2']
import pandas as pd
import datetime
from datetime import timedelta
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
import seaborn as sns
import arviz as az
import itertools
import matplotlib.pyplot as plt
import numpy as np
import pymc3 as pm
import scipy
import scipy.stats as stats
from IPython.display import Image
from sklearn import preprocessing
import pandas as pd
import datetime
from IPython.display import display
def f(r,tr):
for i in tr:
if i ==r:
return "+"#+str(tr).replace(",", " or")
else:
return "-"#+str(tr).replace(",", " or")
#if method=="hierarchical":
#liss=[]
responses_plus=[]
responses_minus=[]
#liss_plus = pd.DataFrame({'country':[],'mean':[],'std':[],'count+':[],'count-':[],'mean+':[],'mean-':[],'std+':[],'std-':[]})
#for idx, name in (enumerate(cb['countriesAndTerritories'].value_counts().index.tolist())):
for name in country:
land=name
CBook=data_encoded.loc[(data_encoded['countriesAndTerritories'] == land)]
CBook=CBook.reset_index()
CBook['rpn_minus_one'+str(incidence_days_number)] = pd.Series(dtype='float')
CBook = CBook.replace(np.nan, 0)
for i in range (0,len(CBook)):
#caesdayNplusone=CBook.loc[i+incidence_days_number, ['cases']].to_list()[0]
#averagecasesdayoneafter=sum(CBook.iloc[i:i+incidence_days_number]['cases'].values)/incidence_days_number
#averagecasesdayonebefore=sum(CBook.iloc[i-incidence_days_number:i]['cases'].values)/incidence_days_number
#if averagecasesdayonetoNminusone ==0:
#print("00000000")
CBook.loc[i, ['rpn_minus_one'+str(incidence_days_number)]]=CBook.iloc[i]['7days_after_mean']/CBook.iloc[i]['7days_before_mean']-1
mass='rpn_minus_one'+str(incidence_days_number)
CBook[str(X[0]).replace(",", " or")+''+ 'Rescd'] = CBook.apply(lambda row: land+f(row['dominant_virus'],X), axis=1)
#CBook[str(X[0]).replace(",", " or")+''+ 'Rescd'].value_counts()
m=CBook.iloc[:]['rpn_minus_one7'].mean()
s=CBook.iloc[:]['rpn_minus_one7'].std()
CBook_plus=CBook[(CBook.iloc[:][str(X[0]).replace(",", " or")+''+ 'Rescd'] == land+"+")]
CBook_minus=CBook[(CBook.iloc[:][str(X[0]).replace(",", " or")+''+ 'Rescd'] == land+"-")]
#print(len(CBook_minus))
df=CBook_minus
le_plus = preprocessing.LabelEncoder()
le_minus = preprocessing.LabelEncoder()
rc=str(X[0]).replace(",", " or")+''+ 'Rescd'
clm_plus=CBook_plus[rc]
clm_minus=CBook_minus[rc]
response_idx_plus = le_plus.fit_transform(clm_plus)
response_idx_minus = le_minus.fit_transform(clm_minus)
response_plus = le_plus.classes_
response_minus = le_minus.classes_
#number_of_response_plus=len(response_plus)
#number_of_response_minus=len(response_minus)
#for i in range(0, number_of_response_codes):
if len(response_plus)==0:
response_plus=[land+"+",[]]
responses_plus.append(response_plus)
else:
response_plus[0]=[response_plus[0],CBook_plus[clm_plus==response_plus[0]][mass].values.tolist()]
responses_plus.append(response_plus[0])
if len(response_minus)==0:
response_minus=[land+"-",[]]
responses_minus.append(response_minus)
else:
response_minus[0]=[response_minus[0],CBook_minus[clm_minus==response_minus[0]][mass].values.tolist()]
responses_minus.append(response_minus[0])
responses=responses_minus+responses_plus
#s_plus=0
#s_minus=0
m_plus=CBook_plus.iloc[:]['rpn_minus_one7'].mean()
#if responses[1][1]!=[]:
s_plus=CBook_plus.iloc[:]['rpn_minus_one7'].std()
m_minus=CBook_minus.iloc[:]['rpn_minus_one7'].mean()
#if responses[0][1]!=[]:
s_minus=CBook_minus.iloc[:]['rpn_minus_one7'].std()
#responses=responses_minus+responses_plus
with pm.Model() as model:
hyper_mu_parameter=pm.Normal('hyper_mu_parameter', mu=m,sd=s)#
if len(responses[1][1])<=1 or len(responses[0][1])<=1:
hyper_sd_parameter=s
#pm.Exponential("hyper_sd_parameter", lam=1/std_mean_positive)#
#hyper_sd_error_parameter=pm.Uniform('hyper_sd_error_parameter', lower=std_min_positive,upper=std_max_positive)
else:
hyper_sd_parameter=pm.Uniform('hyper_sd_parameter', lower=min(s_minus,s_plus),upper=max(s_minus,s_plus))
hyper_nu_parameter=pm.Uniform('hyper_nu_parameter', lower=0,upper=30)
#phi_mean=pm.Uniform('phi_mean', lower=0,upper=1)
#phi_std=pm.Uniform('phi_std', lower=0,upper=1)
mu = dict()
sd=dict()
incidence = dict()
incidence_pred=dict()
#name_plus=responses_plus[0][0]
#observed_plus=responses_plus[0][1]
#name_minus=responses_minus[0][0]
#observed_minus=responses_minus[0][1]
#nu[name] = pm.Uniform('nu_'+name, lower=0,upper=30)
for name,observed in responses:
#std_land=s
mu[name] = pm.Normal('mu_'+name, mu=hyper_mu_parameter,sd=hyper_sd_parameter)
sd[name] = pm.Exponential('sd_'+name, lam=1/hyper_sd_parameter)
#if len(observed_plus)==0:
#incidence[name_plus] = pm.StudentT(name_plus,nu=hyper_nu_parameter_plus, mu=mu[name_plus], sigma=sd[name_plus] )
if len(observed)!=0:
incidence[name] = pm.StudentT(name,nu=hyper_nu_parameter, mu=mu[name], sigma=sd[name] ,observed=observed)
incidence_pred[name] = pm.StudentT('incidence_pred'+name,nu=hyper_nu_parameter, mu=mu[name], sigma=sd[name] )
sample_number=1000
model_trace = pm.sample(sample_number,target_accept = 0.99)
azsum=az.summary(model_trace)
azResults.append([incidence_days_number,X,list(azsum.index),list(azsum.columns),azsum.values.tolist()])
def prob_responsea_efficient_over_responseb(responsea, responseb):
l=[]
for i in range(1000):
a=model_trace.get_values('incidence_pred'+responsea)
np.random.shuffle(a)
b=model_trace.get_values('incidence_pred'+responseb)
np.random.shuffle(b)
l.append(np.float(sum(a < b))/len(a))
return l
resu=[]
from statistics import mean
effdis=prob_responsea_efficient_over_responseb(land+"+", land+"-")
resu.append([land,[min (effdis),mean(effdis),max(effdis)]])
Results.append([incidence_days_number,X,resu])
score=Results
azscore=azResults
with open('virus_Resultsfile7.py', 'w') as f:
f.write('score = %s' % score)
with open('virus_azResultsfile7.py', 'w') as azf:
azf.write('azscore = %s' % azscore)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment