Newer
Older
#include "homer_navigation/homer_navigation_node.h"
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
HomerNavigationNode::HomerNavigationNode() {
ros::NodeHandle nh;
// subscribers
m_map_sub = nh.subscribe<nav_msgs::OccupancyGrid>(
"/map", 1, &HomerNavigationNode::mapCallback, this);
m_pose_sub = nh.subscribe<geometry_msgs::PoseStamped>(
"/pose", 1, &HomerNavigationNode::poseCallback, this);
m_laser_data_sub = nh.subscribe<sensor_msgs::LaserScan>(
"/scan", 1, &HomerNavigationNode::laserDataCallback, this);
m_down_laser_data_sub = nh.subscribe<sensor_msgs::LaserScan>(
"/front_scan", 1, &HomerNavigationNode::downlaserDataCallback, this);
m_start_navigation_sub = nh.subscribe<homer_mapnav_msgs::StartNavigation>(
"/homer_navigation/start_navigation", 1,
&HomerNavigationNode::startNavigationCallback, this);
m_move_base_simple_goal_sub = nh.subscribe<geometry_msgs::PoseStamped>(
"/move_base_simple/goal", 1,
&HomerNavigationNode::moveBaseSimpleGoalCallback,
this); // for RVIZ usage
m_stop_navigation_sub = nh.subscribe<std_msgs::Empty>(
"/homer_navigation/stop_navigation", 1,
&HomerNavigationNode::stopNavigationCallback, this);
m_navigate_to_poi_sub = nh.subscribe<homer_mapnav_msgs::NavigateToPOI>(
"/homer_navigation/navigate_to_POI", 1,
&HomerNavigationNode::navigateToPOICallback, this);
m_unknown_threshold_sub = nh.subscribe<std_msgs::Int8>(
"/homer_navigation/unknown_threshold", 1,
&HomerNavigationNode::unknownThresholdCallback, this);
m_refresh_param_sub = nh.subscribe<std_msgs::Empty>(
"/homer_navigation/refresh_params", 1,
&HomerNavigationNode::refreshParamsCallback, this);
m_max_move_depth_sub = nh.subscribe<std_msgs::Float32>(
"/homer_navigation/max_depth_move_distance", 1,
&HomerNavigationNode::maxDepthMoveDistanceCallback, this);
m_cmd_vel_pub =
nh.advertise<geometry_msgs::Twist>("/robot_platform/cmd_vel", 1);
m_target_reached_string_pub =
nh.advertise<std_msgs::String>("/homer_navigation/target_reached", 1);
// m_target_reached_empty_pub =
// nh.advertise<std_msgs::Empty>("/homer_navigation/target_reached", 1);
m_target_unreachable_pub = nh.advertise<homer_mapnav_msgs::TargetUnreachable>(
"/homer_navigation/target_unreachable", 1);
m_path_pub = nh.advertise<nav_msgs::Path>("/homer_navigation/path", 1);
m_ptu_center_world_point_pub = nh.advertise<homer_ptu_msgs::CenterWorldPoint>(
"/ptu/center_world_point", 1);
m_set_pan_tilt_pub =
nh.advertise<homer_ptu_msgs::SetPanTilt>("/ptu/set_pan_tilt", 1);
m_debug_pub = nh.advertise<std_msgs::String>("/homer_navigation/debug", 1);
m_get_POIs_client = nh.serviceClient<homer_mapnav_msgs::GetPointsOfInterest>(
"/map_manager/get_pois");
m_MainMachine.setName("HomerNavigation Main");
ADD_MACHINE_STATE(m_MainMachine, IDLE);
ADD_MACHINE_STATE(m_MainMachine, AWAITING_PATHPLANNING_MAP);
ADD_MACHINE_STATE(m_MainMachine, FOLLOWING_PATH);
ADD_MACHINE_STATE(m_MainMachine, AVOIDING_COLLISION);
ADD_MACHINE_STATE(m_MainMachine, FINAL_TURN);
init();
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
void HomerNavigationNode::loadParameters() {
// Explorer constructor
ros::param::param("/homer_mapping/resolution", m_resolution, (double)0.05);
ros::param::param("/homer_navigation/allowed_obstacle_distance/min",
m_AllowedObstacleDistance.first, (float)0.3);
ros::param::param("/homer_navigation/allowed_obstacle_distance/max",
m_AllowedObstacleDistance.second, (float)5.0);
ros::param::param("/homer_navigation/safe_obstacle_distance/min",
m_SafeObstacleDistance.first, (float)0.7);
ros::param::param("/homer_navigation/safe_obstacle_distance/max",
m_SafeObstacleDistance.second, (float)1.5);
ros::param::param("/homer_navigation/frontier_safeness_factor",
m_FrontierSafenessFactor, (float)1.4);
ros::param::param("/homer_navigation/safe_path_weight", m_SafePathWeight,
(double)1.2);
ros::param::param("/homer_navigation/waypoint_sampling_threshold",
m_waypoint_sampling_threshold, (float)1.5);
m_AllowedObstacleDistance.first /= m_resolution;
m_AllowedObstacleDistance.second /= m_resolution;
m_SafeObstacleDistance.first /= m_resolution;
m_SafeObstacleDistance.second /= m_resolution;
// check path
ros::param::param("/homer_navigation/check_path", m_check_path, (bool)true);
ros::param::param("/homer_navigation/check_path_max_distance",
m_check_path_max_distance, (float)2.0);
// collision
ros::param::param("/homer_navigation/collision_distance",
m_collision_distance, (float)0.3);
ros::param::param("/homer_navigation/collision_distance_near_target",
m_collision_distance_near_target, (float)0.2);
ros::param::param("/homer_navigation/backward_collision_distance",
m_backward_collision_distance, (float)0.5);
// cmd_vel config values
ros::param::param("/homer_navigation/min_turn_angle", m_min_turn_angle,
(float)0.15);
ros::param::param("/homer_navigation/max_turn_speed", m_max_turn_speed,
(float)0.6);
ros::param::param("/homer_navigation/min_turn_speed", m_min_turn_speed,
(float)0.3);
ros::param::param("/homer_navigation/max_move_speed", m_max_move_speed,
(float)0.4);
ros::param::param("/homer_navigation/max_drive_angle", m_max_drive_angle,
(float)0.6);
// caution factors
ros::param::param("/homer_navigation/map_speed_factor", m_map_speed_factor,
(float)1.0);
ros::param::param("/homer_navigation/waypoint_speed_factor",
m_waypoint_speed_factor, (float)1.0);
ros::param::param("/homer_navigation/obstacle_speed_factor",
m_obstacle_speed_factor, (float)1.0);
ros::param::param("/homer_navigation/target_distance_speed_factor",
m_target_distance_speed_factor, (float)0.4);
// robot dimensions
ros::param::param("/homer_navigation/min_x", m_min_x, (float)0.3);
ros::param::param("/homer_navigation/min_y", m_min_y, (float)0.27);
// error durations
ros::param::param("/homer_navigation/callback_error_duration",
m_callback_error_duration, (float)0.3);
ros::param::param("/homer_navigation/use_ptu", m_use_ptu, (bool)false);
ros::param::param("/homer_navigation/unknown_threshold", m_unknown_threshold,
(int)50);
ros::param::param("/homer_navigation/waypoint_radius_factor",
m_waypoint_radius_factor, (float)0.25);
void HomerNavigationNode::init() {
m_max_move_sick = 40.0;
m_max_move_down = 40.0;
m_max_move_depth = 40.0;
m_robot_pose.position.x = 0.0;
m_robot_pose.position.y = 0.0;
m_robot_pose.position.z = 0.0;
m_robot_pose.orientation = tf::createQuaternionMsgFromYaw(0.0);
m_robot_last_pose = m_robot_pose;
m_avoided_collision = false;
m_act_speed = 0;
m_angular_avoidance = 0;
m_last_calculations_failed = 0;
m_last_check_path_res = false;
m_new_target = true;
loadParameters();
m_explorer = new Explorer(
m_AllowedObstacleDistance.first, m_AllowedObstacleDistance.second,
m_SafeObstacleDistance.first, m_SafeObstacleDistance.second,
m_SafePathWeight, m_FrontierSafenessFactor, m_unknown_threshold);
m_last_map_data = new std::vector<int8_t>(0);
m_MainMachine.setState(IDLE);
HomerNavigationNode::~HomerNavigationNode() {
if (m_explorer) {
delete m_explorer;
}
if (m_last_map_data) {
delete m_last_map_data;
}
void HomerNavigationNode::stopRobot() {
m_act_speed = 0;
geometry_msgs::Twist cmd_vel_msg;
cmd_vel_msg.linear.x = 0;
cmd_vel_msg.linear.y = 0;
cmd_vel_msg.linear.z = 0;
cmd_vel_msg.angular.x = 0;
cmd_vel_msg.angular.y = 0;
cmd_vel_msg.angular.z = 0;
m_cmd_vel_pub.publish(cmd_vel_msg);
ros::Duration(0.1).sleep();
m_cmd_vel_pub.publish(cmd_vel_msg);
ros::Duration(0.1).sleep();
m_cmd_vel_pub.publish(cmd_vel_msg);
void HomerNavigationNode::idleProcess() {
if (m_MainMachine.state() == FOLLOWING_PATH) {
if ((ros::Time::now() - m_last_laser_time) >
ros::Duration(m_callback_error_duration)) {
ROS_ERROR_STREAM("Laser data timeout!\n");
stopRobot();
}
if ((ros::Time::now() - m_last_pose_time) >
ros::Duration(m_callback_error_duration)) {
ROS_ERROR_STREAM("Pose timeout!\n");
stopRobot();
}
}
void HomerNavigationNode::calculatePath() {
if (m_distance_to_target < m_desired_distance && !m_new_target) {
m_path_reaches_target = true;
return;
}
m_explorer->setOccupancyMap(m_width, m_height, m_origin,
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
&(*m_last_map_data)[0]);
m_explorer->setStart(
map_tools::toMapCoords(m_robot_pose.position, m_origin, m_resolution));
bool success;
m_pixel_path = m_explorer->getPath(success);
if (!success) {
ROS_WARN_STREAM("No path found for navigation");
m_last_calculations_failed++;
ROS_INFO_STREAM("last_calculation_failed: " << m_last_calculations_failed);
if (m_last_calculations_failed > 8) {
sendTargetUnreachableMsg(
homer_mapnav_msgs::TargetUnreachable::NO_PATH_FOUND);
}
} else {
m_last_calculations_failed = 0;
std::vector<Eigen::Vector2i> waypoint_pixels =
m_explorer->sampleWaypointsFromPath(m_pixel_path,
m_waypoint_sampling_threshold);
m_waypoints.clear();
ROS_INFO_STREAM("homer_navigation::calculatePath - Path Size: "
<< waypoint_pixels.size());
if (waypoint_pixels.size() > 0) {
for (std::vector<Eigen::Vector2i>::iterator it = waypoint_pixels.begin();
it != waypoint_pixels.end(); ++it) {
geometry_msgs::PoseStamped poseStamped;
poseStamped.header.frame_id = "/map";
poseStamped.pose.position =
map_tools::fromMapCoords(*it, m_origin, m_resolution);
poseStamped.pose.orientation.x = 0.0;
poseStamped.pose.orientation.y = 0.0;
poseStamped.pose.orientation.z = 0.0;
poseStamped.pose.orientation.w = 1.0;
m_waypoints.push_back(poseStamped);
}
sendPathData();
} else {
sendTargetUnreachableMsg(
homer_mapnav_msgs::TargetUnreachable::NO_PATH_FOUND);
}
m_last_laser_time = ros::Time::now();
m_last_pose_time = ros::Time::now();
}
void HomerNavigationNode::startNavigation() {
if (m_distance_to_target < m_desired_distance && !m_new_target) {
ROS_INFO_STREAM(
"Will not (re-)plan path: Target position already reached.");
m_path_reaches_target = true;
targetPositionReached();
return;
}
ROS_INFO_STREAM("Distance to target still too large ("
<< m_distance_to_target
<< "m; requested: " << m_desired_distance << "m)");
if (m_fast_path_planning) {
maskMap();
}
m_explorer->setOccupancyMap(m_width, m_height, m_origin,
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
&(*m_last_map_data)[0]);
// check if there still exists a path to the original target
if (m_avoided_collision && m_initial_path_reaches_target &&
m_stop_before_obstacle) {
m_explorer->setStart(
map_tools::toMapCoords(m_robot_pose.position, m_origin, m_resolution));
bool success;
m_pixel_path = m_explorer->getPath(success);
if (!success) {
ROS_INFO_STREAM(
"Initial path would have reached target, new path does not. "
<< "Sending target unreachable.");
sendTargetUnreachableMsg(
homer_mapnav_msgs::TargetUnreachable::LASER_OBSTACLE);
return;
}
}
m_explorer->setStart(
map_tools::toMapCoords(m_robot_pose.position, m_origin, m_resolution));
Eigen::Vector2i new_target_approx = m_explorer->getNearestAccessibleTarget(
map_tools::toMapCoords(m_target_point, m_origin, m_resolution));
geometry_msgs::Point new_target_approx_world =
map_tools::fromMapCoords(new_target_approx, m_origin, m_resolution);
ROS_INFO_STREAM(
"start Navigation: Approx target: " << new_target_approx_world);
m_path_reaches_target =
(map_tools::distance(new_target_approx_world, m_target_point) <
m_desired_distance);
m_initial_path_reaches_target = m_path_reaches_target;
bool new_approx_is_better =
(map_tools::distance(m_robot_pose.position, m_target_point) -
map_tools::distance(new_target_approx_world, m_target_point)) >
2 * m_desired_distance;
if (!new_approx_is_better && !m_path_reaches_target) {
ROS_WARN_STREAM(
"No better way to target found, turning and then reporting as "
"unreachable."
<< std::endl
<< "Distance to target: " << m_distance_to_target
<< "m; requested: " << m_desired_distance << "m");
m_MainMachine.setState(FINAL_TURN);
} else {
m_explorer->setTarget(new_target_approx);
m_MainMachine.setState(FOLLOWING_PATH);
calculatePath();
}
void HomerNavigationNode::sendPathData() {
nav_msgs::Path msg;
msg.header.frame_id = "/map";
msg.header.stamp = ros::Time::now();
if (m_waypoints.size() > 0) {
msg.poses = m_waypoints;
geometry_msgs::PoseStamped pose_stamped;
pose_stamped.pose = m_robot_pose;
pose_stamped.header.frame_id = "/map";
pose_stamped.header.stamp = ros::Time::now();
msg.poses.insert(msg.poses.begin(), pose_stamped);
}
m_path_pub.publish(msg);
void HomerNavigationNode::sendTargetReachedMsg() {
stopRobot();
m_MainMachine.setState(IDLE);
std_msgs::String reached_string_msg;
reached_string_msg.data = m_target_name;
m_target_reached_string_pub.publish(reached_string_msg);
m_waypoints.clear();
nav_msgs::Path empty_path_msg;
empty_path_msg.poses = m_waypoints;
m_path_pub.publish(empty_path_msg);
ROS_INFO_STREAM("=== Reached Target " << m_target_name << " ===");
void HomerNavigationNode::sendTargetUnreachableMsg(int8_t reason) {
stopRobot();
m_MainMachine.setState(IDLE);
homer_mapnav_msgs::TargetUnreachable unreachable_msg;
unreachable_msg.reason = reason;
m_target_unreachable_pub.publish(unreachable_msg);
m_waypoints.clear();
nav_msgs::Path empty_path_msg;
empty_path_msg.poses = m_waypoints;
m_path_pub.publish(empty_path_msg);
ROS_INFO_STREAM("=== TargetUnreachableMsg ===");
void HomerNavigationNode::targetPositionReached() {
ROS_INFO_STREAM("Target position reached. Distance to target: "
<< m_distance_to_target
<< "m. Desired distance:" << m_desired_distance << "m");
stopRobot();
m_waypoints.clear();
sendPathData();
m_MainMachine.setState(FINAL_TURN);
ROS_INFO_STREAM("Turning to look-at point");
bool HomerNavigationNode::checkPath() {
if (m_pixel_path.size() != 0) {
for (unsigned i = 0; i < m_pixel_path.size() - 1; i++) {
geometry_msgs::Point p =
map_tools::fromMapCoords(m_pixel_path.at(i), m_origin, m_resolution);
if (map_tools::distance(m_robot_pose.position, p) >
m_check_path_max_distance) {
return true;
}
for (int a = 0; a < 5; a++) {
if (map_tools::findValue(
m_last_map_data, m_width, m_height,
m_pixel_path[i].x() +
(m_pixel_path[i + 1].x() - m_pixel_path[i].x()) * a / 4,
m_pixel_path[i].y() +
(m_pixel_path[i + 1].y() - m_pixel_path[i].y()) * a / 4,
90, 2)) {
ROS_WARN_STREAM("Obstacle detected in current path recalculating");
return false;
}
}
}
}
void HomerNavigationNode::handleCollision() {
if (m_MainMachine.state() == FOLLOWING_PATH) {
stopRobot();
m_MainMachine.setState(AVOIDING_COLLISION);
ROS_WARN_STREAM("Collision detected while following path!");
}
void HomerNavigationNode::performNextMove() {
if (m_MainMachine.state() == FOLLOWING_PATH) {
if (m_distance_to_target < m_desired_distance && !m_new_target) {
ROS_INFO_STREAM("Desired distance to target was reached.");
targetPositionReached();
return;
}
if (m_waypoints.size() == 0) {
ROS_WARN_STREAM(
"No waypoints but trying to perform next move! Skipping.");
return;
}
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
// if we have accidentaly skipped waypoints, recalculate path
float minDistance = FLT_MAX;
float distance;
unsigned nearestWaypoint = 0;
for (unsigned i = 0; i < m_waypoints.size(); i++) {
distance = map_tools::distance(m_robot_pose.position,
m_waypoints[i].pose.position);
if (distance < minDistance) {
nearestWaypoint = i;
minDistance = distance;
}
}
if (nearestWaypoint != 0) {
// if the target is nearer than the waypoint don't recalculate
if (m_waypoints.size() != 2) {
ROS_WARN_STREAM("Waypoints skipped. Recalculating path!");
calculatePath();
if (m_MainMachine.state() != FOLLOWING_PATH) {
return;
}
} else {
m_waypoints.erase(m_waypoints.begin());
}
}
Eigen::Vector2i waypointPixel = map_tools::toMapCoords(
m_waypoints[0].pose.position, m_origin, m_resolution);
float obstacleDistanceMap = m_explorer->getObstacleTransform()->getValue(
waypointPixel.x(), waypointPixel.y()) *
m_resolution;
float waypointRadius = m_waypoint_radius_factor * obstacleDistanceMap;
if ((waypointRadius < m_resolution) || (m_waypoints.size() == 1)) {
waypointRadius = m_resolution;
}
if (m_waypoints.size() != 0) {
// calculate distance between last_pose->current_pose and waypoint
Eigen::Vector2f line; // direction of the line
line[0] = m_robot_pose.position.x - m_robot_last_pose.position.x;
line[1] = m_robot_pose.position.y - m_robot_last_pose.position.y;
Eigen::Vector2f
point_to_start; // vector from the point to the start of the line
point_to_start[0] =
m_robot_last_pose.position.x - m_waypoints[0].pose.position.x;
point_to_start[1] =
m_robot_last_pose.position.y - m_waypoints[0].pose.position.y;
float dot =
point_to_start[0] * line[0] +
point_to_start[1] * line[1]; // dot product of point_to_start * line
Eigen::Vector2f distance; // shortest distance vector from point to line
distance[0] = point_to_start[0] - dot * line[0];
distance[1] = point_to_start[1] - dot * line[1];
float distance_to_waypoint =
sqrt((double)(distance[0] * distance[0] + distance[1] * distance[1]));
// check if current waypoint has been reached
if ((distance_to_waypoint < waypointRadius && m_waypoints.size() > 1) ||
(m_distance_to_target < waypointRadius)) {
m_waypoints.erase(m_waypoints.begin());
}
}
sendPathData();
// last wayoint reached
if (m_waypoints.size() == 0) {
ROS_INFO_STREAM("Last waypoint reached");
currentPathFinished();
return;
}
if (m_use_ptu) {
ROS_INFO_STREAM("Moving PTU to center next Waypoint");
homer_ptu_msgs::CenterWorldPoint ptu_msg;
ptu_msg.point.x = m_waypoints[0].pose.position.x;
ptu_msg.point.y = m_waypoints[0].pose.position.y;
ptu_msg.point.z = 0;
ptu_msg.permanent = true;
m_ptu_center_world_point_pub.publish(ptu_msg);
}
float distanceToWaypoint = map_tools::distance(
m_robot_pose.position, m_waypoints[0].pose.position);
float angleToWaypoint = angleToPointDeg(m_waypoints[0].pose.position);
if (angleToWaypoint < -180) {
angleToWaypoint += 360;
}
float angle = deg2Rad(angleToWaypoint);
// linear speed calculation
if (m_avoided_collision) {
if (std::abs(angleToWaypoint) < 10) {
m_avoided_collision = false;
}
} else if (abs(angle) > m_max_drive_angle) {
m_act_speed = 0.0;
} else {
float obstacleMapDistance = 1;
for (int wpi = -1; wpi < std::min((int)m_waypoints.size(), (int)2);
wpi++) {
Eigen::Vector2i robotPixel;
if (wpi == -1) {
robotPixel = map_tools::toMapCoords(m_robot_pose.position, m_origin,
m_resolution);
} else {
robotPixel = map_tools::toMapCoords(m_waypoints[wpi].pose.position,
m_origin, m_resolution);
}
obstacleMapDistance =
std::min((float)obstacleMapDistance,
(float)(m_explorer->getObstacleTransform()->getValue(
robotPixel.x(), robotPixel.y()) *
m_resolution));
if (obstacleMapDistance <= 0.00001) {
ROS_ERROR_STREAM(
"obstacleMapDistance is below threshold to 0 setting to 1");
obstacleMapDistance = 1;
}
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
}
float max_move_distance_speed =
m_max_move_speed * m_max_move_distance * m_obstacle_speed_factor;
float max_map_distance_speed =
m_max_move_speed * obstacleMapDistance * m_map_speed_factor;
m_act_speed = std::min(
std::max((float)0.1,
m_distance_to_target * m_target_distance_speed_factor),
std::min(std::min(m_max_move_speed, max_move_distance_speed),
std::min(max_map_distance_speed,
distanceToWaypoint * m_waypoint_speed_factor)));
std_msgs::String tmp;
std::stringstream str;
str << "m_obstacle_speed " << max_move_distance_speed
<< " max_map_distance_speed " << max_map_distance_speed;
tmp.data = str.str();
m_debug_pub.publish(tmp);
}
// angular speed calculation
if (angle < 0) {
angle = std::max(angle * (float)0.8, -m_max_turn_speed);
m_act_speed = m_act_speed + angle / 2.0;
if (m_act_speed < 0) {
m_act_speed = 0;
}
} else {
angle = std::min(angle * (float)0.8, m_max_turn_speed);
m_act_speed = m_act_speed - angle / 2.0;
if (m_act_speed < 0) {
m_act_speed = 0;
}
}
geometry_msgs::Twist cmd_vel_msg;
cmd_vel_msg.linear.x = m_act_speed;
cmd_vel_msg.angular.z = angle;
m_cmd_vel_pub.publish(cmd_vel_msg);
ROS_DEBUG_STREAM("Driving & turning"
<< std::endl
<< "linear: " << m_act_speed << " angular: " << angle
<< std::endl
<< "distanceToWaypoint:" << distanceToWaypoint
<< "angleToWaypoint: " << angleToWaypoint << std::endl);
} else if (m_MainMachine.state() == AVOIDING_COLLISION) {
if (m_distance_to_target < m_desired_distance && !m_new_target) {
ROS_INFO_STREAM("Collision detected near target. Switch to final turn.");
targetPositionReached();
} else if (m_max_move_distance <= m_collision_distance &&
m_waypoints.size() > 1 ||
m_max_move_distance <= m_collision_distance_near_target) {
ROS_WARN_STREAM("Maximum driving distance too short ("
<< m_max_move_distance << "m)! Moving back.");
geometry_msgs::Twist cmd_vel_msg;
if (!HomerNavigationNode::backwardObstacle()) {
cmd_vel_msg.linear.x = -0.2;
} else {
if (m_angular_avoidance == 0) {
float angleToWaypoint = angleToPointDeg(m_waypoints[0].pose.position);
if (angleToWaypoint < -180) {
angleToWaypoint += 360;
}
if (angleToWaypoint < 0) {
m_angular_avoidance = -0.4;
} else {
m_angular_avoidance = 0.4;
}
}
cmd_vel_msg.angular.z = m_angular_avoidance;
}
m_cmd_vel_pub.publish(cmd_vel_msg);
} else {
m_angular_avoidance = 0;
m_avoided_collision = true;
ROS_WARN_STREAM("Collision avoided. Updating path.");
currentPathFinished();
}
} else if (m_MainMachine.state() == FINAL_TURN) {
if (m_use_ptu) {
// reset PTU
homer_ptu_msgs::SetPanTilt msg;
msg.absolute = true;
msg.panAngle = 0;
msg.tiltAngle = 0;
m_set_pan_tilt_pub.publish(msg);
}
if (m_skip_final_turn) {
ROS_INFO_STREAM("Final turn skipped. Target reached.");
if (m_path_reaches_target) {
sendTargetReachedMsg();
} else {
sendTargetUnreachableMsg(
homer_mapnav_msgs::TargetUnreachable::NO_PATH_FOUND);
}
return;
}
float turnAngle = minTurnAngle(tf::getYaw(m_robot_pose.orientation),
m_target_orientation);
ROS_DEBUG_STREAM(
"homer_navigation::PerformNextMove:: Final Turn. Robot orientation: "
<< rad2Deg(tf::getYaw(m_robot_pose.orientation))
<< ". Target orientation: " << rad2Deg(m_target_orientation)
<< "homer_navigation::PerformNextMove:: turnAngle: "
<< rad2Deg(turnAngle));
if (std::fabs(turnAngle) < m_min_turn_angle) {
ROS_INFO_STREAM(":::::::NEAREST WALKABLE TARGET REACHED BECAUSE lower "
<< m_min_turn_angle);
ROS_INFO_STREAM("target angle = " << m_target_orientation);
ROS_INFO_STREAM("is angle = " << tf::getYaw(m_robot_pose.orientation));
ROS_INFO_STREAM("m_distance_to_target = " << m_distance_to_target);
ROS_INFO_STREAM("m_desired_distance = " << m_desired_distance);
if (m_path_reaches_target) {
sendTargetReachedMsg();
} else {
sendTargetUnreachableMsg(
homer_mapnav_msgs::TargetUnreachable::NO_PATH_FOUND);
}
return;
} else {
if (turnAngle < 0) {
turnAngle =
std::max(std::min(turnAngle, -m_min_turn_speed), -m_max_turn_speed);
} else {
turnAngle =
std::min(std::max(turnAngle, m_min_turn_speed), m_max_turn_speed);
}
geometry_msgs::Twist cmd_vel_msg;
cmd_vel_msg.angular.z = turnAngle;
m_cmd_vel_pub.publish(cmd_vel_msg);
}
}
void HomerNavigationNode::currentPathFinished() {
ROS_INFO_STREAM("Current path was finished, initiating recalculation.");
m_waypoints.clear();
stopRobot();
m_MainMachine.setState(AWAITING_PATHPLANNING_MAP);
int HomerNavigationNode::angleToPointDeg(geometry_msgs::Point target) {
double cx = m_robot_pose.position.x;
double cy = m_robot_pose.position.y;
int targetAngle = rad2Deg(atan2(target.y - cy, target.x - cx));
int currentAngle = rad2Deg(tf::getYaw(m_robot_pose.orientation));
int angleDiff = targetAngle - currentAngle;
angleDiff = (angleDiff + 180) % 360 - 180;
return angleDiff;
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
bool HomerNavigationNode::drawPolygon(
std::vector<geometry_msgs::Point> vertices) {
if (vertices.size() == 0) {
ROS_INFO_STREAM("No vertices given!");
return false;
}
// make temp. map
std::vector<int> data(m_width * m_height);
for (int i = 0; i < data.size(); i++) {
data[i] = 0;
}
// draw the lines surrounding the polygon
for (unsigned int i = 0; i < vertices.size(); i++) {
int i2 = (i + 1) % vertices.size();
drawLine(data, vertices[i].x, vertices[i].y, vertices[i2].x, vertices[i2].y,
30);
}
// calculate a point in the middle of the polygon
float midX = 0;
float midY = 0;
for (unsigned int i = 0; i < vertices.size(); i++) {
midX += vertices[i].x;
midY += vertices[i].y;
}
midX /= vertices.size();
midY /= vertices.size();
// fill polygon
return fillPolygon(data, (int)midX, (int)midY, 30);
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
void HomerNavigationNode::drawLine(std::vector<int>& data, int startX,
int startY, int endX, int endY, int value) {
// bresenham algorithm
int x, y, t, dist, xerr, yerr, dx, dy, incx, incy;
// compute distances
dx = endX - startX;
dy = endY - startY;
// compute increment
if (dx < 0) {
incx = -1;
dx = -dx;
} else {
incx = dx ? 1 : 0;
}
if (dy < 0) {
incy = -1;
dy = -dy;
} else {
incy = dy ? 1 : 0;
}
// which distance is greater?
dist = (dx > dy) ? dx : dy;
// initializing
x = startX;
y = startY;
xerr = dx;
yerr = dy;
// compute cells
for (t = 0; t < dist; t++) {
int index = x + m_width * y;
if (index < 0 || index > data.size()) {
continue;
}
data[index] = value;
xerr += dx;
yerr += dy;
if (xerr > dist) {
xerr -= dist;
x += incx;
}
if (yerr > dist) {
yerr -= dist;
y += incy;
}
}
bool HomerNavigationNode::fillPolygon(std::vector<int>& data, int x, int y,
int value) {
int index = x + m_width * y;
bool tmp = false;
if ((int)m_last_map_data->at(index) > 90) {
tmp = true;
}
if (data[index] != value) {
data[index] = value;
if (fillPolygon(data, x + 1, y, value)) {
tmp = true;
}
if (fillPolygon(data, x - 1, y, value)) {
tmp = true;
}
if (fillPolygon(data, x, y + 1, value)) {
tmp = true;
}
if (fillPolygon(data, x, y - 1, value)) {
tmp = true;
}
}
return tmp;
bool HomerNavigationNode::backwardObstacle() {
std::vector<geometry_msgs::Point> vertices;
geometry_msgs::Point base_link_point;
geometry_msgs::Point map_point;
Eigen::Vector2i map_coord;
std::vector<float> x;
std::vector<float> y;
x.push_back(-m_min_x - m_backward_collision_distance);
y.push_back(m_min_y);
x.push_back(-m_min_x - m_backward_collision_distance);
y.push_back(-m_min_y);
x.push_back(-0.1);
y.push_back(-m_min_y);
x.push_back(-0.1);
y.push_back(m_min_y);
for (int i = 0; i < x.size(); i++) {
base_link_point.x = x[i];
base_link_point.y = y[i];
map_coord = map_tools::toMapCoords(
map_tools::transformPoint(base_link_point, m_transform_listener,
"/base_link", "/map"),
m_origin, m_resolution);
map_point.x = map_coord.x();
map_point.y = map_coord.y();
vertices.push_back(map_point);
}
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
void HomerNavigationNode::maskMap() {
// generate bounding box
ROS_INFO_STREAM("Calculating Bounding box for fast planning");
Eigen::Vector2i pose_pixel =
map_tools::toMapCoords(m_robot_pose.position, m_origin, m_resolution);
Eigen::Vector2i target_pixel =
map_tools::toMapCoords(m_target_point, m_origin, m_resolution);
Eigen::Vector2i safe_pixel_distance(m_AllowedObstacleDistance.first * 4,
m_AllowedObstacleDistance.first * 4);
Eigen::AlignedBox2i planning_box;
planning_box.extend(pose_pixel);
planning_box.extend(target_pixel);
ROS_INFO_STREAM("Bounding Box: (" << planning_box.min() << " "
<< planning_box.max());
Eigen::AlignedBox2i safe_planning_box(
planning_box.min() - safe_pixel_distance,
planning_box.max() + safe_pixel_distance);
ROS_INFO_STREAM("safe Bounding Box: (" << safe_planning_box.min() << " "
<< safe_planning_box.max());
ROS_INFO_STREAM("min in m: " << map_tools::fromMapCoords(
safe_planning_box.min(), m_origin, m_resolution));
ROS_INFO_STREAM("max in m: " << map_tools::fromMapCoords(
safe_planning_box.max(), m_origin, m_resolution));
for (size_t x = 0; x < m_width; x++) {
for (size_t y = 0; y < m_width; y++) {
if (!safe_planning_box.contains(Eigen::Vector2i(x, y))) {
m_last_map_data->at(y * m_width + x) = -1;
}
}
}
// convenience math functions
float HomerNavigationNode::minTurnAngle(float angle1, float angle2) {
angle1 *= 180.0 / M_PI;
angle2 *= 180.0 / M_PI;
int diff = angle2 - angle1;
diff = (diff + 180) % 360 - 180;
if (diff < -180) {
diff += 360;
}
float ret = static_cast<double>(diff) * M_PI / 180.0;
return ret;
void HomerNavigationNode::refreshParamsCallback(
const std_msgs::Empty::ConstPtr& msg) {
ROS_INFO_STREAM("Refreshing Parameters");
loadParameters();
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
void HomerNavigationNode::mapCallback(
const nav_msgs::OccupancyGrid::ConstPtr& msg) {
if (m_last_map_data) {
delete m_last_map_data;
}
m_last_map_data = new std::vector<int8_t>(msg->data);
m_origin = msg->info.origin;
m_width = msg->info.width;
m_height = msg->info.height;
m_resolution = msg->info.resolution;
switch (m_MainMachine.state()) {
case AWAITING_PATHPLANNING_MAP:
startNavigation();
break;
case FOLLOWING_PATH: {
if (m_check_path) {
if (!checkPath()) {
if (!m_last_check_path_res) {
calculatePath();
}
m_last_check_path_res = false;
} else {
m_last_check_path_res = true;
}
}
break;
}
}
void HomerNavigationNode::poseCallback(
const geometry_msgs::PoseStamped::ConstPtr& msg) {
m_robot_last_pose = m_robot_pose;
m_robot_pose = msg->pose;
m_last_pose_time = ros::Time::now();
m_distance_to_target =
map_tools::distance(m_robot_pose.position, m_target_point);
m_new_target = false;
performNextMove();
void HomerNavigationNode::calcMaxMoveDist() {
m_max_move_distance =
std::min(m_max_move_sick, std::min(m_max_move_down, m_max_move_depth));
if (m_max_move_distance <= m_collision_distance &&
std::fabs(m_act_speed) > 0.1 && m_waypoints.size() > 1 ||
m_max_move_distance <= m_collision_distance_near_target &&
std::fabs(m_act_speed) > 0.1 && m_waypoints.size() == 1 ||
m_max_move_distance <= 0.1) {
handleCollision();
}
void HomerNavigationNode::maxDepthMoveDistanceCallback(
const std_msgs::Float32::ConstPtr& msg) {
m_max_move_depth = msg->data;
calcMaxMoveDist();
void HomerNavigationNode::laserDataCallback(
const sensor_msgs::LaserScan::ConstPtr& msg) {
m_last_laser_time = ros::Time::now();
m_max_move_sick = map_tools::get_max_move_distance(
map_tools::laser_ranges_to_points(msg->ranges, msg->angle_min,
msg->angle_increment, msg->range_min,
msg->range_max, m_transform_listener,
msg->header.frame_id, "/base_link"),
m_min_x, m_min_y);
calcMaxMoveDist();
void HomerNavigationNode::downlaserDataCallback(
const sensor_msgs::LaserScan::ConstPtr& msg) {
m_max_move_down = map_tools::get_max_move_distance(
map_tools::laser_ranges_to_points(msg->ranges, msg->angle_min,
msg->angle_increment, msg->range_min,
msg->range_max, m_transform_listener,
msg->header.frame_id, "/base_link"),
m_min_x, m_min_y);
calcMaxMoveDist();
void HomerNavigationNode::startNavigationCallback(
const homer_mapnav_msgs::StartNavigation::ConstPtr& msg) {
ROS_INFO_STREAM("This is MY node.");
m_avoided_collision = false;
m_target_point = msg->goal.position;
m_target_orientation = tf::getYaw(msg->goal.orientation);
m_desired_distance =
msg->distance_to_target < 0.1 ? 0.1 : msg->distance_to_target;
m_skip_final_turn = msg->skip_final_turn;
m_fast_path_planning = msg->fast_planning;
m_new_target = true;
m_target_name = "";
m_initial_path_reaches_target = false;
ROS_INFO_STREAM("Navigating to target "
<< m_target_point.x << ", " << m_target_point.y
<< "\nTarget orientation: " << m_target_orientation
<< "Desired distance to target: " << m_desired_distance);
m_MainMachine.setState(AWAITING_PATHPLANNING_MAP);