Newer
Older
#include "Context.hpp"
namespace vkcv {
Context::Context(vk::Instance instance, vk::PhysicalDevice physicalDevice, vk::Device device)
: m_instance(instance), m_physicalDevice(physicalDevice), m_device(device)
{}
Context::~Context() {
m_device.destroy();
m_instance.destroy();
}
Context Context::create(const char* applicationName, uint32_t applicationVersion, uint32_t queueCount, std::vector<vk::QueueFlagBits> queueFlags, std::vector<const char*> instanceExtensions, std::vector<const char*> deviceExtensions) {
glfwInit();
// check for layer support
uint32_t layerCount = 0;
vk::enumerateInstanceLayerProperties(&layerCount, nullptr);
std::vector<vk::LayerProperties> layerProperties(layerCount);
vk::enumerateInstanceLayerProperties(&layerCount, layerProperties.data());
std::vector<const char*> supportedLayers;
for (auto& elem : layerProperties) {
supportedLayers.push_back(elem.layerName);
// if in debug mode, check if validation layers are supported. Enable them if supported
#if _DEBUG
std::vector<const char*> validationLayers = {
"VK_LAYER_KHRONOS_validation"
};
if (!Context::checkSupport(supportedLayers, validationLayers)) {
throw std::runtime_error("Validation layers requested but not available!");
// check for extension support
std::vector<vk::ExtensionProperties> instanceExtensionProperties = vk::enumerateInstanceExtensionProperties();
std::vector<const char*> supportedExtensions;
for (auto& elem : instanceExtensionProperties) {
supportedExtensions.push_back(elem.extensionName);
}
if (!checkSupport(supportedExtensions, instanceExtensions)) {
throw std::runtime_error("The requested instance extensions are not supported!");
// for GLFW: get all required extensions
std::vector<const char*> requiredExtensions = Context::getRequiredExtensions();
instanceExtensions.insert(instanceExtensions.end(), requiredExtensions.begin(), requiredExtensions.end());
const vk::ApplicationInfo applicationInfo(
applicationName,
applicationVersion,
"vkCV",
VK_MAKE_VERSION(0, 0, 1),
VK_HEADER_VERSION_COMPLETE
vk::InstanceCreateInfo instanceCreateInfo(
vk::InstanceCreateFlags(),
&applicationInfo,
static_cast<uint32_t>(instanceExtensions.size()),
instanceExtensions.data()
#if _DEBUG
instanceCreateInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
instanceCreateInfo.ppEnabledLayerNames = validationLayers.data();
#endif
vk::Instance instance = vk::createInstance(instanceCreateInfo);
std::vector<vk::PhysicalDevice> physicalDevices = instance.enumeratePhysicalDevices();
vk::PhysicalDevice physicalDevice = pickPhysicalDevice(instance);
// check for physical device extension support
std::vector<vk::ExtensionProperties> deviceExtensionProperties = physicalDevice.enumerateDeviceExtensionProperties();
supportedExtensions.clear();
for (auto& elem : deviceExtensionProperties) {
supportedExtensions.push_back(elem.extensionName);
}
if (!checkSupport(supportedExtensions, deviceExtensions)) {
throw std::runtime_error("The requested device extensions are not supported by the physical device!");
// create required queues
std::vector<vk::DeviceQueueCreateInfo> qCreateInfos = getQueueCreateInfos(physicalDevice, queueCount, queueFlags);
vk::DeviceCreateInfo deviceCreateInfo(
vk::DeviceCreateFlags(),
qCreateInfos.size(),
qCreateInfos.data(),
0,
nullptr,
deviceExtensions.size(),
deviceExtensions.data(),
nullptr // Should our device use some features??? If yes: TODO
#if _DEBUG
deviceCreateInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
deviceCreateInfo.ppEnabledLayerNames = validationLayers.data();
#endif
vk::Device device = physicalDevice.createDevice(deviceCreateInfo);
// TODO: implement device.getQueue() to access the queues, if needed
return Context(instance, physicalDevice, device);
}
const vk::Instance& Context::getInstance() const {
return m_instance;
}
const vk::PhysicalDevice& Context::getPhysicalDevice() const {
return m_physicalDevice;
}
const vk::Device& Context::getDevice() const {
return m_device;
}
/// <summary>
/// All existing physical devices will be evaluated by
/// </summary>
/// <param name="instance">The instance.</param>
/// <returns>The optimal physical device.</returns>
/// <seealso cref="Context.deviceScore">
vk::PhysicalDevice Context::pickPhysicalDevice(vk::Instance& instance) {
vk::PhysicalDevice phyDevice;
std::vector<vk::PhysicalDevice> devices = instance.enumeratePhysicalDevices();
if (devices.size() == 0) {
throw std::runtime_error("failed to find GPUs with Vulkan support!");
}
int max_score = -1;
for (const auto& device : devices) {
int score = deviceScore(device);
if (score > max_score) {
max_score = score;
phyDevice = device;
}
}
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
throw std::runtime_error("failed to find a suitable GPU!");
}
return phyDevice;
}
/// <summary>
/// The physical device is evaluated by three categories: discrete GPU vs. integrated GPU, amount of queues and
/// its abilities, and VRAM.
/// </summary>
/// <param name="physicalDevice"> The physical device. </param>
/// <returns></returns>
int Context::deviceScore(const vk::PhysicalDevice& physicalDevice) {
int score = 0;
vk::PhysicalDeviceProperties properties = physicalDevice.getProperties();
std::vector<vk::QueueFamilyProperties> qFamilyProperties = physicalDevice.getQueueFamilyProperties();
// for every queue family compute queue flag bits and the amount of queues
for (const auto& qFamily : qFamilyProperties) {
uint32_t qCount = qFamily.queueCount;
uint32_t bitCount = (static_cast<uint32_t>(qFamily.queueFlags & vk::QueueFlagBits::eCompute) != 0)
+ (static_cast<uint32_t>(qFamily.queueFlags & vk::QueueFlagBits::eGraphics) != 0)
+ (static_cast<uint32_t>(qFamily.queueFlags & vk::QueueFlagBits::eTransfer) != 0)
+ (static_cast<uint32_t>(qFamily.queueFlags & vk::QueueFlagBits::eSparseBinding) != 0);
score += qCount * bitCount;
}
// compute the VRAM of the physical device
vk::PhysicalDeviceMemoryProperties memoryProperties = physicalDevice.getMemoryProperties();
int vram = static_cast<int>(memoryProperties.memoryHeaps[0].size / 1E9);
score *= vram;
if (properties.deviceType == vk::PhysicalDeviceType::eDiscreteGpu) {
score *= 2;
}
else if (properties.deviceType != vk::PhysicalDeviceType::eIntegratedGpu) {
score = -1;
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
}
return score;
}
/// <summary>
/// Creates a candidate list of queues that all meet the desired flags and then creates the maximum possible number
/// of queues. If the number of desired queues is not sufficient, the remaining queues are created from the next
/// candidate from the list.
/// </summary>
/// <param name="physicalDevice">The physical device</param>
/// <param name="queueCount">The amount of queues to be created</param>
/// <param name="queueFlags">The abilities which have to be supported by any created queue</param>
/// <returns></returns>
std::vector<vk::DeviceQueueCreateInfo> Context::getQueueCreateInfos(vk::PhysicalDevice& physicalDevice, uint32_t queueCount, std::vector<vk::QueueFlagBits>& queueFlags) {
std::vector<vk::DeviceQueueCreateInfo> queueCreateInfos;
std::vector<vk::QueueFamilyProperties> qFamilyProperties = physicalDevice.getQueueFamilyProperties();
std::vector<vk::QueueFamilyProperties> qFamilyCandidates;
// search for queue families which support the desired queue flag bits
for (auto& qFamily : qFamilyProperties) {
bool supported = true;
for (auto qFlag : queueFlags) {
supported = supported && (static_cast<uint32_t>(qFlag & qFamily.queueFlags) != 0);
}
if (supported) {
qFamilyCandidates.push_back(qFamily);
}
}
uint32_t create = queueCount;
for (int i = 0; i < qFamilyCandidates.size() && create > 0; i++) {
const int maxCreatableQueues = std::min(create, qFamilyCandidates[i].queueCount);
float* qPriorities = new float[maxCreatableQueues]; // TO CHECK: this seems to solve validation layer errors but the array pointer will not be deleted
std::fill_n(qPriorities, maxCreatableQueues, 1.f); // all queues have the same priorities
vk::DeviceQueueCreateInfo qCreateInfo(
vk::DeviceQueueCreateFlags(),
i,
maxCreatableQueues,
qPriorities
);
queueCreateInfos.push_back(qCreateInfo);
create -= maxCreatableQueues;
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
}
return queueCreateInfos;
}
/// <summary>
/// With the help of the reference <paramref name="supported"> all elements in <paramref name="check"/> checked,
/// if they are supported by the physical device.
/// </summary>
/// <param name="supported">The reference that can be used to check <paramref name="check"/></param>
/// <param name="check">The elements to be checked</param>
/// <returns>True, if all elements in <param name="check"> are supported</returns>
bool Context::checkSupport(std::vector<const char*>& supported, std::vector<const char*>& check) {
for (auto checkElem : check) {
bool found = false;
for (auto supportedElem : supported) {
if (strcmp(supportedElem, checkElem) == 0) {
found = true;
break;
}
}
if (!found)
return false;
}
return true;
}
/// <summary>
/// Gets all extensions required, i.e. GLFW and advanced debug extensions.
/// </summary>
/// <returns>The required extensions</returns>
std::vector<const char*> Context::getRequiredExtensions() {
uint32_t glfwExtensionCount = 0;
const char** glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
std::vector<const char*> extensions(glfwExtensions, glfwExtensions + glfwExtensionCount);
#if _DEBUG
extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
#endif