Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
covid_ai_project
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Dr. Hamed Khalili
covid_ai_project
Commits
70d1b5f1
Commit
70d1b5f1
authored
1 year ago
by
Dr. Hamed Khalili
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
9775b30b
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
p_2/code/generating_data___month_encoded.ipynb
+2497
-0
2497 additions, 0 deletions
p_2/code/generating_data___month_encoded.ipynb
with
2497 additions
and
0 deletions
p_2/code/generating_data___month_encoded.ipynb
0 → 100644
+
2497
−
0
View file @
70d1b5f1
{
"cells": [
{
"cell_type": "code",
"execution_count": 9,
"id": "0127991b-fa6f-4dd8-bb75-c12beaffde73",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"7\n"
]
}
],
"source": [
"###******************************HALLO*******************************\n",
"\n",
"\n",
"###***************************BAYESIAN GOVERMENT COVID APPLICATION**************************************************WRITEN BY:\n",
"###********************************************************************************************************HAMED KHALILI***********\n",
"###***************************INPUTS OF THE PROGRAM********************************************************************************************\n",
"#import pandas as pd\n",
"#import base64\n",
"import pandas as pd\n",
"incidence_days_number=7\n",
"CBook_i=pd.DataFrame({'index':[] ,'countriesAndTerritories':[], 'dateRep':[], 'cases':[] ,'Rescd':[] ,str(incidence_days_number)+'days_before_mean':[], str(incidence_days_number)+'days_after_mean':[] })\n",
"countries=['Netherlands','Germany']#\n",
"for tage in [7]:\n",
" \n",
" incidence_days_number=tage\n",
" print(incidence_days_number)\n",
"\n",
"\n",
"\n",
"\n",
"#X=['MasksMandatoryAllSpaces','MasksMandatoryClosedSpaces']\n",
"\n",
"\n",
" method=\"hierarchical\"#or#pooled#or#unpooled\n",
" ###********************************************************************************************************************************************\n",
" #['ClosDaycare','ClosDaycarePartial','ClosPrimPartial','ClosSecPartial','ClosPrim','ClosSec','ClosHighPartial','ClosHigh']\n",
" #['RestaurantsCafes','RestaurantsCafesPartial']\n",
" #['GymsSportsCentres','GymsSportsCentresPartial']\n",
" #['Teleworking','TeleworkingPartial','WorkplaceClosuresPartial','AdaptationOfWorkplace','AdaptationOfWorkplacePartial','WorkplaceClosures']\n",
" #['MasksMandatoryClosedSpacesPartial','MasksMandatoryAllSpaces','MasksMandatoryClosedSpaces','MasksMandatoryAllSpacesPartial']\n",
" #y_pred =this is almost identical to y_est except we do not specify the observed data. PyMC considers this to be a stochastic node \n",
" #(as opposed to an observed node) and as the MCMC sampler runs - it also samples data from y_est.\n",
"\n",
" \"\"\"\n",
" ['Netherlands','Czechia','Lithuania','Austria','Poland','Slovenia','Estonia','Italy','Slovakia','Ireland','Denmark',\n",
" 'Iceland','Cyprus','Greece','Belgium','Bulgaria','France','Germany','Latvia','Spain','Norway','Romania','Liechtenstein',\n",
" 'Portugal','Luxembourg','Hungary','Malta','Croatia','Finland','Sweden']\n",
"\n",
" ['EntertainmentVenuesPartial','RestaurantsCafesPartial','EntertainmentVenues','MassGatherAll','ClosSec','GymsSportsCentresPartial','ClosPrim',\n",
" 'NonEssentialShopsPartial','ClosPubAnyPartial','RestaurantsCafes','GymsSportsCentres','MassGather50','PrivateGatheringRestrictions',\n",
" 'MassGatherAllPartial',\n",
" 'ClosHigh','NonEssentialShops','ClosSecPartial','OutdoorOver500','ClosDaycare','BanOnAllEvents','IndoorOver500','QuarantineForInternationalTravellers',\n",
" 'ClosHighPartial','IndoorOver100','Teleworking','ClosPubAny','PlaceOfWorshipPartial','MasksMandatoryClosedSpacesPartial','MassGather50Partial',\n",
" 'StayHomeOrderPartial','OutdoorOver100','IndoorOver50','ClosPrimPartial','PrivateGatheringRestrictionsPartial','MasksMandatoryClosedSpaces',\n",
" 'OutdoorOver1000','TeleworkingPartial','MasksMandatoryAllSpaces','OutdoorOver50','StayHomeOrder','QuarantineForInternationalTravellersPartial',\n",
" 'MasksMandatoryAllSpacesPartial','StayHomeGen','PlaceOfWorship','ClosDaycarePartial','IndoorOver1000','BanOnAllEventsPartial',\n",
" 'HotelsOtherAccommodationPartial',\n",
" 'StayHomeRiskG','ClosureOfPublicTransportPartial','AdaptationOfWorkplace','HotelsOtherAccommodation','MasksVoluntaryClosedSpacesPartial',\n",
" 'RegionalStayHomeOrderPartial','AdaptationOfWorkplacePartial','MasksVoluntaryAllSpaces','MasksVoluntaryAllSpacesPartial','MasksVoluntaryClosedSpaces',\n",
" 'SocialCircle','WorkplaceClosures','RegionalStayHomeOrder','ClosureOfPublicTransport','StayHomeGenPartial','WorkplaceClosuresPartial',\n",
" 'StayHomeRiskGPartial','SocialCirclePartial']\n",
"\n",
"\n",
" \"\"\"\n",
" ###************MAIN BODY OF THE PROGRAM****************************************************************************************************\n",
"\n",
" def add_elemant(element,lis,j):\n",
" for i in lis:\n",
" if element in i:\n",
" return i[j]\n",
"\n",
"\n",
" colors = ['#348ABD', '#A60628', '#7A68A6', '#467821', '#D55E00', '#CC79A7', '#56B4E9', '#009E73', '#F0E442', '#0072B2']\n",
" import pandas as pd\n",
" import datetime\n",
" from datetime import timedelta\n",
" import warnings\n",
" warnings.filterwarnings(\"ignore\", category=FutureWarning)\n",
" import seaborn as sns\n",
" #import arviz as az\n",
" import itertools\n",
" import matplotlib.pyplot as plt\n",
" import numpy as np\n",
" # import pymc3 as pm\n",
" # import scipy\n",
" #import scipy.stats as stats\n",
" from IPython.display import Image\n",
" from sklearn import preprocessing\n",
" import pandas as pd\n",
" import datetime\n",
" from IPython.display import display\n",
"\n",
" \n",
" cb =pd.read_excel(r\"C:\\Users\\Hamed\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\Programs\\Anaconda3 (64-bit)\\datac.xlsx\")\n",
" measures =pd.read_excel(r\"C:\\Users\\Hamed\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\Programs\\Anaconda3 (64-bit)\\response_graphs.xlsx\")\n",
"\n",
"\n",
"\n",
"\n",
"\n",
" #if method==\"hierarchical\":\n",
"\n",
"\n",
"\n",
" #liss=[]\n",
"\n",
"\n",
" responses_plus=[]\n",
" responses_minus=[]\n",
" liss_plus = pd.DataFrame({'country':[],'mean':[],'std':[],'count+':[],'count-':[],'mean+':[],'mean-':[],'std+':[],'std-':[]})\n",
" for index,name in (enumerate(cb['countriesAndTerritories'].value_counts().index.tolist())):\n",
" #for name in['Germany']:\n",
" land=name\n",
" cb_2=cb.loc[(cb['countriesAndTerritories'] == land)]\n",
" cb_2=cb_2[['countriesAndTerritories','dateRep','cases']].iloc[::-1]\n",
" #cb=cb[(cb['dateRep']>=datetime.date(2020,2,3))] # df[(df['date']>datetime.date(2016,1,1))\n",
" cb_2['dateRep'] = pd.to_datetime(cb_2['dateRep'], format='%d/%m/%Y')\n",
" #cb_2=cb_2.loc[cb_2['dateRep']>='2020-03-02']\n",
" cb_2['cases'].values[cb_2['cases']<0] = cb_2['cases'].values[cb_2['cases']<0]*(-1)\n",
" cb_2['cases'].values[cb_2['cases']==0]=1\n",
" if cb_2.isnull().values.any():\n",
" cb_2['cases']=cb_2['cases'].interpolate()\n",
"\n",
" cb_2=cb_2.reset_index()\n",
" measures_2=measures.loc[(measures['Country'] == land)]\n",
" if measures_2.isnull().values.any():\n",
" #print(measures_2[measures_2['E'].isna()])\n",
" measures_2=measures_2.dropna()\n",
" measures_2=measures_2.reset_index()\n",
" cooBook=cb_2\n",
" lst=[]\n",
" cooBook[\"Rescd\"] = [list() for x in range(len(cooBook.index))]\n",
" measures_2['A'] = pd.to_datetime(measures_2['A'], format='%d/%m/%Y')\n",
" measures_2['E'] = pd.to_datetime(measures_2['E'], format='%d/%m/%Y')\n",
" for i in range (0,len(measures_2)):\n",
" #col=\"rc\"#(measures['Measure'][i])\n",
" A=(measures_2['A'][i])\n",
" E=(measures_2['E'][i]++ timedelta(days=1))\n",
" #if col not in coBook.columns:\n",
" #coBook[col] = pd.Series(dtype='int')\n",
"\n",
" for j in range (0,len(cooBook)): \n",
" date=cooBook['dateRep'][j]\n",
" #date_E=coBook['time_iso8601'][j-1]\n",
" #if coBook[col][j] != 1:\n",
" if date>=A and date<=E:\n",
" cooBook[\"Rescd\"][j].append(measures_2['Measure'][i])\n",
" CBook=cooBook\n",
"\n",
" #CBook['daily_cases']=CBook['daily_cases'].diff()\n",
" #CBook=CBook[1::]\n",
" #CBook=CBook.reset_index()\n",
"\n",
" CBook[str(incidence_days_number)+'days_before_mean'] = pd.Series(dtype='float')\n",
" CBook[str(incidence_days_number)+'days_after_mean'] = pd.Series(dtype='float')\n",
" CBook = CBook.replace(np.nan, 0)\n",
" for i in range (incidence_days_number,len(CBook)-incidence_days_number):\n",
" caesdayNplusone=CBook.loc[i+incidence_days_number, ['cases']].to_list()[0]\n",
" averagecasesdayonetoNminusone_forward=sum(CBook.iloc[i:i+incidence_days_number]['cases'].values)/incidence_days_number\n",
" averagecasesdayonetoNminusone_backward=sum(CBook.iloc[i-incidence_days_number:i]['cases'].values)/incidence_days_number\n",
" #if averagecasesdayonetoNminusone ==0:\n",
" #print(\"00000000\")\n",
" CBook.loc[i, [str(incidence_days_number)+'days_after_mean']]=averagecasesdayonetoNminusone_forward#/averagecasesdayonetoNminusone_backward-1\n",
" CBook.loc[i, [str(incidence_days_number)+'days_before_mean']]=averagecasesdayonetoNminusone_backward\n",
" CBook=CBook.loc[ (CBook['dateRep']>=min(CBook[incidence_days_number::]['dateRep']))] \n",
"\n",
" #operator=\"or\"\n",
" #mass='rpn_minus_one'+str(incidence_days_number)\n",
" #CBook[mass]=CBook[mass].pct_change()\n",
" #CBook=CBook.iloc[1: , :]\n",
" #CBook[[mass]] = CBook[[mass]].apply(lambda x: 100*x) \n",
" data_collecting_start_date=min(measures_2['A'])\n",
" data_collecting_end_date=max(measures_2['E'])\n",
" if land== 'Hungary':#03/03/2020-11/06/2021 for Hungary\n",
" data_collecting_start_date='2020-03-11'\n",
" data_collecting_end_date='2021-06-11'\n",
" if land== 'Iceland':#23/07/2020-03/12/2021 for \n",
" data_collecting_start_date='2020-07-23'\n",
" data_collecting_end_date='2020-12-04' \n",
" if land== 'Liechtenstein':# 01/10/2020-24/10/2022 for Liechtenstein \n",
" data_collecting_start_date='2020-12-31'\n",
" data_collecting_end_date='2022-03-31'#2020-03-10 14.04.2022\n",
" if land== 'Cyprus':# 01/10/2020-24/10/2022 for Liechtenstein \n",
" data_collecting_start_date='2020-10-03'\n",
" data_collecting_end_date='2022-04-14'#2020-03-10 14.04.2022\n",
" if land== 'Germany':# 01/10/2020-24/10/2022 for Liechtenstein \n",
" data_collecting_start_date='2020-02-24'\n",
" if land== 'Ireland':# 01/10/2020-24/10/2022 for Liechtenstein \n",
" data_collecting_start_date='2020-03-02'\n",
"\n",
" CBook=CBook.loc[ (CBook['dateRep']>=data_collecting_start_date) ]\n",
" CBook=CBook.loc[ (CBook['dateRep']<=data_collecting_end_date) ]\n",
" CBook_i=pd.concat([CBook_i, CBook], axis=0)\n",
"#CBook_i\n",
"\n",
"\n",
"import category_encoders as ce\n",
"encoder= ce.BinaryEncoder(cols=['countriesAndTerritories'],return_df=True)\n",
"data_encoded=encoder.fit_transform(CBook_i) \n",
"\n",
"\n",
"data_encoded=pd.concat([data_encoded, data_encoded['dateRep'].dt.month%12], axis=1)\n",
"data_encoded=data_encoded.reset_index()\n",
"data_encoded.drop(data_encoded.columns[[0,1]], axis = 1, inplace = True)\n",
"data_encoded.columns=['countriesAndTerritories_0', 'countriesAndTerritories_1','countriesAndTerritories_2','countriesAndTerritories_3','countriesAndTerritories_4','dateRep','cases' ,'Rescd',str(incidence_days_number)+'days_before_mean',str(incidence_days_number)+'days_after_mean','month'] \n",
"data_encoded=pd.concat([data_encoded, data_encoded['dateRep'].dt.week], axis=1)#CBook_i['dateRep'].dt.week\n",
"data_encoded.columns=['countriesAndTerritories_0', 'countriesAndTerritories_1','countriesAndTerritories_2','countriesAndTerritories_3','countriesAndTerritories_4','dateRep','cases' ,'Rescd',str(incidence_days_number)+'days_before_mean',str(incidence_days_number)+'days_after_mean','month','week'] \n",
"data_encoded=pd.concat([data_encoded, data_encoded['dateRep'].dt.year], axis=1)#CBook_i['dateRep'].dt.week\n",
"data_encoded.columns=['countriesAndTerritories_0', 'countriesAndTerritories_1','countriesAndTerritories_2','countriesAndTerritories_3','countriesAndTerritories_4','dateRep','cases' ,'Rescd',str(incidence_days_number)+'days_before_mean',str(incidence_days_number)+'days_after_mean','month','week','year'] \n",
"\n",
"data_encoded=pd.concat([data_encoded, CBook_i[['countriesAndTerritories']].reset_index()], axis=1)\n",
"\n",
"\n",
"data_encoded['week'].mask((data_encoded['year'] == 2021) & (data_encoded['month'] ==1) & (data_encoded['week'] ==53) ,1, inplace=True)\n",
"data_encoded['week'].mask((data_encoded['year'] == 2022) & (data_encoded['month'] ==1) & (data_encoded['week'] ==52) ,1, inplace=True)\n",
"\n",
"v = pd.read_excel(r\"C:\\Users\\Hamed\\Downloads\\data(7).xlsx\")\n",
"variant_plus = pd.DataFrame({'measure':[], 'v':[],'vd':[]})\n",
"import warnings\n",
"warnings.filterwarnings(\"ignore\")\n",
"i=0\n",
"while i < len(v):\n",
" c=v.iloc[i]['country']\n",
" w=v.iloc[i]['year_week']\n",
" n=1\n",
" j=i\n",
" measure=c+w\n",
" s=[v.iloc[i]['variant']]\n",
" sp=[v.iloc[i]['percent_variant']]\n",
" while j+1< len (v) and v.iloc[j+1]['country']+v.iloc[j+1]['year_week']==measure:\n",
" # .tolist()==list(name) and :\n",
" #print(i)\n",
" s.append(v.iloc[j+1]['variant'])\n",
" sp.append(v.iloc[j+1]['percent_variant'])\n",
" n=n+1\n",
" j=j+1\n",
" #print(j)\n",
" if str(sp[0])=='nan':\n",
" s=['not_sequenced']\n",
" sp=[100]\n",
" info ={'measure':measure,'v':s,'vd':sp}\n",
" variant_plus = variant_plus.append(info, ignore_index = True)\n",
" i=j+1\n",
" \n",
"variant_plus.columns=['country_year_week', 'variants','variants_percentage'] \n",
"dist=dict()\n",
"\n",
"for i in range (0, len(variant_plus)):\n",
" dist[variant_plus.iloc[i]['country_year_week']]=[variant_plus.iloc[i]['variants'],variant_plus.iloc[i]['variants_percentage']]\n",
" \n",
" \n",
"\n",
"def valuation_formula(x, y,w):\n",
" a=x + str(y)+ '-'+ str(w)\n",
" if a in dist:\n",
" return dist[a]\n",
" else:\n",
" return [['not_sequenced'], [100]]\n",
"\n",
"data_encoded['va'] = data_encoded.apply(lambda row: valuation_formula(row['countriesAndTerritories'], row['year'],row['week']), axis=1)\n",
"\n",
"\n",
"vaccin=pd.read_excel(r\"C:\\Users\\Hamed\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\Programs\\Anaconda3 (64-bit)\\data(6).xlsx\")\n",
"\n",
"cou=[]\n",
"for idx, name in (enumerate(v['country'].value_counts().index.tolist())):\n",
" cou.append( name)\n",
"cou_cod=[]\n",
"for idx, name in (enumerate(v['country_code'].value_counts().index.tolist())):\n",
" cou_cod.append( name)\n",
" \n",
"vaccin_all=vaccin.loc[(vaccin['TargetGroup'] == 'ALL')]\n",
"\n",
"vaccin_all=vaccin_all.sort_values(by = ['ReportingCountry','YearWeekISO'])\n",
"\n",
"dist_vaccin=dict()\n",
"\n",
"\n",
"for index,name in (enumerate(vaccin_all['ReportingCountry'].value_counts().index.tolist())):\n",
" #for name in['Germany']:\n",
" land=name\n",
" vaccin_all_land=vaccin_all.loc[(vaccin_all['ReportingCountry'] == land)]\n",
" vaccin_all_land=vaccin_all_land.reset_index()\n",
" for i in range (0, len(vaccin_all_land)):\n",
" vaccin_all_land.iloc[i]['FirstDose']=vaccin_all_land.iloc[i]['FirstDose']/7\n",
" vaccin_all_land['CUMSUM_FirstDose'] = vaccin_all_land['FirstDose'].cumsum()\n",
" vaccin_all_land['CUMSUM_FirstDose'] =vaccin_all_land['CUMSUM_FirstDose'] /vaccin_all_land.iloc[0]['Population']\n",
" \n",
" vaccin_all_land.iloc[i]['SecondDose']=vaccin_all_land.iloc[i]['SecondDose']/7\n",
" vaccin_all_land['CUMSUM_SecondDose'] = vaccin_all_land['SecondDose'].cumsum()\n",
" vaccin_all_land['CUMSUM_SecondDose'] =vaccin_all_land['CUMSUM_SecondDose'] /vaccin_all_land.iloc[0]['Population']\n",
" \n",
" vaccin_all_land.iloc[i]['DoseAdditional1']=vaccin_all_land.iloc[i]['DoseAdditional1']/7\n",
" vaccin_all_land['CUMSUM_DoseAdditional1'] = vaccin_all_land['DoseAdditional1'].cumsum()\n",
" vaccin_all_land['CUMSUM_DoseAdditional1'] =vaccin_all_land['CUMSUM_DoseAdditional1'] /vaccin_all_land.iloc[0]['Population']\n",
" \n",
" vaccin_all_land.iloc[i]['DoseAdditional2']=vaccin_all_land.iloc[i]['DoseAdditional2']/7\n",
" vaccin_all_land['CUMSUM_DoseAdditional2'] = vaccin_all_land['DoseAdditional2'].cumsum()\n",
" vaccin_all_land['CUMSUM_DoseAdditional2'] =vaccin_all_land['CUMSUM_DoseAdditional2'] /vaccin_all_land.iloc[0]['Population']\n",
" \n",
" vaccin_all_land.iloc[i]['DoseAdditional3']=vaccin_all_land.iloc[i]['DoseAdditional3']/7\n",
" vaccin_all_land['CUMSUM_DoseAdditional3'] = vaccin_all_land['DoseAdditional3'].cumsum()\n",
" vaccin_all_land['CUMSUM_DoseAdditional3'] =vaccin_all_land['CUMSUM_DoseAdditional3'] /vaccin_all_land.iloc[0]['Population']\n",
" \n",
" dist_vaccin[vaccin_all_land.iloc[i]['ReportingCountry']+vaccin_all_land.iloc[i]['YearWeekISO']]=[vaccin_all_land.iloc[i]['CUMSUM_FirstDose'],vaccin_all_land.iloc[i]['CUMSUM_SecondDose'],vaccin_all_land.iloc[i]['CUMSUM_DoseAdditional1'],vaccin_all_land.iloc[i]['CUMSUM_DoseAdditional2'],vaccin_all_land.iloc[i]['CUMSUM_DoseAdditional3']]\n",
"\n",
"\n",
"for index,name in (enumerate(vaccin_all['ReportingCountry'].value_counts().index.tolist())):\n",
" land=name\n",
" for y in range(2020,2023):\n",
" for w in range(1,57):\n",
" #for name in['Germany']:\n",
" if (y==2020 and w==1 and name+str(y)+'-W'+str(w) not in dist_vaccin):\n",
" dist_vaccin[name+str(y)+'-W'+str(w)]=[0,0,0,0,0]\n",
" if (y==2020 and w>1 and name+str(y)+'-W'+str(w) not in dist_vaccin):\n",
" dist_vaccin[name+str(y)+'-W'+str(w)]=dist_vaccin[name+str(y)+'-W'+str(w-1)]\n",
" if (y==2021 and w==1 and name+str(y)+'-W'+str(w) not in dist_vaccin):\n",
" dist_vaccin[name+str(y)+'-W'+str(w)]=dist_vaccin[name+str(y-1)+'-W'+str(56)]\n",
" if (y==2021 and w>1 and name+str(y)+'-W'+str(w) not in dist_vaccin):\n",
" dist_vaccin[name+str(y)+'-W'+str(w)]=dist_vaccin[name+str(y)+'-W'+str(w-1)]\n",
" if (y==2022 and w==1 and name+str(y)+'-W'+str(w) not in dist_vaccin):\n",
" dist_vaccin[name+str(y)+'-W'+str(w)]=dist_vaccin[name+str(y-1)+'-W'+str(56)]\n",
" if (y==2022 and w>1 and name+str(y)+'-W'+str(w) not in dist_vaccin):\n",
" dist_vaccin[name+str(y)+'-W'+str(w)]=dist_vaccin[name+str(y)+'-W'+str(w-1)]\n",
"\n",
"\n",
"def valuation_formula(x,y,w):\n",
" x=cou_cod[cou.index(x)]\n",
" a=x + str(y)+ '-W'+ str(w)\n",
" if a in dist_vaccin:\n",
" return dist_vaccin[a]\n",
" else:\n",
" return [0,0,0,0,0]\n",
"\n",
"data_encoded['vaccin'] = data_encoded.apply(lambda row: valuation_formula(row['countriesAndTerritories'], row['year'],row['week']), axis=1)\n",
"\n",
"\n",
"pd.set_option('display.max_columns', 500)\n",
"v_list=['not_sequenced']\n",
"for idx, name in (enumerate(v['variant'].value_counts().index.tolist())):\n",
" v_list.append( name)\n",
"measures_list=[]\n",
"for idx, name in (enumerate(measures['Measure'].value_counts().index.tolist())):\n",
" measures_list.append( name)\n",
"def vf(x,y):\n",
" if x in y:\n",
" return 1\n",
" else:\n",
" return 0\n",
"def vf(x,y):\n",
" if x in y:\n",
" return 1\n",
" else:\n",
" return 0\n",
"\n",
"for i in measures_list:\n",
" data_encoded[i] = data_encoded.apply(lambda row: vf(i, row['Rescd']), axis=1)\n",
"def vaf(x,y):\n",
" if x in y[0]:\n",
" return y[1][y[0].index(x)]\n",
" else:\n",
" return 0\n",
"\n",
"for i in v_list:\n",
" data_encoded[i] = data_encoded.apply(lambda row: vaf(i, row['va']), axis=1)\n",
"def vac(x,i):\n",
" return x[i]\n",
" \n",
"\n",
"for i in range (0,5):\n",
" data_encoded['vaccin_'+str(i)] = data_encoded.apply(lambda row: vac(row['vaccin'],i), axis=1)\n",
"\n",
"data_encoded_i= data_encoded\n",
"\n",
"encoder= ce.BinaryEncoder(cols=['month'],return_df=True)\n",
"data_encoded=encoder.fit_transform(data_encoded) \n",
"\n",
"data_encoded=pd.concat([data_encoded, data_encoded_i[['month']]], axis=1)\n",
"writer = pd.ExcelWriter('data_encoded.xlsx', engine='xlsxwriter')\n",
"\n",
"data_encoded.to_excel('data_encoded.xlsx', sheet_name='1', index=False)\n",
"\n",
"#data_encoded\n",
"\n",
"for i in range(0,len(data_encoded)):\n",
" #if data_encoded.iloc[i]['cases']==0:\n",
" if data_encoded.iloc[i]['7days_before_mean']==0:#sum(data_encoded.iloc[i-7:i]['cases'].values)/7):\n",
" print(i,data_encoded.iloc[i]['countriesAndTerritories'],data_encoded.iloc[i]['dateRep'])\n",
"\n",
"df=data_encoded\n",
"for i in range (0, len(df)-1):\n",
" if df.iloc[i]['dateRep']+datetime.timedelta(days=1)!=df.iloc[i+1]['dateRep'] and df.iloc[i]['countriesAndTerritories']==df.iloc[i+1]['countriesAndTerritories']:\n",
" print(df.iloc[i]['countriesAndTerritories'],df.iloc[i]['dateRep'],df.iloc[i+1]['dateRep'])\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "c05338be-25fc-4cd3-b52a-0e3a2b6c8bd1",
"metadata": {},
"outputs": [],
"source": [
"data_encoded =pd.read_excel(r\"C:\\Users\\Hamed\\data_encoded.xlsx\")\n",
"df=data_encoded\n",
"nnn_data_encoded=df.head(0)\n",
"nnn_data_encoded['rp_zeitraum'] = pd.Series(dtype='float')\n",
"nnn_data_encoded = nnn_data_encoded.replace(np.nan, 0)\n",
"lll=nnn_data_encoded.columns.values.tolist()\n",
"nnn=30\n",
"\n",
"for index, name in (enumerate(df['countriesAndTerritories'].value_counts().index.tolist())):\n",
" #for name in['Germany']:\n",
" land=name\n",
" #print(land)\n",
" data_encoded_land=df.loc[(df['countriesAndTerritories'] == land)].reset_index()\n",
" for i in range (nnn-1, len(data_encoded_land)):\n",
" #data_encoded_zeitraum=data_encoded_land[i-nnn+1:i:]\n",
" rp_zeitraum=data_encoded_land.iloc[i]['7days_after_mean']/data_encoded_land.iloc[i-nnn+1]['7days_before_mean']\n",
" v=data_encoded_land[i-nnn+1:i:].drop(['dateRep', 'cases' , 'Rescd' , 'week' ,'year' , 'month', 'countriesAndTerritories', 'va' , 'vaccin' , 'index'], axis=1).mean(axis='index')\n",
" a=pd.DataFrame([v]).reset_index()\n",
" b=data_encoded_land[i:i+1:][['dateRep', 'cases' , 'Rescd' , 'week' ,'year' , 'month', 'countriesAndTerritories', 'va' , 'vaccin' , 'index']].reset_index()\n",
" c=pd.concat([a, b.reindex(a.index)], axis=1)\n",
" \n",
" c['rp_zeitraum'] = pd.Series(dtype='float')\n",
" c = c.replace(np.nan, 0)\n",
" c['rp_zeitraum']=c['rp_zeitraum'].apply(lambda x:rp_zeitraum)\n",
" c=c[lll]\n",
" c=c.drop(['index'], axis=1)\n",
" nnn_data_encoded=pd.concat([nnn_data_encoded, c], axis=0)\n",
"month_data_encoded=nnn_data_encoded"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "5b33cef1-82e3-4f8c-9c59-8a1847bf2520",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>countriesAndTerritories_0</th>\n",
" <th>countriesAndTerritories_1</th>\n",
" <th>countriesAndTerritories_2</th>\n",
" <th>countriesAndTerritories_3</th>\n",
" <th>countriesAndTerritories_4</th>\n",
" <th>dateRep</th>\n",
" <th>cases</th>\n",
" <th>Rescd</th>\n",
" <th>7days_before_mean</th>\n",
" <th>7days_after_mean</th>\n",
" <th>month_0</th>\n",
" <th>month_1</th>\n",
" <th>month_2</th>\n",
" <th>month_3</th>\n",
" <th>week</th>\n",
" <th>year</th>\n",
" <th>index</th>\n",
" <th>countriesAndTerritories</th>\n",
" <th>va</th>\n",
" <th>vaccin</th>\n",
" <th>EntertainmentVenuesPartial</th>\n",
" <th>RestaurantsCafesPartial</th>\n",
" <th>EntertainmentVenues</th>\n",
" <th>MassGatherAll</th>\n",
" <th>ClosSec</th>\n",
" <th>GymsSportsCentresPartial</th>\n",
" <th>ClosPrim</th>\n",
" <th>NonEssentialShopsPartial</th>\n",
" <th>ClosPubAnyPartial</th>\n",
" <th>RestaurantsCafes</th>\n",
" <th>GymsSportsCentres</th>\n",
" <th>MassGather50</th>\n",
" <th>PrivateGatheringRestrictions</th>\n",
" <th>MassGatherAllPartial</th>\n",
" <th>ClosHigh</th>\n",
" <th>NonEssentialShops</th>\n",
" <th>ClosSecPartial</th>\n",
" <th>OutdoorOver500</th>\n",
" <th>ClosDaycare</th>\n",
" <th>BanOnAllEvents</th>\n",
" <th>IndoorOver500</th>\n",
" <th>QuarantineForInternationalTravellers</th>\n",
" <th>ClosHighPartial</th>\n",
" <th>IndoorOver100</th>\n",
" <th>Teleworking</th>\n",
" <th>ClosPubAny</th>\n",
" <th>PlaceOfWorshipPartial</th>\n",
" <th>MasksMandatoryClosedSpacesPartial</th>\n",
" <th>MassGather50Partial</th>\n",
" <th>StayHomeOrderPartial</th>\n",
" <th>OutdoorOver100</th>\n",
" <th>IndoorOver50</th>\n",
" <th>ClosPrimPartial</th>\n",
" <th>PrivateGatheringRestrictionsPartial</th>\n",
" <th>MasksMandatoryClosedSpaces</th>\n",
" <th>OutdoorOver1000</th>\n",
" <th>TeleworkingPartial</th>\n",
" <th>MasksMandatoryAllSpaces</th>\n",
" <th>OutdoorOver50</th>\n",
" <th>StayHomeOrder</th>\n",
" <th>QuarantineForInternationalTravellersPartial</th>\n",
" <th>MasksMandatoryAllSpacesPartial</th>\n",
" <th>StayHomeGen</th>\n",
" <th>PlaceOfWorship</th>\n",
" <th>ClosDaycarePartial</th>\n",
" <th>IndoorOver1000</th>\n",
" <th>BanOnAllEventsPartial</th>\n",
" <th>HotelsOtherAccommodationPartial</th>\n",
" <th>StayHomeRiskG</th>\n",
" <th>ClosureOfPublicTransportPartial</th>\n",
" <th>AdaptationOfWorkplace</th>\n",
" <th>HotelsOtherAccommodation</th>\n",
" <th>MasksVoluntaryClosedSpacesPartial</th>\n",
" <th>RegionalStayHomeOrderPartial</th>\n",
" <th>AdaptationOfWorkplacePartial</th>\n",
" <th>MasksVoluntaryAllSpaces</th>\n",
" <th>MasksVoluntaryAllSpacesPartial</th>\n",
" <th>MasksVoluntaryClosedSpaces</th>\n",
" <th>SocialCircle</th>\n",
" <th>WorkplaceClosures</th>\n",
" <th>RegionalStayHomeOrder</th>\n",
" <th>ClosureOfPublicTransport</th>\n",
" <th>StayHomeGenPartial</th>\n",
" <th>WorkplaceClosuresPartial</th>\n",
" <th>StayHomeRiskGPartial</th>\n",
" <th>SocialCirclePartial</th>\n",
" <th>not_sequenced</th>\n",
" <th>B.1.617.2</th>\n",
" <th>BA.2</th>\n",
" <th>BA.5</th>\n",
" <th>Other</th>\n",
" <th>B.1.1.7</th>\n",
" <th>BA.1</th>\n",
" <th>BA.4</th>\n",
" <th>BA.2.75</th>\n",
" <th>BQ.1</th>\n",
" <th>XBB</th>\n",
" <th>B.1.351</th>\n",
" <th>P.1</th>\n",
" <th>XBB.1.5</th>\n",
" <th>B.1.525</th>\n",
" <th>B.1.621</th>\n",
" <th>C.37</th>\n",
" <th>B.1.617.1</th>\n",
" <th>B.1.616</th>\n",
" <th>B.1.620</th>\n",
" <th>B.1.427/B.1.429</th>\n",
" <th>P.3</th>\n",
" <th>UNK</th>\n",
" <th>B.1.1.529</th>\n",
" <th>BA.3</th>\n",
" <th>AY.4.2</th>\n",
" <th>BA.4/BA.5</th>\n",
" <th>SGTF</th>\n",
" <th>B.1.1.7+E484K</th>\n",
" <th>BA.2+L452X</th>\n",
" <th>B.1.617.3</th>\n",
" <th>vaccin_0</th>\n",
" <th>vaccin_1</th>\n",
" <th>vaccin_2</th>\n",
" <th>vaccin_3</th>\n",
" <th>vaccin_4</th>\n",
" <th>month</th>\n",
" <th>rp_zeitraum</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>2020-03-29</td>\n",
" <td>2599.0</td>\n",
" <td>['ClosDaycare', 'ClosHighPartial', 'ClosPubAny...</td>\n",
" <td>790.871921</td>\n",
" <td>1741.147783</td>\n",
" <td>0.034483</td>\n",
" <td>0.034483</td>\n",
" <td>0.000000</td>\n",
" <td>0.965517</td>\n",
" <td>13</td>\n",
" <td>2020</td>\n",
" <td>NaN</td>\n",
" <td>France</td>\n",
" <td>[['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ...</td>\n",
" <td>[0, 0, 0, 0, 0]</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.448276</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.448276</td>\n",
" <td>0.448276</td>\n",
" <td>0.0</td>\n",
" <td>0.413793</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.448276</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.448276</td>\n",
" <td>0.0</td>\n",
" <td>0.413793</td>\n",
" <td>0.448276</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.551724</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.413793</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.137931</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.413793</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>6.896552</td>\n",
" <td>0.0</td>\n",
" <td>0.062069</td>\n",
" <td>0.0</td>\n",
" <td>93.041379</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.606897</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3</td>\n",
" <td>756.829268</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>2020-03-30</td>\n",
" <td>4376.0</td>\n",
" <td>['ClosDaycare', 'ClosHighPartial', 'ClosPubAny...</td>\n",
" <td>904.541872</td>\n",
" <td>1891.231527</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>1.000000</td>\n",
" <td>14</td>\n",
" <td>2020</td>\n",
" <td>NaN</td>\n",
" <td>France</td>\n",
" <td>[['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ...</td>\n",
" <td>[0, 0, 0, 0, 0]</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.482759</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.482759</td>\n",
" <td>0.482759</td>\n",
" <td>0.0</td>\n",
" <td>0.448276</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.482759</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.482759</td>\n",
" <td>0.0</td>\n",
" <td>0.448276</td>\n",
" <td>0.482759</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.586207</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.448276</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.137931</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.448276</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.448276</td>\n",
" <td>0.0</td>\n",
" <td>0.072414</td>\n",
" <td>0.0</td>\n",
" <td>96.479310</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.641379</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3</td>\n",
" <td>336.711111</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>2020-03-31</td>\n",
" <td>7578.0</td>\n",
" <td>['ClosDaycare', 'ClosHighPartial', 'ClosPubAny...</td>\n",
" <td>1019.802956</td>\n",
" <td>2036.330049</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>1.000000</td>\n",
" <td>14</td>\n",
" <td>2020</td>\n",
" <td>NaN</td>\n",
" <td>France</td>\n",
" <td>[['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ...</td>\n",
" <td>[0, 0, 0, 0, 0]</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.517241</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.517241</td>\n",
" <td>0.517241</td>\n",
" <td>0.0</td>\n",
" <td>0.482759</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.517241</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.517241</td>\n",
" <td>0.0</td>\n",
" <td>0.482759</td>\n",
" <td>0.517241</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.620690</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.482759</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.137931</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.482759</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.072414</td>\n",
" <td>0.0</td>\n",
" <td>99.924138</td>\n",
" <td>0.003448</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.682759</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3</td>\n",
" <td>222.686567</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>2020-04-01</td>\n",
" <td>4861.0</td>\n",
" <td>['ClosDaycare', 'ClosHighPartial', 'ClosPubAny...</td>\n",
" <td>1140.788177</td>\n",
" <td>2178.492611</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>1.000000</td>\n",
" <td>14</td>\n",
" <td>2020</td>\n",
" <td>NaN</td>\n",
" <td>France</td>\n",
" <td>[['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ...</td>\n",
" <td>[0, 0, 0, 0, 0]</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.551724</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.551724</td>\n",
" <td>0.551724</td>\n",
" <td>0.0</td>\n",
" <td>0.517241</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.551724</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.551724</td>\n",
" <td>0.0</td>\n",
" <td>0.517241</td>\n",
" <td>0.551724</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.655172</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.517241</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.137931</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.517241</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.072414</td>\n",
" <td>0.0</td>\n",
" <td>99.920690</td>\n",
" <td>0.006897</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.703448</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>4</td>\n",
" <td>145.469274</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>2020-04-02</td>\n",
" <td>2116.0</td>\n",
" <td>['ClosDaycare', 'ClosHighPartial', 'ClosPubAny...</td>\n",
" <td>1286.832512</td>\n",
" <td>2300.748768</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.034483</td>\n",
" <td>0.965517</td>\n",
" <td>14</td>\n",
" <td>2020</td>\n",
" <td>NaN</td>\n",
" <td>France</td>\n",
" <td>[['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ...</td>\n",
" <td>[0, 0, 0, 0, 0]</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.586207</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.586207</td>\n",
" <td>0.586207</td>\n",
" <td>0.0</td>\n",
" <td>0.551724</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.586207</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.586207</td>\n",
" <td>0.0</td>\n",
" <td>0.551724</td>\n",
" <td>0.586207</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.689655</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.551724</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.137931</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.551724</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.072414</td>\n",
" <td>0.0</td>\n",
" <td>99.917241</td>\n",
" <td>0.010345</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.724138</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>4</td>\n",
" <td>126.560606</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>2020-11-30</td>\n",
" <td>21.0</td>\n",
" <td>['ClosPubAnyPartial', 'EntertainmentVenues', '...</td>\n",
" <td>32.187192</td>\n",
" <td>20.995074</td>\n",
" <td>1.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>1.000000</td>\n",
" <td>49</td>\n",
" <td>2020</td>\n",
" <td>NaN</td>\n",
" <td>Iceland</td>\n",
" <td>[['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ...</td>\n",
" <td>[0, 0, 0, 0, 0]</td>\n",
" <td>0.034483</td>\n",
" <td>1.0</td>\n",
" <td>1.000000</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>1.0</td>\n",
" <td>1.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>100.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.003448</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>11</td>\n",
" <td>0.183333</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>2020-12-01</td>\n",
" <td>20.0</td>\n",
" <td>['ClosPubAnyPartial', 'EntertainmentVenues', '...</td>\n",
" <td>29.433498</td>\n",
" <td>20.719212</td>\n",
" <td>1.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>1.000000</td>\n",
" <td>49</td>\n",
" <td>2020</td>\n",
" <td>NaN</td>\n",
" <td>Iceland</td>\n",
" <td>[['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ...</td>\n",
" <td>[0, 0, 0, 0, 0]</td>\n",
" <td>0.000000</td>\n",
" <td>1.0</td>\n",
" <td>1.000000</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>1.0</td>\n",
" <td>1.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>99.962069</td>\n",
" <td>0.037931</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.031034</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>0.216867</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>2020-12-02</td>\n",
" <td>15.0</td>\n",
" <td>['ClosPubAnyPartial', 'EntertainmentVenues', '...</td>\n",
" <td>27.137931</td>\n",
" <td>20.502463</td>\n",
" <td>1.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.034483</td>\n",
" <td>0.965517</td>\n",
" <td>49</td>\n",
" <td>2020</td>\n",
" <td>NaN</td>\n",
" <td>Iceland</td>\n",
" <td>[['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ...</td>\n",
" <td>[0, 0, 0, 0, 0]</td>\n",
" <td>0.000000</td>\n",
" <td>1.0</td>\n",
" <td>1.000000</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>1.0</td>\n",
" <td>1.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>99.924138</td>\n",
" <td>0.075862</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.024138</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>0.254002</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>2020-12-03</td>\n",
" <td>14.0</td>\n",
" <td>['ClosPubAnyPartial', 'EntertainmentVenues', '...</td>\n",
" <td>25.426108</td>\n",
" <td>20.315271</td>\n",
" <td>1.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.068966</td>\n",
" <td>0.931034</td>\n",
" <td>49</td>\n",
" <td>2020</td>\n",
" <td>NaN</td>\n",
" <td>Iceland</td>\n",
" <td>[['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ...</td>\n",
" <td>[0, 0, 0, 0, 0]</td>\n",
" <td>0.000000</td>\n",
" <td>1.0</td>\n",
" <td>1.000000</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>1.0</td>\n",
" <td>1.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>99.886207</td>\n",
" <td>0.113793</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.017241</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>0.270136</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>2020-12-04</td>\n",
" <td>14.0</td>\n",
" <td>['ClosPubAnyPartial', 'EntertainmentVenues', '...</td>\n",
" <td>24.054187</td>\n",
" <td>20.098522</td>\n",
" <td>1.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.103448</td>\n",
" <td>0.896552</td>\n",
" <td>49</td>\n",
" <td>2020</td>\n",
" <td>NaN</td>\n",
" <td>Iceland</td>\n",
" <td>[['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ...</td>\n",
" <td>[0, 0, 0, 0, 0]</td>\n",
" <td>0.000000</td>\n",
" <td>1.0</td>\n",
" <td>1.000000</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>1.0</td>\n",
" <td>1.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>99.848276</td>\n",
" <td>0.151724</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.010345</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>0.265971</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>21549 rows × 124 columns</p>\n",
"</div>"
],
"text/plain": [
" countriesAndTerritories_0 countriesAndTerritories_1 \\\n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
".. ... ... \n",
"0 1.0 1.0 \n",
"0 1.0 1.0 \n",
"0 1.0 1.0 \n",
"0 1.0 1.0 \n",
"0 1.0 1.0 \n",
"\n",
" countriesAndTerritories_2 countriesAndTerritories_3 \\\n",
"0 0.0 1.0 \n",
"0 0.0 1.0 \n",
"0 0.0 1.0 \n",
"0 0.0 1.0 \n",
"0 0.0 1.0 \n",
".. ... ... \n",
"0 1.0 0.0 \n",
"0 1.0 0.0 \n",
"0 1.0 0.0 \n",
"0 1.0 0.0 \n",
"0 1.0 0.0 \n",
"\n",
" countriesAndTerritories_4 dateRep cases \\\n",
"0 0.0 2020-03-29 2599.0 \n",
"0 0.0 2020-03-30 4376.0 \n",
"0 0.0 2020-03-31 7578.0 \n",
"0 0.0 2020-04-01 4861.0 \n",
"0 0.0 2020-04-02 2116.0 \n",
".. ... ... ... \n",
"0 1.0 2020-11-30 21.0 \n",
"0 1.0 2020-12-01 20.0 \n",
"0 1.0 2020-12-02 15.0 \n",
"0 1.0 2020-12-03 14.0 \n",
"0 1.0 2020-12-04 14.0 \n",
"\n",
" Rescd 7days_before_mean \\\n",
"0 ['ClosDaycare', 'ClosHighPartial', 'ClosPubAny... 790.871921 \n",
"0 ['ClosDaycare', 'ClosHighPartial', 'ClosPubAny... 904.541872 \n",
"0 ['ClosDaycare', 'ClosHighPartial', 'ClosPubAny... 1019.802956 \n",
"0 ['ClosDaycare', 'ClosHighPartial', 'ClosPubAny... 1140.788177 \n",
"0 ['ClosDaycare', 'ClosHighPartial', 'ClosPubAny... 1286.832512 \n",
".. ... ... \n",
"0 ['ClosPubAnyPartial', 'EntertainmentVenues', '... 32.187192 \n",
"0 ['ClosPubAnyPartial', 'EntertainmentVenues', '... 29.433498 \n",
"0 ['ClosPubAnyPartial', 'EntertainmentVenues', '... 27.137931 \n",
"0 ['ClosPubAnyPartial', 'EntertainmentVenues', '... 25.426108 \n",
"0 ['ClosPubAnyPartial', 'EntertainmentVenues', '... 24.054187 \n",
"\n",
" 7days_after_mean month_0 month_1 month_2 month_3 week year \\\n",
"0 1741.147783 0.034483 0.034483 0.000000 0.965517 13 2020 \n",
"0 1891.231527 0.000000 0.000000 0.000000 1.000000 14 2020 \n",
"0 2036.330049 0.000000 0.000000 0.000000 1.000000 14 2020 \n",
"0 2178.492611 0.000000 0.000000 0.000000 1.000000 14 2020 \n",
"0 2300.748768 0.000000 0.000000 0.034483 0.965517 14 2020 \n",
".. ... ... ... ... ... ... ... \n",
"0 20.995074 1.000000 0.000000 0.000000 1.000000 49 2020 \n",
"0 20.719212 1.000000 0.000000 0.000000 1.000000 49 2020 \n",
"0 20.502463 1.000000 0.000000 0.034483 0.965517 49 2020 \n",
"0 20.315271 1.000000 0.000000 0.068966 0.931034 49 2020 \n",
"0 20.098522 1.000000 0.000000 0.103448 0.896552 49 2020 \n",
"\n",
" index countriesAndTerritories \\\n",
"0 NaN France \n",
"0 NaN France \n",
"0 NaN France \n",
"0 NaN France \n",
"0 NaN France \n",
".. ... ... \n",
"0 NaN Iceland \n",
"0 NaN Iceland \n",
"0 NaN Iceland \n",
"0 NaN Iceland \n",
"0 NaN Iceland \n",
"\n",
" va vaccin \\\n",
"0 [['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ... [0, 0, 0, 0, 0] \n",
"0 [['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ... [0, 0, 0, 0, 0] \n",
"0 [['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ... [0, 0, 0, 0, 0] \n",
"0 [['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ... [0, 0, 0, 0, 0] \n",
"0 [['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ... [0, 0, 0, 0, 0] \n",
".. ... ... \n",
"0 [['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ... [0, 0, 0, 0, 0] \n",
"0 [['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ... [0, 0, 0, 0, 0] \n",
"0 [['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ... [0, 0, 0, 0, 0] \n",
"0 [['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ... [0, 0, 0, 0, 0] \n",
"0 [['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ... [0, 0, 0, 0, 0] \n",
"\n",
" EntertainmentVenuesPartial RestaurantsCafesPartial EntertainmentVenues \\\n",
"0 0.000000 0.0 0.448276 \n",
"0 0.000000 0.0 0.482759 \n",
"0 0.000000 0.0 0.517241 \n",
"0 0.000000 0.0 0.551724 \n",
"0 0.000000 0.0 0.586207 \n",
".. ... ... ... \n",
"0 0.034483 1.0 1.000000 \n",
"0 0.000000 1.0 1.000000 \n",
"0 0.000000 1.0 1.000000 \n",
"0 0.000000 1.0 1.000000 \n",
"0 0.000000 1.0 1.000000 \n",
"\n",
" MassGatherAll ClosSec GymsSportsCentresPartial ClosPrim \\\n",
"0 1.0 0.0 0.0 0.0 \n",
"0 1.0 0.0 0.0 0.0 \n",
"0 1.0 0.0 0.0 0.0 \n",
"0 1.0 0.0 0.0 0.0 \n",
"0 1.0 0.0 0.0 0.0 \n",
".. ... ... ... ... \n",
"0 1.0 0.0 1.0 0.0 \n",
"0 1.0 0.0 1.0 0.0 \n",
"0 1.0 0.0 1.0 0.0 \n",
"0 1.0 0.0 1.0 0.0 \n",
"0 1.0 0.0 1.0 0.0 \n",
"\n",
" NonEssentialShopsPartial ClosPubAnyPartial RestaurantsCafes \\\n",
"0 0.0 0.0 0.448276 \n",
"0 0.0 0.0 0.482759 \n",
"0 0.0 0.0 0.517241 \n",
"0 0.0 0.0 0.551724 \n",
"0 0.0 0.0 0.586207 \n",
".. ... ... ... \n",
"0 1.0 1.0 0.000000 \n",
"0 1.0 1.0 0.000000 \n",
"0 1.0 1.0 0.000000 \n",
"0 1.0 1.0 0.000000 \n",
"0 1.0 1.0 0.000000 \n",
"\n",
" GymsSportsCentres MassGather50 PrivateGatheringRestrictions \\\n",
"0 0.448276 0.0 0.413793 \n",
"0 0.482759 0.0 0.448276 \n",
"0 0.517241 0.0 0.482759 \n",
"0 0.551724 0.0 0.517241 \n",
"0 0.586207 0.0 0.551724 \n",
".. ... ... ... \n",
"0 0.000000 1.0 1.000000 \n",
"0 0.000000 1.0 1.000000 \n",
"0 0.000000 1.0 1.000000 \n",
"0 0.000000 1.0 1.000000 \n",
"0 0.000000 1.0 1.000000 \n",
"\n",
" MassGatherAllPartial ClosHigh NonEssentialShops ClosSecPartial \\\n",
"0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 \n",
".. ... ... ... ... \n",
"0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 \n",
"\n",
" OutdoorOver500 ClosDaycare BanOnAllEvents IndoorOver500 \\\n",
"0 0.0 0.448276 0.0 0.0 \n",
"0 0.0 0.482759 0.0 0.0 \n",
"0 0.0 0.517241 0.0 0.0 \n",
"0 0.0 0.551724 0.0 0.0 \n",
"0 0.0 0.586207 0.0 0.0 \n",
".. ... ... ... ... \n",
"0 0.0 0.000000 0.0 0.0 \n",
"0 0.0 0.000000 0.0 0.0 \n",
"0 0.0 0.000000 0.0 0.0 \n",
"0 0.0 0.000000 0.0 0.0 \n",
"0 0.0 0.000000 0.0 0.0 \n",
"\n",
" QuarantineForInternationalTravellers ClosHighPartial IndoorOver100 \\\n",
"0 0.0 0.448276 0.0 \n",
"0 0.0 0.482759 0.0 \n",
"0 0.0 0.517241 0.0 \n",
"0 0.0 0.551724 0.0 \n",
"0 0.0 0.586207 0.0 \n",
".. ... ... ... \n",
"0 1.0 0.000000 0.0 \n",
"0 1.0 0.000000 0.0 \n",
"0 1.0 0.000000 0.0 \n",
"0 1.0 0.000000 0.0 \n",
"0 1.0 0.000000 0.0 \n",
"\n",
" Teleworking ClosPubAny PlaceOfWorshipPartial \\\n",
"0 0.413793 0.448276 0.0 \n",
"0 0.448276 0.482759 0.0 \n",
"0 0.482759 0.517241 0.0 \n",
"0 0.517241 0.551724 0.0 \n",
"0 0.551724 0.586207 0.0 \n",
".. ... ... ... \n",
"0 0.000000 0.000000 0.0 \n",
"0 0.000000 0.000000 0.0 \n",
"0 0.000000 0.000000 0.0 \n",
"0 0.000000 0.000000 0.0 \n",
"0 0.000000 0.000000 0.0 \n",
"\n",
" MasksMandatoryClosedSpacesPartial MassGather50Partial \\\n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
".. ... ... \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"\n",
" StayHomeOrderPartial OutdoorOver100 IndoorOver50 ClosPrimPartial \\\n",
"0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 \n",
".. ... ... ... ... \n",
"0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 \n",
"\n",
" PrivateGatheringRestrictionsPartial MasksMandatoryClosedSpaces \\\n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
".. ... ... \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"\n",
" OutdoorOver1000 TeleworkingPartial MasksMandatoryAllSpaces \\\n",
"0 0.551724 0.0 0.0 \n",
"0 0.586207 0.0 0.0 \n",
"0 0.620690 0.0 0.0 \n",
"0 0.655172 0.0 0.0 \n",
"0 0.689655 0.0 0.0 \n",
".. ... ... ... \n",
"0 0.000000 0.0 0.0 \n",
"0 0.000000 0.0 0.0 \n",
"0 0.000000 0.0 0.0 \n",
"0 0.000000 0.0 0.0 \n",
"0 0.000000 0.0 0.0 \n",
"\n",
" OutdoorOver50 StayHomeOrder QuarantineForInternationalTravellersPartial \\\n",
"0 0.0 0.413793 0.0 \n",
"0 0.0 0.448276 0.0 \n",
"0 0.0 0.482759 0.0 \n",
"0 0.0 0.517241 0.0 \n",
"0 0.0 0.551724 0.0 \n",
".. ... ... ... \n",
"0 1.0 0.000000 0.0 \n",
"0 1.0 0.000000 0.0 \n",
"0 1.0 0.000000 0.0 \n",
"0 1.0 0.000000 0.0 \n",
"0 1.0 0.000000 0.0 \n",
"\n",
" MasksMandatoryAllSpacesPartial StayHomeGen PlaceOfWorship \\\n",
"0 0.0 0.137931 0.0 \n",
"0 0.0 0.137931 0.0 \n",
"0 0.0 0.137931 0.0 \n",
"0 0.0 0.137931 0.0 \n",
"0 0.0 0.137931 0.0 \n",
".. ... ... ... \n",
"0 1.0 0.000000 0.0 \n",
"0 1.0 0.000000 0.0 \n",
"0 1.0 0.000000 0.0 \n",
"0 1.0 0.000000 0.0 \n",
"0 1.0 0.000000 0.0 \n",
"\n",
" ClosDaycarePartial IndoorOver1000 BanOnAllEventsPartial \\\n",
"0 0.0 1.0 0.0 \n",
"0 0.0 1.0 0.0 \n",
"0 0.0 1.0 0.0 \n",
"0 0.0 1.0 0.0 \n",
"0 0.0 1.0 0.0 \n",
".. ... ... ... \n",
"0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 \n",
"\n",
" HotelsOtherAccommodationPartial StayHomeRiskG \\\n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
".. ... ... \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"\n",
" ClosureOfPublicTransportPartial AdaptationOfWorkplace \\\n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
".. ... ... \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"\n",
" HotelsOtherAccommodation MasksVoluntaryClosedSpacesPartial \\\n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
".. ... ... \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"\n",
" RegionalStayHomeOrderPartial AdaptationOfWorkplacePartial \\\n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
".. ... ... \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"\n",
" MasksVoluntaryAllSpaces MasksVoluntaryAllSpacesPartial \\\n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
".. ... ... \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"0 0.0 0.0 \n",
"\n",
" MasksVoluntaryClosedSpaces SocialCircle WorkplaceClosures \\\n",
"0 0.0 0.0 0.413793 \n",
"0 0.0 0.0 0.448276 \n",
"0 0.0 0.0 0.482759 \n",
"0 0.0 0.0 0.517241 \n",
"0 0.0 0.0 0.551724 \n",
".. ... ... ... \n",
"0 0.0 0.0 0.000000 \n",
"0 0.0 0.0 0.000000 \n",
"0 0.0 0.0 0.000000 \n",
"0 0.0 0.0 0.000000 \n",
"0 0.0 0.0 0.000000 \n",
"\n",
" RegionalStayHomeOrder ClosureOfPublicTransport StayHomeGenPartial \\\n",
"0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 \n",
".. ... ... ... \n",
"0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 \n",
"\n",
" WorkplaceClosuresPartial StayHomeRiskGPartial SocialCirclePartial \\\n",
"0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 \n",
".. ... ... ... \n",
"0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 \n",
"\n",
" not_sequenced B.1.617.2 BA.2 BA.5 Other B.1.1.7 BA.1 \\\n",
"0 6.896552 0.0 0.062069 0.0 93.041379 0.000000 0.0 \n",
"0 3.448276 0.0 0.072414 0.0 96.479310 0.000000 0.0 \n",
"0 0.000000 0.0 0.072414 0.0 99.924138 0.003448 0.0 \n",
"0 0.000000 0.0 0.072414 0.0 99.920690 0.006897 0.0 \n",
"0 0.000000 0.0 0.072414 0.0 99.917241 0.010345 0.0 \n",
".. ... ... ... ... ... ... ... \n",
"0 0.000000 0.0 0.000000 0.0 100.000000 0.000000 0.0 \n",
"0 0.000000 0.0 0.000000 0.0 99.962069 0.037931 0.0 \n",
"0 0.000000 0.0 0.000000 0.0 99.924138 0.075862 0.0 \n",
"0 0.000000 0.0 0.000000 0.0 99.886207 0.113793 0.0 \n",
"0 0.000000 0.0 0.000000 0.0 99.848276 0.151724 0.0 \n",
"\n",
" BA.4 BA.2.75 BQ.1 XBB B.1.351 P.1 XBB.1.5 B.1.525 B.1.621 C.37 \\\n",
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
".. ... ... ... ... ... ... ... ... ... ... \n",
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"\n",
" B.1.617.1 B.1.616 B.1.620 B.1.427/B.1.429 P.3 UNK B.1.1.529 \\\n",
"0 0.0 0.0 0.0 0.0 0.0 1.606897 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 1.641379 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 1.682759 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 1.703448 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 1.724138 0.0 \n",
".. ... ... ... ... ... ... ... \n",
"0 0.0 0.0 0.0 0.0 0.0 3.003448 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 3.031034 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 3.024138 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 3.017241 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 3.010345 0.0 \n",
"\n",
" BA.3 AY.4.2 BA.4/BA.5 SGTF B.1.1.7+E484K BA.2+L452X B.1.617.3 \\\n",
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
".. ... ... ... ... ... ... ... \n",
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"\n",
" vaccin_0 vaccin_1 vaccin_2 vaccin_3 vaccin_4 month rp_zeitraum \n",
"0 0.0 0.0 0.0 0.0 0.0 3 756.829268 \n",
"0 0.0 0.0 0.0 0.0 0.0 3 336.711111 \n",
"0 0.0 0.0 0.0 0.0 0.0 3 222.686567 \n",
"0 0.0 0.0 0.0 0.0 0.0 4 145.469274 \n",
"0 0.0 0.0 0.0 0.0 0.0 4 126.560606 \n",
".. ... ... ... ... ... ... ... \n",
"0 0.0 0.0 0.0 0.0 0.0 11 0.183333 \n",
"0 0.0 0.0 0.0 0.0 0.0 0 0.216867 \n",
"0 0.0 0.0 0.0 0.0 0.0 0 0.254002 \n",
"0 0.0 0.0 0.0 0.0 0.0 0 0.270136 \n",
"0 0.0 0.0 0.0 0.0 0.0 0 0.265971 \n",
"\n",
"[21549 rows x 124 columns]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"writer = pd.ExcelWriter('month_data_encoded.xlsx', engine='xlsxwriter')\n",
"\n",
"month_data_encoded.to_excel('month_data_encoded.xlsx', sheet_name='1', index=False)\n",
"month_data_encoded"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "358acefb-05a6-4298-b33a-cffa4ec17134",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
%% Cell type:code id:0127991b-fa6f-4dd8-bb75-c12beaffde73 tags:
```
python
###******************************HALLO*******************************
###***************************BAYESIAN GOVERMENT COVID APPLICATION**************************************************WRITEN BY:
###********************************************************************************************************HAMED KHALILI***********
###***************************INPUTS OF THE PROGRAM********************************************************************************************
#import pandas as pd
#import base64
import
pandas
as
pd
incidence_days_number
=
7
CBook_i
=
pd
.
DataFrame
({
'
index
'
:[]
,
'
countriesAndTerritories
'
:[],
'
dateRep
'
:[],
'
cases
'
:[]
,
'
Rescd
'
:[]
,
str
(
incidence_days_number
)
+
'
days_before_mean
'
:[],
str
(
incidence_days_number
)
+
'
days_after_mean
'
:[]
})
countries
=
[
'
Netherlands
'
,
'
Germany
'
]
#
for
tage
in
[
7
]:
incidence_days_number
=
tage
print
(
incidence_days_number
)
#X=['MasksMandatoryAllSpaces','MasksMandatoryClosedSpaces']
method
=
"
hierarchical
"
#or#pooled#or#unpooled
###********************************************************************************************************************************************
#['ClosDaycare','ClosDaycarePartial','ClosPrimPartial','ClosSecPartial','ClosPrim','ClosSec','ClosHighPartial','ClosHigh']
#['RestaurantsCafes','RestaurantsCafesPartial']
#['GymsSportsCentres','GymsSportsCentresPartial']
#['Teleworking','TeleworkingPartial','WorkplaceClosuresPartial','AdaptationOfWorkplace','AdaptationOfWorkplacePartial','WorkplaceClosures']
#['MasksMandatoryClosedSpacesPartial','MasksMandatoryAllSpaces','MasksMandatoryClosedSpaces','MasksMandatoryAllSpacesPartial']
#y_pred =this is almost identical to y_est except we do not specify the observed data. PyMC considers this to be a stochastic node
#(as opposed to an observed node) and as the MCMC sampler runs - it also samples data from y_est.
"""
[
'
Netherlands
'
,
'
Czechia
'
,
'
Lithuania
'
,
'
Austria
'
,
'
Poland
'
,
'
Slovenia
'
,
'
Estonia
'
,
'
Italy
'
,
'
Slovakia
'
,
'
Ireland
'
,
'
Denmark
'
,
'
Iceland
'
,
'
Cyprus
'
,
'
Greece
'
,
'
Belgium
'
,
'
Bulgaria
'
,
'
France
'
,
'
Germany
'
,
'
Latvia
'
,
'
Spain
'
,
'
Norway
'
,
'
Romania
'
,
'
Liechtenstein
'
,
'
Portugal
'
,
'
Luxembourg
'
,
'
Hungary
'
,
'
Malta
'
,
'
Croatia
'
,
'
Finland
'
,
'
Sweden
'
]
[
'
EntertainmentVenuesPartial
'
,
'
RestaurantsCafesPartial
'
,
'
EntertainmentVenues
'
,
'
MassGatherAll
'
,
'
ClosSec
'
,
'
GymsSportsCentresPartial
'
,
'
ClosPrim
'
,
'
NonEssentialShopsPartial
'
,
'
ClosPubAnyPartial
'
,
'
RestaurantsCafes
'
,
'
GymsSportsCentres
'
,
'
MassGather50
'
,
'
PrivateGatheringRestrictions
'
,
'
MassGatherAllPartial
'
,
'
ClosHigh
'
,
'
NonEssentialShops
'
,
'
ClosSecPartial
'
,
'
OutdoorOver500
'
,
'
ClosDaycare
'
,
'
BanOnAllEvents
'
,
'
IndoorOver500
'
,
'
QuarantineForInternationalTravellers
'
,
'
ClosHighPartial
'
,
'
IndoorOver100
'
,
'
Teleworking
'
,
'
ClosPubAny
'
,
'
PlaceOfWorshipPartial
'
,
'
MasksMandatoryClosedSpacesPartial
'
,
'
MassGather50Partial
'
,
'
StayHomeOrderPartial
'
,
'
OutdoorOver100
'
,
'
IndoorOver50
'
,
'
ClosPrimPartial
'
,
'
PrivateGatheringRestrictionsPartial
'
,
'
MasksMandatoryClosedSpaces
'
,
'
OutdoorOver1000
'
,
'
TeleworkingPartial
'
,
'
MasksMandatoryAllSpaces
'
,
'
OutdoorOver50
'
,
'
StayHomeOrder
'
,
'
QuarantineForInternationalTravellersPartial
'
,
'
MasksMandatoryAllSpacesPartial
'
,
'
StayHomeGen
'
,
'
PlaceOfWorship
'
,
'
ClosDaycarePartial
'
,
'
IndoorOver1000
'
,
'
BanOnAllEventsPartial
'
,
'
HotelsOtherAccommodationPartial
'
,
'
StayHomeRiskG
'
,
'
ClosureOfPublicTransportPartial
'
,
'
AdaptationOfWorkplace
'
,
'
HotelsOtherAccommodation
'
,
'
MasksVoluntaryClosedSpacesPartial
'
,
'
RegionalStayHomeOrderPartial
'
,
'
AdaptationOfWorkplacePartial
'
,
'
MasksVoluntaryAllSpaces
'
,
'
MasksVoluntaryAllSpacesPartial
'
,
'
MasksVoluntaryClosedSpaces
'
,
'
SocialCircle
'
,
'
WorkplaceClosures
'
,
'
RegionalStayHomeOrder
'
,
'
ClosureOfPublicTransport
'
,
'
StayHomeGenPartial
'
,
'
WorkplaceClosuresPartial
'
,
'
StayHomeRiskGPartial
'
,
'
SocialCirclePartial
'
]
"""
###************MAIN BODY OF THE PROGRAM****************************************************************************************************
def
add_elemant
(
element
,
lis
,
j
):
for
i
in
lis
:
if
element
in
i
:
return
i
[
j
]
colors
=
[
'
#348ABD
'
,
'
#A60628
'
,
'
#7A68A6
'
,
'
#467821
'
,
'
#D55E00
'
,
'
#CC79A7
'
,
'
#56B4E9
'
,
'
#009E73
'
,
'
#F0E442
'
,
'
#0072B2
'
]
import
pandas
as
pd
import
datetime
from
datetime
import
timedelta
import
warnings
warnings
.
filterwarnings
(
"
ignore
"
,
category
=
FutureWarning
)
import
seaborn
as
sns
#import arviz as az
import
itertools
import
matplotlib.pyplot
as
plt
import
numpy
as
np
# import pymc3 as pm
# import scipy
#import scipy.stats as stats
from
IPython.display
import
Image
from
sklearn
import
preprocessing
import
pandas
as
pd
import
datetime
from
IPython.display
import
display
cb
=
pd
.
read_excel
(
r
"
C:\Users\Hamed\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Anaconda3 (64-bit)\datac.xlsx
"
)
measures
=
pd
.
read_excel
(
r
"
C:\Users\Hamed\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Anaconda3 (64-bit)\response_graphs.xlsx
"
)
#if method=="hierarchical":
#liss=[]
responses_plus
=
[]
responses_minus
=
[]
liss_plus
=
pd
.
DataFrame
({
'
country
'
:[],
'
mean
'
:[],
'
std
'
:[],
'
count+
'
:[],
'
count-
'
:[],
'
mean+
'
:[],
'
mean-
'
:[],
'
std+
'
:[],
'
std-
'
:[]})
for
index
,
name
in
(
enumerate
(
cb
[
'
countriesAndTerritories
'
].
value_counts
().
index
.
tolist
())):
#for name in['Germany']:
land
=
name
cb_2
=
cb
.
loc
[(
cb
[
'
countriesAndTerritories
'
]
==
land
)]
cb_2
=
cb_2
[[
'
countriesAndTerritories
'
,
'
dateRep
'
,
'
cases
'
]].
iloc
[::
-
1
]
#cb=cb[(cb['dateRep']>=datetime.date(2020,2,3))] # df[(df['date']>datetime.date(2016,1,1))
cb_2
[
'
dateRep
'
]
=
pd
.
to_datetime
(
cb_2
[
'
dateRep
'
],
format
=
'
%d/%m/%Y
'
)
#cb_2=cb_2.loc[cb_2['dateRep']>='2020-03-02']
cb_2
[
'
cases
'
].
values
[
cb_2
[
'
cases
'
]
<
0
]
=
cb_2
[
'
cases
'
].
values
[
cb_2
[
'
cases
'
]
<
0
]
*
(
-
1
)
cb_2
[
'
cases
'
].
values
[
cb_2
[
'
cases
'
]
==
0
]
=
1
if
cb_2
.
isnull
().
values
.
any
():
cb_2
[
'
cases
'
]
=
cb_2
[
'
cases
'
].
interpolate
()
cb_2
=
cb_2
.
reset_index
()
measures_2
=
measures
.
loc
[(
measures
[
'
Country
'
]
==
land
)]
if
measures_2
.
isnull
().
values
.
any
():
#print(measures_2[measures_2['E'].isna()])
measures_2
=
measures_2
.
dropna
()
measures_2
=
measures_2
.
reset_index
()
cooBook
=
cb_2
lst
=
[]
cooBook
[
"
Rescd
"
]
=
[
list
()
for
x
in
range
(
len
(
cooBook
.
index
))]
measures_2
[
'
A
'
]
=
pd
.
to_datetime
(
measures_2
[
'
A
'
],
format
=
'
%d/%m/%Y
'
)
measures_2
[
'
E
'
]
=
pd
.
to_datetime
(
measures_2
[
'
E
'
],
format
=
'
%d/%m/%Y
'
)
for
i
in
range
(
0
,
len
(
measures_2
)):
#col="rc"#(measures['Measure'][i])
A
=
(
measures_2
[
'
A
'
][
i
])
E
=
(
measures_2
[
'
E
'
][
i
]
++
timedelta
(
days
=
1
))
#if col not in coBook.columns:
#coBook[col] = pd.Series(dtype='int')
for
j
in
range
(
0
,
len
(
cooBook
)):
date
=
cooBook
[
'
dateRep
'
][
j
]
#date_E=coBook['time_iso8601'][j-1]
#if coBook[col][j] != 1:
if
date
>=
A
and
date
<=
E
:
cooBook
[
"
Rescd
"
][
j
].
append
(
measures_2
[
'
Measure
'
][
i
])
CBook
=
cooBook
#CBook['daily_cases']=CBook['daily_cases'].diff()
#CBook=CBook[1::]
#CBook=CBook.reset_index()
CBook
[
str
(
incidence_days_number
)
+
'
days_before_mean
'
]
=
pd
.
Series
(
dtype
=
'
float
'
)
CBook
[
str
(
incidence_days_number
)
+
'
days_after_mean
'
]
=
pd
.
Series
(
dtype
=
'
float
'
)
CBook
=
CBook
.
replace
(
np
.
nan
,
0
)
for
i
in
range
(
incidence_days_number
,
len
(
CBook
)
-
incidence_days_number
):
caesdayNplusone
=
CBook
.
loc
[
i
+
incidence_days_number
,
[
'
cases
'
]].
to_list
()[
0
]
averagecasesdayonetoNminusone_forward
=
sum
(
CBook
.
iloc
[
i
:
i
+
incidence_days_number
][
'
cases
'
].
values
)
/
incidence_days_number
averagecasesdayonetoNminusone_backward
=
sum
(
CBook
.
iloc
[
i
-
incidence_days_number
:
i
][
'
cases
'
].
values
)
/
incidence_days_number
#if averagecasesdayonetoNminusone ==0:
#print("00000000")
CBook
.
loc
[
i
,
[
str
(
incidence_days_number
)
+
'
days_after_mean
'
]]
=
averagecasesdayonetoNminusone_forward
#/averagecasesdayonetoNminusone_backward-1
CBook
.
loc
[
i
,
[
str
(
incidence_days_number
)
+
'
days_before_mean
'
]]
=
averagecasesdayonetoNminusone_backward
CBook
=
CBook
.
loc
[
(
CBook
[
'
dateRep
'
]
>=
min
(
CBook
[
incidence_days_number
::][
'
dateRep
'
]))]
#operator="or"
#mass='rpn_minus_one'+str(incidence_days_number)
#CBook[mass]=CBook[mass].pct_change()
#CBook=CBook.iloc[1: , :]
#CBook[[mass]] = CBook[[mass]].apply(lambda x: 100*x)
data_collecting_start_date
=
min
(
measures_2
[
'
A
'
])
data_collecting_end_date
=
max
(
measures_2
[
'
E
'
])
if
land
==
'
Hungary
'
:
#03/03/2020-11/06/2021 for Hungary
data_collecting_start_date
=
'
2020-03-11
'
data_collecting_end_date
=
'
2021-06-11
'
if
land
==
'
Iceland
'
:
#23/07/2020-03/12/2021 for
data_collecting_start_date
=
'
2020-07-23
'
data_collecting_end_date
=
'
2020-12-04
'
if
land
==
'
Liechtenstein
'
:
# 01/10/2020-24/10/2022 for Liechtenstein
data_collecting_start_date
=
'
2020-12-31
'
data_collecting_end_date
=
'
2022-03-31
'
#2020-03-10 14.04.2022
if
land
==
'
Cyprus
'
:
# 01/10/2020-24/10/2022 for Liechtenstein
data_collecting_start_date
=
'
2020-10-03
'
data_collecting_end_date
=
'
2022-04-14
'
#2020-03-10 14.04.2022
if
land
==
'
Germany
'
:
# 01/10/2020-24/10/2022 for Liechtenstein
data_collecting_start_date
=
'
2020-02-24
'
if
land
==
'
Ireland
'
:
# 01/10/2020-24/10/2022 for Liechtenstein
data_collecting_start_date
=
'
2020-03-02
'
CBook
=
CBook
.
loc
[
(
CBook
[
'
dateRep
'
]
>=
data_collecting_start_date
)
]
CBook
=
CBook
.
loc
[
(
CBook
[
'
dateRep
'
]
<=
data_collecting_end_date
)
]
CBook_i
=
pd
.
concat
([
CBook_i
,
CBook
],
axis
=
0
)
#CBook_i
import
category_encoders
as
ce
encoder
=
ce
.
BinaryEncoder
(
cols
=
[
'
countriesAndTerritories
'
],
return_df
=
True
)
data_encoded
=
encoder
.
fit_transform
(
CBook_i
)
data_encoded
=
pd
.
concat
([
data_encoded
,
data_encoded
[
'
dateRep
'
].
dt
.
month
%
12
],
axis
=
1
)
data_encoded
=
data_encoded
.
reset_index
()
data_encoded
.
drop
(
data_encoded
.
columns
[[
0
,
1
]],
axis
=
1
,
inplace
=
True
)
data_encoded
.
columns
=
[
'
countriesAndTerritories_0
'
,
'
countriesAndTerritories_1
'
,
'
countriesAndTerritories_2
'
,
'
countriesAndTerritories_3
'
,
'
countriesAndTerritories_4
'
,
'
dateRep
'
,
'
cases
'
,
'
Rescd
'
,
str
(
incidence_days_number
)
+
'
days_before_mean
'
,
str
(
incidence_days_number
)
+
'
days_after_mean
'
,
'
month
'
]
data_encoded
=
pd
.
concat
([
data_encoded
,
data_encoded
[
'
dateRep
'
].
dt
.
week
],
axis
=
1
)
#CBook_i['dateRep'].dt.week
data_encoded
.
columns
=
[
'
countriesAndTerritories_0
'
,
'
countriesAndTerritories_1
'
,
'
countriesAndTerritories_2
'
,
'
countriesAndTerritories_3
'
,
'
countriesAndTerritories_4
'
,
'
dateRep
'
,
'
cases
'
,
'
Rescd
'
,
str
(
incidence_days_number
)
+
'
days_before_mean
'
,
str
(
incidence_days_number
)
+
'
days_after_mean
'
,
'
month
'
,
'
week
'
]
data_encoded
=
pd
.
concat
([
data_encoded
,
data_encoded
[
'
dateRep
'
].
dt
.
year
],
axis
=
1
)
#CBook_i['dateRep'].dt.week
data_encoded
.
columns
=
[
'
countriesAndTerritories_0
'
,
'
countriesAndTerritories_1
'
,
'
countriesAndTerritories_2
'
,
'
countriesAndTerritories_3
'
,
'
countriesAndTerritories_4
'
,
'
dateRep
'
,
'
cases
'
,
'
Rescd
'
,
str
(
incidence_days_number
)
+
'
days_before_mean
'
,
str
(
incidence_days_number
)
+
'
days_after_mean
'
,
'
month
'
,
'
week
'
,
'
year
'
]
data_encoded
=
pd
.
concat
([
data_encoded
,
CBook_i
[[
'
countriesAndTerritories
'
]].
reset_index
()],
axis
=
1
)
data_encoded
[
'
week
'
].
mask
((
data_encoded
[
'
year
'
]
==
2021
)
&
(
data_encoded
[
'
month
'
]
==
1
)
&
(
data_encoded
[
'
week
'
]
==
53
)
,
1
,
inplace
=
True
)
data_encoded
[
'
week
'
].
mask
((
data_encoded
[
'
year
'
]
==
2022
)
&
(
data_encoded
[
'
month
'
]
==
1
)
&
(
data_encoded
[
'
week
'
]
==
52
)
,
1
,
inplace
=
True
)
v
=
pd
.
read_excel
(
r
"
C:\Users\Hamed\Downloads\data(7).xlsx
"
)
variant_plus
=
pd
.
DataFrame
({
'
measure
'
:[],
'
v
'
:[],
'
vd
'
:[]})
import
warnings
warnings
.
filterwarnings
(
"
ignore
"
)
i
=
0
while
i
<
len
(
v
):
c
=
v
.
iloc
[
i
][
'
country
'
]
w
=
v
.
iloc
[
i
][
'
year_week
'
]
n
=
1
j
=
i
measure
=
c
+
w
s
=
[
v
.
iloc
[
i
][
'
variant
'
]]
sp
=
[
v
.
iloc
[
i
][
'
percent_variant
'
]]
while
j
+
1
<
len
(
v
)
and
v
.
iloc
[
j
+
1
][
'
country
'
]
+
v
.
iloc
[
j
+
1
][
'
year_week
'
]
==
measure
:
# .tolist()==list(name) and :
#print(i)
s
.
append
(
v
.
iloc
[
j
+
1
][
'
variant
'
])
sp
.
append
(
v
.
iloc
[
j
+
1
][
'
percent_variant
'
])
n
=
n
+
1
j
=
j
+
1
#print(j)
if
str
(
sp
[
0
])
==
'
nan
'
:
s
=
[
'
not_sequenced
'
]
sp
=
[
100
]
info
=
{
'
measure
'
:
measure
,
'
v
'
:
s
,
'
vd
'
:
sp
}
variant_plus
=
variant_plus
.
append
(
info
,
ignore_index
=
True
)
i
=
j
+
1
variant_plus
.
columns
=
[
'
country_year_week
'
,
'
variants
'
,
'
variants_percentage
'
]
dist
=
dict
()
for
i
in
range
(
0
,
len
(
variant_plus
)):
dist
[
variant_plus
.
iloc
[
i
][
'
country_year_week
'
]]
=
[
variant_plus
.
iloc
[
i
][
'
variants
'
],
variant_plus
.
iloc
[
i
][
'
variants_percentage
'
]]
def
valuation_formula
(
x
,
y
,
w
):
a
=
x
+
str
(
y
)
+
'
-
'
+
str
(
w
)
if
a
in
dist
:
return
dist
[
a
]
else
:
return
[[
'
not_sequenced
'
],
[
100
]]
data_encoded
[
'
va
'
]
=
data_encoded
.
apply
(
lambda
row
:
valuation_formula
(
row
[
'
countriesAndTerritories
'
],
row
[
'
year
'
],
row
[
'
week
'
]),
axis
=
1
)
vaccin
=
pd
.
read_excel
(
r
"
C:\Users\Hamed\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Anaconda3 (64-bit)\data(6).xlsx
"
)
cou
=
[]
for
idx
,
name
in
(
enumerate
(
v
[
'
country
'
].
value_counts
().
index
.
tolist
())):
cou
.
append
(
name
)
cou_cod
=
[]
for
idx
,
name
in
(
enumerate
(
v
[
'
country_code
'
].
value_counts
().
index
.
tolist
())):
cou_cod
.
append
(
name
)
vaccin_all
=
vaccin
.
loc
[(
vaccin
[
'
TargetGroup
'
]
==
'
ALL
'
)]
vaccin_all
=
vaccin_all
.
sort_values
(
by
=
[
'
ReportingCountry
'
,
'
YearWeekISO
'
])
dist_vaccin
=
dict
()
for
index
,
name
in
(
enumerate
(
vaccin_all
[
'
ReportingCountry
'
].
value_counts
().
index
.
tolist
())):
#for name in['Germany']:
land
=
name
vaccin_all_land
=
vaccin_all
.
loc
[(
vaccin_all
[
'
ReportingCountry
'
]
==
land
)]
vaccin_all_land
=
vaccin_all_land
.
reset_index
()
for
i
in
range
(
0
,
len
(
vaccin_all_land
)):
vaccin_all_land
.
iloc
[
i
][
'
FirstDose
'
]
=
vaccin_all_land
.
iloc
[
i
][
'
FirstDose
'
]
/
7
vaccin_all_land
[
'
CUMSUM_FirstDose
'
]
=
vaccin_all_land
[
'
FirstDose
'
].
cumsum
()
vaccin_all_land
[
'
CUMSUM_FirstDose
'
]
=
vaccin_all_land
[
'
CUMSUM_FirstDose
'
]
/
vaccin_all_land
.
iloc
[
0
][
'
Population
'
]
vaccin_all_land
.
iloc
[
i
][
'
SecondDose
'
]
=
vaccin_all_land
.
iloc
[
i
][
'
SecondDose
'
]
/
7
vaccin_all_land
[
'
CUMSUM_SecondDose
'
]
=
vaccin_all_land
[
'
SecondDose
'
].
cumsum
()
vaccin_all_land
[
'
CUMSUM_SecondDose
'
]
=
vaccin_all_land
[
'
CUMSUM_SecondDose
'
]
/
vaccin_all_land
.
iloc
[
0
][
'
Population
'
]
vaccin_all_land
.
iloc
[
i
][
'
DoseAdditional1
'
]
=
vaccin_all_land
.
iloc
[
i
][
'
DoseAdditional1
'
]
/
7
vaccin_all_land
[
'
CUMSUM_DoseAdditional1
'
]
=
vaccin_all_land
[
'
DoseAdditional1
'
].
cumsum
()
vaccin_all_land
[
'
CUMSUM_DoseAdditional1
'
]
=
vaccin_all_land
[
'
CUMSUM_DoseAdditional1
'
]
/
vaccin_all_land
.
iloc
[
0
][
'
Population
'
]
vaccin_all_land
.
iloc
[
i
][
'
DoseAdditional2
'
]
=
vaccin_all_land
.
iloc
[
i
][
'
DoseAdditional2
'
]
/
7
vaccin_all_land
[
'
CUMSUM_DoseAdditional2
'
]
=
vaccin_all_land
[
'
DoseAdditional2
'
].
cumsum
()
vaccin_all_land
[
'
CUMSUM_DoseAdditional2
'
]
=
vaccin_all_land
[
'
CUMSUM_DoseAdditional2
'
]
/
vaccin_all_land
.
iloc
[
0
][
'
Population
'
]
vaccin_all_land
.
iloc
[
i
][
'
DoseAdditional3
'
]
=
vaccin_all_land
.
iloc
[
i
][
'
DoseAdditional3
'
]
/
7
vaccin_all_land
[
'
CUMSUM_DoseAdditional3
'
]
=
vaccin_all_land
[
'
DoseAdditional3
'
].
cumsum
()
vaccin_all_land
[
'
CUMSUM_DoseAdditional3
'
]
=
vaccin_all_land
[
'
CUMSUM_DoseAdditional3
'
]
/
vaccin_all_land
.
iloc
[
0
][
'
Population
'
]
dist_vaccin
[
vaccin_all_land
.
iloc
[
i
][
'
ReportingCountry
'
]
+
vaccin_all_land
.
iloc
[
i
][
'
YearWeekISO
'
]]
=
[
vaccin_all_land
.
iloc
[
i
][
'
CUMSUM_FirstDose
'
],
vaccin_all_land
.
iloc
[
i
][
'
CUMSUM_SecondDose
'
],
vaccin_all_land
.
iloc
[
i
][
'
CUMSUM_DoseAdditional1
'
],
vaccin_all_land
.
iloc
[
i
][
'
CUMSUM_DoseAdditional2
'
],
vaccin_all_land
.
iloc
[
i
][
'
CUMSUM_DoseAdditional3
'
]]
for
index
,
name
in
(
enumerate
(
vaccin_all
[
'
ReportingCountry
'
].
value_counts
().
index
.
tolist
())):
land
=
name
for
y
in
range
(
2020
,
2023
):
for
w
in
range
(
1
,
57
):
#for name in['Germany']:
if
(
y
==
2020
and
w
==
1
and
name
+
str
(
y
)
+
'
-W
'
+
str
(
w
)
not
in
dist_vaccin
):
dist_vaccin
[
name
+
str
(
y
)
+
'
-W
'
+
str
(
w
)]
=
[
0
,
0
,
0
,
0
,
0
]
if
(
y
==
2020
and
w
>
1
and
name
+
str
(
y
)
+
'
-W
'
+
str
(
w
)
not
in
dist_vaccin
):
dist_vaccin
[
name
+
str
(
y
)
+
'
-W
'
+
str
(
w
)]
=
dist_vaccin
[
name
+
str
(
y
)
+
'
-W
'
+
str
(
w
-
1
)]
if
(
y
==
2021
and
w
==
1
and
name
+
str
(
y
)
+
'
-W
'
+
str
(
w
)
not
in
dist_vaccin
):
dist_vaccin
[
name
+
str
(
y
)
+
'
-W
'
+
str
(
w
)]
=
dist_vaccin
[
name
+
str
(
y
-
1
)
+
'
-W
'
+
str
(
56
)]
if
(
y
==
2021
and
w
>
1
and
name
+
str
(
y
)
+
'
-W
'
+
str
(
w
)
not
in
dist_vaccin
):
dist_vaccin
[
name
+
str
(
y
)
+
'
-W
'
+
str
(
w
)]
=
dist_vaccin
[
name
+
str
(
y
)
+
'
-W
'
+
str
(
w
-
1
)]
if
(
y
==
2022
and
w
==
1
and
name
+
str
(
y
)
+
'
-W
'
+
str
(
w
)
not
in
dist_vaccin
):
dist_vaccin
[
name
+
str
(
y
)
+
'
-W
'
+
str
(
w
)]
=
dist_vaccin
[
name
+
str
(
y
-
1
)
+
'
-W
'
+
str
(
56
)]
if
(
y
==
2022
and
w
>
1
and
name
+
str
(
y
)
+
'
-W
'
+
str
(
w
)
not
in
dist_vaccin
):
dist_vaccin
[
name
+
str
(
y
)
+
'
-W
'
+
str
(
w
)]
=
dist_vaccin
[
name
+
str
(
y
)
+
'
-W
'
+
str
(
w
-
1
)]
def
valuation_formula
(
x
,
y
,
w
):
x
=
cou_cod
[
cou
.
index
(
x
)]
a
=
x
+
str
(
y
)
+
'
-W
'
+
str
(
w
)
if
a
in
dist_vaccin
:
return
dist_vaccin
[
a
]
else
:
return
[
0
,
0
,
0
,
0
,
0
]
data_encoded
[
'
vaccin
'
]
=
data_encoded
.
apply
(
lambda
row
:
valuation_formula
(
row
[
'
countriesAndTerritories
'
],
row
[
'
year
'
],
row
[
'
week
'
]),
axis
=
1
)
pd
.
set_option
(
'
display.max_columns
'
,
500
)
v_list
=
[
'
not_sequenced
'
]
for
idx
,
name
in
(
enumerate
(
v
[
'
variant
'
].
value_counts
().
index
.
tolist
())):
v_list
.
append
(
name
)
measures_list
=
[]
for
idx
,
name
in
(
enumerate
(
measures
[
'
Measure
'
].
value_counts
().
index
.
tolist
())):
measures_list
.
append
(
name
)
def
vf
(
x
,
y
):
if
x
in
y
:
return
1
else
:
return
0
def
vf
(
x
,
y
):
if
x
in
y
:
return
1
else
:
return
0
for
i
in
measures_list
:
data_encoded
[
i
]
=
data_encoded
.
apply
(
lambda
row
:
vf
(
i
,
row
[
'
Rescd
'
]),
axis
=
1
)
def
vaf
(
x
,
y
):
if
x
in
y
[
0
]:
return
y
[
1
][
y
[
0
].
index
(
x
)]
else
:
return
0
for
i
in
v_list
:
data_encoded
[
i
]
=
data_encoded
.
apply
(
lambda
row
:
vaf
(
i
,
row
[
'
va
'
]),
axis
=
1
)
def
vac
(
x
,
i
):
return
x
[
i
]
for
i
in
range
(
0
,
5
):
data_encoded
[
'
vaccin_
'
+
str
(
i
)]
=
data_encoded
.
apply
(
lambda
row
:
vac
(
row
[
'
vaccin
'
],
i
),
axis
=
1
)
data_encoded_i
=
data_encoded
encoder
=
ce
.
BinaryEncoder
(
cols
=
[
'
month
'
],
return_df
=
True
)
data_encoded
=
encoder
.
fit_transform
(
data_encoded
)
data_encoded
=
pd
.
concat
([
data_encoded
,
data_encoded_i
[[
'
month
'
]]],
axis
=
1
)
writer
=
pd
.
ExcelWriter
(
'
data_encoded.xlsx
'
,
engine
=
'
xlsxwriter
'
)
data_encoded
.
to_excel
(
'
data_encoded.xlsx
'
,
sheet_name
=
'
1
'
,
index
=
False
)
#data_encoded
for
i
in
range
(
0
,
len
(
data_encoded
)):
#if data_encoded.iloc[i]['cases']==0:
if
data_encoded
.
iloc
[
i
][
'
7days_before_mean
'
]
==
0
:
#sum(data_encoded.iloc[i-7:i]['cases'].values)/7):
print
(
i
,
data_encoded
.
iloc
[
i
][
'
countriesAndTerritories
'
],
data_encoded
.
iloc
[
i
][
'
dateRep
'
])
df
=
data_encoded
for
i
in
range
(
0
,
len
(
df
)
-
1
):
if
df
.
iloc
[
i
][
'
dateRep
'
]
+
datetime
.
timedelta
(
days
=
1
)
!=
df
.
iloc
[
i
+
1
][
'
dateRep
'
]
and
df
.
iloc
[
i
][
'
countriesAndTerritories
'
]
==
df
.
iloc
[
i
+
1
][
'
countriesAndTerritories
'
]:
print
(
df
.
iloc
[
i
][
'
countriesAndTerritories
'
],
df
.
iloc
[
i
][
'
dateRep
'
],
df
.
iloc
[
i
+
1
][
'
dateRep
'
])
```
%% Output
7
%% Cell type:code id:c05338be-25fc-4cd3-b52a-0e3a2b6c8bd1 tags:
```
python
data_encoded
=
pd
.
read_excel
(
r
"
C:\Users\Hamed\data_encoded.xlsx
"
)
df
=
data_encoded
nnn_data_encoded
=
df
.
head
(
0
)
nnn_data_encoded
[
'
rp_zeitraum
'
]
=
pd
.
Series
(
dtype
=
'
float
'
)
nnn_data_encoded
=
nnn_data_encoded
.
replace
(
np
.
nan
,
0
)
lll
=
nnn_data_encoded
.
columns
.
values
.
tolist
()
nnn
=
30
for
index
,
name
in
(
enumerate
(
df
[
'
countriesAndTerritories
'
].
value_counts
().
index
.
tolist
())):
#for name in['Germany']:
land
=
name
#print(land)
data_encoded_land
=
df
.
loc
[(
df
[
'
countriesAndTerritories
'
]
==
land
)].
reset_index
()
for
i
in
range
(
nnn
-
1
,
len
(
data_encoded_land
)):
#data_encoded_zeitraum=data_encoded_land[i-nnn+1:i:]
rp_zeitraum
=
data_encoded_land
.
iloc
[
i
][
'
7days_after_mean
'
]
/
data_encoded_land
.
iloc
[
i
-
nnn
+
1
][
'
7days_before_mean
'
]
v
=
data_encoded_land
[
i
-
nnn
+
1
:
i
:].
drop
([
'
dateRep
'
,
'
cases
'
,
'
Rescd
'
,
'
week
'
,
'
year
'
,
'
month
'
,
'
countriesAndTerritories
'
,
'
va
'
,
'
vaccin
'
,
'
index
'
],
axis
=
1
).
mean
(
axis
=
'
index
'
)
a
=
pd
.
DataFrame
([
v
]).
reset_index
()
b
=
data_encoded_land
[
i
:
i
+
1
:][[
'
dateRep
'
,
'
cases
'
,
'
Rescd
'
,
'
week
'
,
'
year
'
,
'
month
'
,
'
countriesAndTerritories
'
,
'
va
'
,
'
vaccin
'
,
'
index
'
]].
reset_index
()
c
=
pd
.
concat
([
a
,
b
.
reindex
(
a
.
index
)],
axis
=
1
)
c
[
'
rp_zeitraum
'
]
=
pd
.
Series
(
dtype
=
'
float
'
)
c
=
c
.
replace
(
np
.
nan
,
0
)
c
[
'
rp_zeitraum
'
]
=
c
[
'
rp_zeitraum
'
].
apply
(
lambda
x
:
rp_zeitraum
)
c
=
c
[
lll
]
c
=
c
.
drop
([
'
index
'
],
axis
=
1
)
nnn_data_encoded
=
pd
.
concat
([
nnn_data_encoded
,
c
],
axis
=
0
)
month_data_encoded
=
nnn_data_encoded
```
%% Cell type:code id:5b33cef1-82e3-4f8c-9c59-8a1847bf2520 tags:
```
python
writer
=
pd
.
ExcelWriter
(
'
month_data_encoded.xlsx
'
,
engine
=
'
xlsxwriter
'
)
month_data_encoded
.
to_excel
(
'
month_data_encoded.xlsx
'
,
sheet_name
=
'
1
'
,
index
=
False
)
month_data_encoded
```
%% Output
countriesAndTerritories_0 countriesAndTerritories_1 \
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
.. ... ...
0 1.0 1.0
0 1.0 1.0
0 1.0 1.0
0 1.0 1.0
0 1.0 1.0
countriesAndTerritories_2 countriesAndTerritories_3 \
0 0.0 1.0
0 0.0 1.0
0 0.0 1.0
0 0.0 1.0
0 0.0 1.0
.. ... ...
0 1.0 0.0
0 1.0 0.0
0 1.0 0.0
0 1.0 0.0
0 1.0 0.0
countriesAndTerritories_4 dateRep cases \
0 0.0 2020-03-29 2599.0
0 0.0 2020-03-30 4376.0
0 0.0 2020-03-31 7578.0
0 0.0 2020-04-01 4861.0
0 0.0 2020-04-02 2116.0
.. ... ... ...
0 1.0 2020-11-30 21.0
0 1.0 2020-12-01 20.0
0 1.0 2020-12-02 15.0
0 1.0 2020-12-03 14.0
0 1.0 2020-12-04 14.0
Rescd 7days_before_mean \
0 ['ClosDaycare', 'ClosHighPartial', 'ClosPubAny... 790.871921
0 ['ClosDaycare', 'ClosHighPartial', 'ClosPubAny... 904.541872
0 ['ClosDaycare', 'ClosHighPartial', 'ClosPubAny... 1019.802956
0 ['ClosDaycare', 'ClosHighPartial', 'ClosPubAny... 1140.788177
0 ['ClosDaycare', 'ClosHighPartial', 'ClosPubAny... 1286.832512
.. ... ...
0 ['ClosPubAnyPartial', 'EntertainmentVenues', '... 32.187192
0 ['ClosPubAnyPartial', 'EntertainmentVenues', '... 29.433498
0 ['ClosPubAnyPartial', 'EntertainmentVenues', '... 27.137931
0 ['ClosPubAnyPartial', 'EntertainmentVenues', '... 25.426108
0 ['ClosPubAnyPartial', 'EntertainmentVenues', '... 24.054187
7days_after_mean month_0 month_1 month_2 month_3 week year \
0 1741.147783 0.034483 0.034483 0.000000 0.965517 13 2020
0 1891.231527 0.000000 0.000000 0.000000 1.000000 14 2020
0 2036.330049 0.000000 0.000000 0.000000 1.000000 14 2020
0 2178.492611 0.000000 0.000000 0.000000 1.000000 14 2020
0 2300.748768 0.000000 0.000000 0.034483 0.965517 14 2020
.. ... ... ... ... ... ... ...
0 20.995074 1.000000 0.000000 0.000000 1.000000 49 2020
0 20.719212 1.000000 0.000000 0.000000 1.000000 49 2020
0 20.502463 1.000000 0.000000 0.034483 0.965517 49 2020
0 20.315271 1.000000 0.000000 0.068966 0.931034 49 2020
0 20.098522 1.000000 0.000000 0.103448 0.896552 49 2020
index countriesAndTerritories \
0 NaN France
0 NaN France
0 NaN France
0 NaN France
0 NaN France
.. ... ...
0 NaN Iceland
0 NaN Iceland
0 NaN Iceland
0 NaN Iceland
0 NaN Iceland
va vaccin \
0 [['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ... [0, 0, 0, 0, 0]
0 [['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ... [0, 0, 0, 0, 0]
0 [['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ... [0, 0, 0, 0, 0]
0 [['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ... [0, 0, 0, 0, 0]
0 [['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ... [0, 0, 0, 0, 0]
.. ... ...
0 [['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ... [0, 0, 0, 0, 0]
0 [['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ... [0, 0, 0, 0, 0]
0 [['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ... [0, 0, 0, 0, 0]
0 [['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ... [0, 0, 0, 0, 0]
0 [['Other', 'XBB.1.5', 'B.1.351', 'B.1.617.2', ... [0, 0, 0, 0, 0]
EntertainmentVenuesPartial RestaurantsCafesPartial EntertainmentVenues \
0 0.000000 0.0 0.448276
0 0.000000 0.0 0.482759
0 0.000000 0.0 0.517241
0 0.000000 0.0 0.551724
0 0.000000 0.0 0.586207
.. ... ... ...
0 0.034483 1.0 1.000000
0 0.000000 1.0 1.000000
0 0.000000 1.0 1.000000
0 0.000000 1.0 1.000000
0 0.000000 1.0 1.000000
MassGatherAll ClosSec GymsSportsCentresPartial ClosPrim \
0 1.0 0.0 0.0 0.0
0 1.0 0.0 0.0 0.0
0 1.0 0.0 0.0 0.0
0 1.0 0.0 0.0 0.0
0 1.0 0.0 0.0 0.0
.. ... ... ... ...
0 1.0 0.0 1.0 0.0
0 1.0 0.0 1.0 0.0
0 1.0 0.0 1.0 0.0
0 1.0 0.0 1.0 0.0
0 1.0 0.0 1.0 0.0
NonEssentialShopsPartial ClosPubAnyPartial RestaurantsCafes \
0 0.0 0.0 0.448276
0 0.0 0.0 0.482759
0 0.0 0.0 0.517241
0 0.0 0.0 0.551724
0 0.0 0.0 0.586207
.. ... ... ...
0 1.0 1.0 0.000000
0 1.0 1.0 0.000000
0 1.0 1.0 0.000000
0 1.0 1.0 0.000000
0 1.0 1.0 0.000000
GymsSportsCentres MassGather50 PrivateGatheringRestrictions \
0 0.448276 0.0 0.413793
0 0.482759 0.0 0.448276
0 0.517241 0.0 0.482759
0 0.551724 0.0 0.517241
0 0.586207 0.0 0.551724
.. ... ... ...
0 0.000000 1.0 1.000000
0 0.000000 1.0 1.000000
0 0.000000 1.0 1.000000
0 0.000000 1.0 1.000000
0 0.000000 1.0 1.000000
MassGatherAllPartial ClosHigh NonEssentialShops ClosSecPartial \
0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0
.. ... ... ... ...
0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0
OutdoorOver500 ClosDaycare BanOnAllEvents IndoorOver500 \
0 0.0 0.448276 0.0 0.0
0 0.0 0.482759 0.0 0.0
0 0.0 0.517241 0.0 0.0
0 0.0 0.551724 0.0 0.0
0 0.0 0.586207 0.0 0.0
.. ... ... ... ...
0 0.0 0.000000 0.0 0.0
0 0.0 0.000000 0.0 0.0
0 0.0 0.000000 0.0 0.0
0 0.0 0.000000 0.0 0.0
0 0.0 0.000000 0.0 0.0
QuarantineForInternationalTravellers ClosHighPartial IndoorOver100 \
0 0.0 0.448276 0.0
0 0.0 0.482759 0.0
0 0.0 0.517241 0.0
0 0.0 0.551724 0.0
0 0.0 0.586207 0.0
.. ... ... ...
0 1.0 0.000000 0.0
0 1.0 0.000000 0.0
0 1.0 0.000000 0.0
0 1.0 0.000000 0.0
0 1.0 0.000000 0.0
Teleworking ClosPubAny PlaceOfWorshipPartial \
0 0.413793 0.448276 0.0
0 0.448276 0.482759 0.0
0 0.482759 0.517241 0.0
0 0.517241 0.551724 0.0
0 0.551724 0.586207 0.0
.. ... ... ...
0 0.000000 0.000000 0.0
0 0.000000 0.000000 0.0
0 0.000000 0.000000 0.0
0 0.000000 0.000000 0.0
0 0.000000 0.000000 0.0
MasksMandatoryClosedSpacesPartial MassGather50Partial \
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
.. ... ...
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
StayHomeOrderPartial OutdoorOver100 IndoorOver50 ClosPrimPartial \
0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0
.. ... ... ... ...
0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0
PrivateGatheringRestrictionsPartial MasksMandatoryClosedSpaces \
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
.. ... ...
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
OutdoorOver1000 TeleworkingPartial MasksMandatoryAllSpaces \
0 0.551724 0.0 0.0
0 0.586207 0.0 0.0
0 0.620690 0.0 0.0
0 0.655172 0.0 0.0
0 0.689655 0.0 0.0
.. ... ... ...
0 0.000000 0.0 0.0
0 0.000000 0.0 0.0
0 0.000000 0.0 0.0
0 0.000000 0.0 0.0
0 0.000000 0.0 0.0
OutdoorOver50 StayHomeOrder QuarantineForInternationalTravellersPartial \
0 0.0 0.413793 0.0
0 0.0 0.448276 0.0
0 0.0 0.482759 0.0
0 0.0 0.517241 0.0
0 0.0 0.551724 0.0
.. ... ... ...
0 1.0 0.000000 0.0
0 1.0 0.000000 0.0
0 1.0 0.000000 0.0
0 1.0 0.000000 0.0
0 1.0 0.000000 0.0
MasksMandatoryAllSpacesPartial StayHomeGen PlaceOfWorship \
0 0.0 0.137931 0.0
0 0.0 0.137931 0.0
0 0.0 0.137931 0.0
0 0.0 0.137931 0.0
0 0.0 0.137931 0.0
.. ... ... ...
0 1.0 0.000000 0.0
0 1.0 0.000000 0.0
0 1.0 0.000000 0.0
0 1.0 0.000000 0.0
0 1.0 0.000000 0.0
ClosDaycarePartial IndoorOver1000 BanOnAllEventsPartial \
0 0.0 1.0 0.0
0 0.0 1.0 0.0
0 0.0 1.0 0.0
0 0.0 1.0 0.0
0 0.0 1.0 0.0
.. ... ... ...
0 0.0 0.0 0.0
0 0.0 0.0 0.0
0 0.0 0.0 0.0
0 0.0 0.0 0.0
0 0.0 0.0 0.0
HotelsOtherAccommodationPartial StayHomeRiskG \
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
.. ... ...
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
ClosureOfPublicTransportPartial AdaptationOfWorkplace \
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
.. ... ...
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
HotelsOtherAccommodation MasksVoluntaryClosedSpacesPartial \
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
.. ... ...
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
RegionalStayHomeOrderPartial AdaptationOfWorkplacePartial \
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
.. ... ...
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
MasksVoluntaryAllSpaces MasksVoluntaryAllSpacesPartial \
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
.. ... ...
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
0 0.0 0.0
MasksVoluntaryClosedSpaces SocialCircle WorkplaceClosures \
0 0.0 0.0 0.413793
0 0.0 0.0 0.448276
0 0.0 0.0 0.482759
0 0.0 0.0 0.517241
0 0.0 0.0 0.551724
.. ... ... ...
0 0.0 0.0 0.000000
0 0.0 0.0 0.000000
0 0.0 0.0 0.000000
0 0.0 0.0 0.000000
0 0.0 0.0 0.000000
RegionalStayHomeOrder ClosureOfPublicTransport StayHomeGenPartial \
0 0.0 0.0 0.0
0 0.0 0.0 0.0
0 0.0 0.0 0.0
0 0.0 0.0 0.0
0 0.0 0.0 0.0
.. ... ... ...
0 0.0 0.0 0.0
0 0.0 0.0 0.0
0 0.0 0.0 0.0
0 0.0 0.0 0.0
0 0.0 0.0 0.0
WorkplaceClosuresPartial StayHomeRiskGPartial SocialCirclePartial \
0 0.0 0.0 0.0
0 0.0 0.0 0.0
0 0.0 0.0 0.0
0 0.0 0.0 0.0
0 0.0 0.0 0.0
.. ... ... ...
0 0.0 0.0 0.0
0 0.0 0.0 0.0
0 0.0 0.0 0.0
0 0.0 0.0 0.0
0 0.0 0.0 0.0
not_sequenced B.1.617.2 BA.2 BA.5 Other B.1.1.7 BA.1 \
0 6.896552 0.0 0.062069 0.0 93.041379 0.000000 0.0
0 3.448276 0.0 0.072414 0.0 96.479310 0.000000 0.0
0 0.000000 0.0 0.072414 0.0 99.924138 0.003448 0.0
0 0.000000 0.0 0.072414 0.0 99.920690 0.006897 0.0
0 0.000000 0.0 0.072414 0.0 99.917241 0.010345 0.0
.. ... ... ... ... ... ... ...
0 0.000000 0.0 0.000000 0.0 100.000000 0.000000 0.0
0 0.000000 0.0 0.000000 0.0 99.962069 0.037931 0.0
0 0.000000 0.0 0.000000 0.0 99.924138 0.075862 0.0
0 0.000000 0.0 0.000000 0.0 99.886207 0.113793 0.0
0 0.000000 0.0 0.000000 0.0 99.848276 0.151724 0.0
BA.4 BA.2.75 BQ.1 XBB B.1.351 P.1 XBB.1.5 B.1.525 B.1.621 C.37 \
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
.. ... ... ... ... ... ... ... ... ... ...
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B.1.617.1 B.1.616 B.1.620 B.1.427/B.1.429 P.3 UNK B.1.1.529 \
0 0.0 0.0 0.0 0.0 0.0 1.606897 0.0
0 0.0 0.0 0.0 0.0 0.0 1.641379 0.0
0 0.0 0.0 0.0 0.0 0.0 1.682759 0.0
0 0.0 0.0 0.0 0.0 0.0 1.703448 0.0
0 0.0 0.0 0.0 0.0 0.0 1.724138 0.0
.. ... ... ... ... ... ... ...
0 0.0 0.0 0.0 0.0 0.0 3.003448 0.0
0 0.0 0.0 0.0 0.0 0.0 3.031034 0.0
0 0.0 0.0 0.0 0.0 0.0 3.024138 0.0
0 0.0 0.0 0.0 0.0 0.0 3.017241 0.0
0 0.0 0.0 0.0 0.0 0.0 3.010345 0.0
BA.3 AY.4.2 BA.4/BA.5 SGTF B.1.1.7+E484K BA.2+L452X B.1.617.3 \
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
.. ... ... ... ... ... ... ...
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
vaccin_0 vaccin_1 vaccin_2 vaccin_3 vaccin_4 month rp_zeitraum
0 0.0 0.0 0.0 0.0 0.0 3 756.829268
0 0.0 0.0 0.0 0.0 0.0 3 336.711111
0 0.0 0.0 0.0 0.0 0.0 3 222.686567
0 0.0 0.0 0.0 0.0 0.0 4 145.469274
0 0.0 0.0 0.0 0.0 0.0 4 126.560606
.. ... ... ... ... ... ... ...
0 0.0 0.0 0.0 0.0 0.0 11 0.183333
0 0.0 0.0 0.0 0.0 0.0 0 0.216867
0 0.0 0.0 0.0 0.0 0.0 0 0.254002
0 0.0 0.0 0.0 0.0 0.0 0 0.270136
0 0.0 0.0 0.0 0.0 0.0 0 0.265971
[21549 rows x 124 columns]
%% Cell type:code id:358acefb-05a6-4298-b33a-cffa4ec17134 tags:
```
python
```
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment