Skip to content
Snippets Groups Projects
Commit b8320a8a authored by Dr. Hamed Khalili's avatar Dr. Hamed Khalili
Browse files

Upload New File

parent 8445a6b1
No related branches found
No related tags found
No related merge requests found
###******************************HALLO*******************************
###***************************BAYESIAN GOVERMENT COVID APPLICATION**************************************************WRITEN BY:
###********************************************************************************************************HAMED KHALILI***********
###***************************INPUTS OF THE PROGRAM********************************************************************************************
import pandas as pd
import base64
azResults=[]
Results=[]
countries=['Netherlands','Czechia','Lithuania','Austria','Poland','Slovenia','Estonia','Italy','Slovakia','Ireland','Denmark',
'Iceland','Cyprus','Greece','Belgium','Bulgaria','France','Germany','Latvia','Spain','Norway','Romania','Liechtenstein',
'Portugal','Luxembourg','Hungary','Malta','Croatia','Finland','Sweden']#
for tage in [21]:
for massnahme in [['ClosDaycare','ClosDaycarePartial'],['ClosDaycare'],['ClosPrim','ClosPrimPartial'],['ClosPrim'],
['RestaurantsCafes','RestaurantsCafesPartial'],['RestaurantsCafes'],['GymsSportsCentres','GymsSportsCentresPartial'],['GymsSportsCentres'],
['Teleworking','TeleworkingPartial','WorkplaceClosuresPartial','WorkplaceClosures'],['Teleworking','WorkplaceClosures'],
['MasksMandatoryClosedSpacesPartial','MasksMandatoryAllSpaces','MasksMandatoryClosedSpaces','MasksMandatoryAllSpacesPartial'],
['MasksMandatoryAllSpaces','MasksMandatoryClosedSpaces']]:
incidence_days_number=tage
print(incidence_days_number)
X=massnahme
print(X)
#X=['MasksMandatoryAllSpaces','MasksMandatoryClosedSpaces']
method="hierarchical"#or#pooled#or#unpooled
###********************************************************************************************************************************************
#['ClosDaycare','ClosDaycarePartial','ClosPrimPartial','ClosSecPartial','ClosPrim','ClosSec','ClosHighPartial','ClosHigh']
#['RestaurantsCafes','RestaurantsCafesPartial']
#['GymsSportsCentres','GymsSportsCentresPartial']
#['Teleworking','TeleworkingPartial','WorkplaceClosuresPartial','AdaptationOfWorkplace','AdaptationOfWorkplacePartial','WorkplaceClosures']
#['MasksMandatoryClosedSpacesPartial','MasksMandatoryAllSpaces','MasksMandatoryClosedSpaces','MasksMandatoryAllSpacesPartial']
#y_pred =this is almost identical to y_est except we do not specify the observed data. PyMC considers this to be a stochastic node
#(as opposed to an observed node) and as the MCMC sampler runs - it also samples data from y_est.
"""
['Netherlands','Czechia','Lithuania','Austria','Poland','Slovenia','Estonia','Italy','Slovakia','Ireland','Denmark',
'Iceland','Cyprus','Greece','Belgium','Bulgaria','France','Germany','Latvia','Spain','Norway','Romania','Liechtenstein',
'Portugal','Luxembourg','Hungary','Malta','Croatia','Finland','Sweden']
['EntertainmentVenuesPartial','RestaurantsCafesPartial','EntertainmentVenues','MassGatherAll','ClosSec','GymsSportsCentresPartial','ClosPrim',
'NonEssentialShopsPartial','ClosPubAnyPartial','RestaurantsCafes','GymsSportsCentres','MassGather50','PrivateGatheringRestrictions',
'MassGatherAllPartial',
'ClosHigh','NonEssentialShops','ClosSecPartial','OutdoorOver500','ClosDaycare','BanOnAllEvents','IndoorOver500','QuarantineForInternationalTravellers',
'ClosHighPartial','IndoorOver100','Teleworking','ClosPubAny','PlaceOfWorshipPartial','MasksMandatoryClosedSpacesPartial','MassGather50Partial',
'StayHomeOrderPartial','OutdoorOver100','IndoorOver50','ClosPrimPartial','PrivateGatheringRestrictionsPartial','MasksMandatoryClosedSpaces',
'OutdoorOver1000','TeleworkingPartial','MasksMandatoryAllSpaces','OutdoorOver50','StayHomeOrder','QuarantineForInternationalTravellersPartial',
'MasksMandatoryAllSpacesPartial','StayHomeGen','PlaceOfWorship','ClosDaycarePartial','IndoorOver1000','BanOnAllEventsPartial',
'HotelsOtherAccommodationPartial',
'StayHomeRiskG','ClosureOfPublicTransportPartial','AdaptationOfWorkplace','HotelsOtherAccommodation','MasksVoluntaryClosedSpacesPartial',
'RegionalStayHomeOrderPartial','AdaptationOfWorkplacePartial','MasksVoluntaryAllSpaces','MasksVoluntaryAllSpacesPartial','MasksVoluntaryClosedSpaces',
'SocialCircle','WorkplaceClosures','RegionalStayHomeOrder','ClosureOfPublicTransport','StayHomeGenPartial','WorkplaceClosuresPartial',
'StayHomeRiskGPartial','SocialCirclePartial']
"""
###************MAIN BODY OF THE PROGRAM****************************************************************************************************
def add_elemant(element,lis,j):
for i in lis:
if element in i:
return i[j]
colors = ['#348ABD', '#A60628', '#7A68A6', '#467821', '#D55E00', '#CC79A7', '#56B4E9', '#009E73', '#F0E442', '#0072B2']
import pandas as pd
import datetime
from datetime import timedelta
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
import seaborn as sns
import arviz as az
import itertools
import matplotlib.pyplot as plt
import numpy as np
import pymc3 as pm
import scipy
import scipy.stats as stats
from IPython.display import Image
from sklearn import preprocessing
import pandas as pd
import datetime
from IPython.display import display
def f(r,tr):
for i in tr:
if i in r:
return "+"#+str(tr).replace(",", " or")
return "-"#+str(tr).replace(",", " or")
def std():
l=[]
for idx, name in (enumerate(CBook.iloc[:,5].value_counts().index.tolist())):
l.append( [name,CBook.iloc[:,5].value_counts().tolist()[idx],CBook.loc[CBook.iloc[:,5] == name, mass].std()])
return l#CBook[str(evaluation_object)+' '+str(evaluation_criteria)+' '+'std'] = CBook.apply(lambda row: add_second_elemant(row[evaluation_object],l), axis=1)
def mean():
l=[]
for idx, name in (enumerate(CBook.iloc[:,5].value_counts().index.tolist())):
l.append( [name,CBook.iloc[:,5].value_counts().tolist()[idx],CBook.loc[CBook.iloc[:,5] == name, mass].mean()])
return l
cb =pd.read_excel("cb.xlsx")
measures =pd.read_excel("measures.xlsx")
#if method=="hierarchical":
#liss=[]
responses_plus=[]
responses_minus=[]
liss_plus = pd.DataFrame({'country':[],'mean':[],'std':[],'count+':[],'count-':[],'mean+':[],'mean-':[],'std+':[],'std-':[]})
for idx, name in (enumerate(cb['countriesAndTerritories'].value_counts().index.tolist())):
#for name in['Germany']:
land=name
cb_2=cb.loc[(cb['countriesAndTerritories'] == land)]
cb_2=cb_2[['dateRep','cases']].iloc[::-1]
#cb=cb[(cb['dateRep']>=datetime.date(2020,2,3))] # df[(df['date']>datetime.date(2016,1,1))
cb_2['dateRep'] = pd.to_datetime(cb_2['dateRep'], format='%d/%m/%Y')
#cb_2=cb_2.loc[cb_2['dateRep']>='2020-03-02']
cb_2['cases'].values[cb_2['cases']<0] = cb_2['cases'].values[cb_2['cases']<0]*(-1)
cb_2['cases'].values[cb_2['cases']==0]=1
if cb_2.isnull().values.any():
cb_2['cases']=cb_2['cases'].interpolate()
cb_2=cb_2.reset_index()
measures_2=measures.loc[(measures['Country'] == land)]
if measures_2.isnull().values.any():
#print(measures_2[measures_2['E'].isna()])
measures_2=measures_2.dropna()
measures_2=measures_2.reset_index()
cooBook=cb_2
lst=[]
cooBook["Rescd"] = [list() for x in range(len(cooBook.index))]
measures_2['A'] = pd.to_datetime(measures_2['A'], format='%d/%m/%Y')
measures_2['E'] = pd.to_datetime(measures_2['E'], format='%d/%m/%Y')
for i in range (0,len(measures_2)):
#col="rc"#(measures['Measure'][i])
A=(measures_2['A'][i])
E=(measures_2['E'][i]++ timedelta(days=1))
#if col not in coBook.columns:
#coBook[col] = pd.Series(dtype='int')
for j in range (0,len(cooBook)):
date=cooBook['dateRep'][j]
#date_E=coBook['time_iso8601'][j-1]
#if coBook[col][j] != 1:
if date>=A and date<=E:
cooBook["Rescd"][j].append(measures_2['Measure'][i])
CBook=cooBook
#CBook['daily_cases']=CBook['daily_cases'].diff()
#CBook=CBook[1::]
#CBook=CBook.reset_index()
CBook['rpn_minus_one'+str(incidence_days_number)] = pd.Series(dtype='float')
CBook = CBook.replace(np.nan, 0)
for i in range (0,len(CBook)-incidence_days_number):
caesdayNplusone=CBook.loc[i+incidence_days_number, ['cases']].to_list()[0]
averagecasesdayonetoNminusone=sum(CBook.iloc[i:i+incidence_days_number]['cases'].values)/incidence_days_number
#if averagecasesdayonetoNminusone ==0:
#print("00000000")
CBook.loc[i, ['rpn_minus_one'+str(incidence_days_number)]]=caesdayNplusone/averagecasesdayonetoNminusone-1
#operator="or"
mass='rpn_minus_one'+str(incidence_days_number)
#CBook[mass]=CBook[mass].pct_change()
#CBook=CBook.iloc[1: , :]
#CBook[[mass]] = CBook[[mass]].apply(lambda x: 100*x)
data_collecting_start_date=min(measures_2['A'])
data_collecting_end_date=max(measures_2['E'])
if land== 'Hungary':#03/03/2020-11/06/2021 for Hungary
data_collecting_start_date='2020-03-11'
data_collecting_end_date='2021-06-11'
if land== 'Iceland':#23/07/2020-03/12/2021 for
data_collecting_start_date='2020-07-23'
data_collecting_end_date='2021-12-03'
if land== 'Liechtenstein':# 01/10/2020-24/10/2022 for Liechtenstein
data_collecting_start_date='2020-10-01'
data_collecting_end_date='2022-03-31'
CBook=CBook.loc[ (CBook['dateRep']>=data_collecting_start_date) ]
CBook=CBook.loc[ (CBook['dateRep']<=data_collecting_end_date) ]
CBook[str(X[0][:10]).replace(",", " or")+''+ 'Rescd'] = CBook.apply(lambda row: land+f(row['Rescd'],X), axis=1)
#liss.append([land,mean(),std()])
info ={'country':land,'mean':CBook.iloc[:,4].mean(),'std':CBook.iloc[:,4].std(),'count+':add_elemant(land+'+',mean(),1),'count-':add_elemant(land+'-',mean(),1),'mean+':add_elemant(land+'+',mean(),2),'mean-':add_elemant(land+'-',mean(),2),'std+':add_elemant(land+'+',std(),2),'std-':add_elemant(land+'-',std(),2)}
liss_plus = liss_plus.append(info, ignore_index = True)
liss_plus=liss_plus.fillna(0)
if land in countries:
CBook_plus=CBook[(CBook.iloc[:,5] == land+"+")]
CBook_minus=CBook[(CBook.iloc[:,5] == land+"-")]
le_plus = preprocessing.LabelEncoder()
le_minus = preprocessing.LabelEncoder()
rc=str(X[0][:10]).replace(",", " or")+''+ 'Rescd'
clm_plus=CBook_plus[rc]
clm_minus=CBook_minus[rc]
response_idx_plus = le_plus.fit_transform(clm_plus)
response_idx_minus = le_minus.fit_transform(clm_minus)
response_plus = le_plus.classes_
response_minus = le_minus.classes_
#number_of_response_plus=len(response_plus)
#number_of_response_minus=len(response_minus)
#for i in range(0, number_of_response_codes):
if len(response_plus)==0:
response_plus=[land+"+",[]]
responses_plus.append(response_plus)
else:
response_plus[0]=[response_plus[0],CBook_plus[clm_plus==response_plus[0]][mass].values.tolist()]
responses_plus.append(response_plus[0])
if len(response_minus)==0:
response_minus=[land+"-",[]]
responses_minus.append(response_minus)
else:
response_minus[0]=[response_minus[0],CBook_minus[clm_minus==response_minus[0]][mass].values.tolist()]
responses_minus.append(response_minus[0])
#liss
#export_excel = liss_plus.to_excel (r"C:\Users\Hamed\Desktop\liss_plus.xlsx")
data_mean_positive = np.repeat(liss_plus['mean+'].values.tolist(),liss_plus['count+'].values.tolist())
mean_mean_positive=data_mean_positive.mean()
mean_std_positive=data_mean_positive.std()
data_std_positive = np.repeat(liss_plus['std+'].values.tolist(),liss_plus['count+'].values.tolist())
#std_mean_positive=data_std_positive.mean()
#std_std_positive=data_std_positive.std()
std_min_positive=data_std_positive.min()
std_max_positive=data_std_positive.max()
data_mean_negative = np.repeat(liss_plus['mean-'].values.tolist(),liss_plus['count-'].values.tolist())
mean_mean_negative=data_mean_negative.mean()
mean_std_negative=data_mean_negative.std()
data_std_negative = np.repeat(liss_plus['std-'].values.tolist(),liss_plus['count-'].values.tolist())
#std_mean_negative=data_std_negative.mean()
#std_std_negative=data_std_negative.std()
std_min_negative=data_std_negative.min()
std_max_negative=data_std_negative.max()
#cb =pd.read_excel(r"C:\Users\Hamed\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Anaconda3 (64-bit)\datac.xlsx")
#measures =pd.read_excel(r"C:\Users\Hamed\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Anaconda3 (64-bit)\response_graphs.xlsx")
#CBook
#mean_mean_positive mean_std_positive std_mean_positive std_std_positive country_mean_positive country_std_positive
#uncertainty=0.1
#import math
with pm.Model() as model:
hyper_mu_parameter_positive=pm.Normal('hyper_mu_parameter_positive', mu=mean_mean_positive,sd=mean_std_positive)#
hyper_sd_parameter_positive=pm.Uniform('hyper_sd_parameter_positive', lower=std_min_positive,upper=std_max_positive)#pm.Exponential("hyper_sd_parameter", lam=1/std_mean_positive)#
#hyper_sd_error_parameter=pm.Uniform('hyper_sd_error_parameter', lower=std_min_positive,upper=std_max_positive)
hyper_mu_parameter_negative=pm.Normal('hyper_mu_parameter_negative', mu=mean_mean_negative,sd=mean_std_negative)#
hyper_sd_parameter_negative=pm.Uniform('hyper_sd_parameter_negative', lower=std_min_negative,upper=std_max_negative)
hyper_nu_parameter_plus=pm.Uniform('hyper_nu_parameter_plus', lower=0,upper=30)
hyper_nu_parameter_minus=pm.Uniform('hyper_nu_parameter_minus', lower=0,upper=30)
#phi_mean=pm.Uniform('phi_mean', lower=0,upper=1)
#phi_std=pm.Uniform('phi_std', lower=0,upper=1)
mu = dict()
sd=dict()
incidence = dict()
incidence_pred=dict()
#name_plus=responses_plus[0][0]
#observed_plus=responses_plus[0][1]
#name_minus=responses_minus[0][0]
#observed_minus=responses_minus[0][1]
#nu[name] = pm.Uniform('nu_'+name, lower=0,upper=30)
for name_plus,observed_plus in responses_plus:
std_land=liss_plus.loc[(liss_plus['country'] == name_plus[:-1])].iloc[:,2].to_list()[0]
mu[name_plus] = pm.Normal('mu_'+name_plus, mu=hyper_mu_parameter_positive,sd=hyper_sd_parameter_positive)
sd[name_plus] = pm.Exponential('sd_'+name_plus, lam=1/std_land)
#if len(observed_plus)==0:
#incidence[name_plus] = pm.StudentT(name_plus,nu=hyper_nu_parameter_plus, mu=mu[name_plus], sigma=sd[name_plus] )
if len(observed_plus)!=0:
incidence[name_plus] = pm.StudentT(name_plus,nu=hyper_nu_parameter_plus, mu=mu[name_plus], sigma=sd[name_plus] ,observed=observed_plus)
incidence_pred[name_plus] = pm.StudentT('incidence_pred'+name_plus,nu=hyper_nu_parameter_plus, mu=mu[name_plus], sigma=sd[name_plus] )
for name_minus,observed_minus in responses_minus:
mu[name_minus] = pm.Normal('mu_'+name_minus, mu=hyper_mu_parameter_negative,sd=hyper_sd_parameter_negative)
sd[name_minus] = pm.Exponential('sd_'+name_minus, lam=1/std_land)
#if len(observed_minus)==0:
#incidence[name_minus] = pm.StudentT(name_minus,nu=hyper_nu_parameter_minus, mu=mu[name_minus], sigma=sd[name_minus] )
if len(observed_minus)!=0:
incidence[name_minus] = pm.StudentT(name_minus,nu=hyper_nu_parameter_minus, mu=mu[name_minus], sigma=sd[name_minus] ,observed=observed_minus)
incidence_pred[name_minus] = pm.StudentT('incidence_pred'+name_minus,nu=hyper_nu_parameter_minus, mu=mu[name_minus], sigma=sd[name_minus] )
sample_number=1000
model_trace = pm.sample(sample_number,target_accept = 0.99)#,tune=2000,target_accept = 0.90
azsum=az.summary(model_trace)
azResults.append([incidence_days_number,X,list(azsum.index),list(azsum.columns),azsum.values.tolist()])
def prob_responsea_efficient_over_responseb(responsea, responseb):
l=[]
for i in range(1000):
a=model_trace.get_values('incidence_pred'+responsea)
np.random.shuffle(a)
b=model_trace.get_values('incidence_pred'+responseb)
np.random.shuffle(b)
l.append(np.float(sum(a < b))/len(a))
return l
#b=50
#r=[responses_plus,responses_minus]
#for i in range(0, len(responses_plus)):
#if len(responses_plus)==1:
#fig, ax = plt.subplots(1,1, figsize=(5, 5))
#ax.hist(prob_responsea_efficient_over_responseb(responses_plus[0][0],responses_minus[0][0]), #label="p(+<-)"+responses_plus[0]#[0][:-1])
#ax.legend(loc='best')
#ax.set_ylabel('frequency')
#ax.set_title('efficiency of + compared to -')
resu=[]
for i in range(0,len(responses_plus)):
effdis=prob_responsea_efficient_over_responseb(responses_plus[i][0],responses_minus[i][0])
#axs[i].hist(effdis, label="p(+<-)"+responses_plus[i][0][:-1])
#axs[i].legend(loc='best')
#axs[i].set_ylabel('frequency')
#from statistics import mean
from statistics import mean
#print(mean(effdis)
resu.append([responses_plus[i][0][:-1],[min (effdis),mean(effdis),max(effdis)]])
#print(resu)
#print(resu)
Results.append([incidence_days_number,X,resu])
score=Results
azscore=azResults
with open('Resultsfile21.py', 'w') as f:
f.write('score = %s' % score)
with open('azResultsfile21.py', 'w') as azf:
azf.write('azscore = %s' % azscore)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment